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Introduction

The generalized complex Monge-Ampére equations arise when looking for a complex
analogue of the principles of Dirichlet and Thomson, including the inhomogeneity
(weight) functions on the space (complex manifold) and the hermitian structure.
These equations were introduced by the second named author in 1975 [10] and
then studied by him, partially together with A. Andreotti [2], [3]. A considerable
part of the results included in this paper is due to the first named author. His The-
orem 3 ensures the existence of a foliation corresponding to a generalized complex
Monge-Ampére equation, and even to a more general equation. This enables him
to obtain a weak maximum principle and some corollaries.

We begin with the formulation of well known Dirichlet’s and Thomson’s prin-
ciples. Then we introduce on hermitian manifolds the capacities due to the second
named author [10], [11], [12], give their basic properties and explain their con-
nection with the generalized complex Monge-Ampére equations. Before formula-
ting Theorems 3 and 4 we give some preliminaries on foliations.

1. The principles of Dirichlet and Thomson (the case of R?)

We begin with the formulation of Dirichlet’s and Thomson’s principles (cf. [16]
and [14]).

DIRICHLET’S PRINCIPLE. The energy of a constant electric field in a smooth con-
denser (D, ¥o,y,) has the minimal value among the energies of all ir{ote}_tional
fields £ € &, & being the class of all functions of the form E = —gradV, Ve ¥,
and ¥ consisting of all ¥ e C3(cID), such that Vlvo = Vo, Ply, = Vy, and the
normal derivative of ¥ along D\y,\\; vanishes. In other words, we have

W = inf SS &0 eE2dxdy,
Eed D
where £2 = E- E and ¢ = o denotes the electric permeability.

{111}



GUEST


112 J, KALINA. AND J, LAWRYNOWICZ

THOMSON’S PRINCIPLE. The energy of a constant electric field in a smooth con-
denser (D, ¥, ¥,) has the minimal value among the energies of all source-free (so-

lenoidal) fields D e @ with the energy density 1E- D = 1(1/e,6)D - D, 9 being the
class of all functions D € [C2(clD)]?, whose integrals along the oriented curves y,
and y,; are equal O (the electric charge). In other words, we have

W = Linf S S.Lﬁdedy.
Pea D & &

Thus the Dirichlet principle is connected with a variation of the intensity of
an electric field, whereas the Thomson principle — with a variation of the vector
of electric induction. The principles of Dirichlet and Thomson may be reformu-
lated in the terms of capacity:

. . .
cap(D, &) = s infSS E2dxd
(Z—Vo)zfeg D ¢ e
(Dirichlet’s principle),

cap(D, &) = EQ_21 iup[l /SS%f)dedy]

0 De2 D

(Thomson’s principle).

The inf and 1/sup in the above formulae are essentially equal to an extremal length
of Ahlfors and Beurling [1].

2. Capacities on hermitian manifolds

Let M be a complex manifold of complex dimension n endowed with an hermi-
tian metric / and a C? tensor field H of type (1, 1). In particular we may let H de-
pend on h or take as H an almost complex structure of the tangent bundle TM,
for instance the complex structure of M. Let further D be a condenser on M, i.e.
a domain whose complement consists of two distinguished disjoint closed sets C,
and C; (the condenser plates), g: M — C a continuous mapping (the inkomo-
geneity function), and p a real number > 1. Consider the class AdmD of all pluri-
subharmonic C?-functions u on clD, satisfying the conditions 0 < u(z) <1 for
z€D, uloCy = 0 and u|0C; = 1. Let

) Cap(D,q) =_inf |{qlh(dea, deq)so~det Hai ndeii n (ddiiy=
#eAdmD'py ’

where If(d‘u, du) = Py jug, u;= (uo u~');; ¢ p in any local coordinate system
# = () on M.

)}et further I" be a homology class of D with real coefficients and dimI” = r.
Consider all currents of I" (more precisely: corresponding to the elements of I') in
the sense of de Rham, and a locally finite open covering % = {U;: jeI} of M,
Denote l?y adm(D, %) the family of all plurisubbarmonic C2-functions ; on UynD
deﬁnf:d in each member of the covering which satisfy the following conditions:
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(i) the oscillation of u; in UynD is less than one,

(i) du; = du, in UynUnD #+ &

Condition (ii) describes a closed real one-form in D. Similarly du; and dd‘u;
are also well-defined in D. Without ambiguity, we can denote them omitting the
indices. Let [10]:

@ cap,(D,q, ", %) = sup inf|T[g {n(du, d°u)}¥7~'detH D'u}|,
ueadm(D,%) Tel'
where
Dhu = {d"u/\(dd‘u)*' -2 for r odd,
T \du adun(dduyr*  for r even.

For a detailed description of the capacities (1) and (2) we refer to [12], and for
an example of their application to [13].

3. The generalized complex Monge-Ampére equations

‘When looking for a complex analogue of the principle of Dirichlet a natural proce-
dure is to take in (2) for I" the (2n—1)-dimensional homology class of level hyper-
surfaces {z €clD: u(z) = const}. (In analogy, for a complex counterpart of the
principle of Thomson we had to take in (2) for I the orthogonal 1-dimensional ho-
mology class.) One should expect that under some reasonable conditions, in par-
ticular if we take in (2) for admissible functions only u defined globally with 0 <
< u(z) < 1 for z & D (we write u € adm D), both capacities (2) and (1) will coincide.

The above idea as well as both definitions in the case where H = J (the complex
structure of M), p = 2, and g = const is due to Chern, Levine and Nirenberg [7],
but the affirmative answer is known only in very special subcases [7], [9], [5]. In
the case mentioned the functional minimized attains its minimum for # = u if
and only if u fulfils the complex Monge-Ampére equation

(3 (ddu)* = 0.
Since (ddu)" = 4'n!det[(8%/8z;0Z,)u] QiY'dzindZiA .. AdZyA dz,, equation (3) is
the complex analogue of the real Monge-Ampére equation
@ det[(8%/0x; 0xu] = 0.

Equation (3) is a special case of the generalized complex Monge-Ampére
equations

(3) dd°(Fu) A (dduyt = 0, F e C*(clD)
or

©) d(Gdu)a(dduy~t =0, GeC(clD)
which play an analogous role for the general capacity (1) with
D d°(Fu) = Gdu, G = q[h(d°u, du)pP~1detH.

In the general case the function u is replaced by a system satisfying the condition
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(i). We quote the following two theorcms due to Andreotti and Eawrynowicz
[21, B3]
THEOREM 1. Suppose that:
(a) D has a piecewise C*-smooth boundary and compact closure,
by =2, p=2, and q is of the class C*,
(¢) u belongs to admD and satisfies (6), where Q = qdetH,
(d) d(Gd°u) = fdd°u, f = (n—1)"*G, f being of the class C*.
Then the infimum in (1) is attained for the u in question.

P

Remark 1. Theorem 1 remains valid for n = 1. In this case the condition (d)
is superfluous.

THEOREM 2. Suppose that (a) and (b) hold and that:

(c) the infimum in (1) is attained for some u,

(d") d(Gd°u) = fdd°u, G

Then u satisfies (7).

Remark 2. Theorem 2 remains valid for n = 1. In this case the condition (d")
is superfluous.

= gdetH, f being continuous.

4. Foliations

We are going to give some preliminaries on foliations. Here we refer to [6]
and [15].

By a p-dimensional C'-foliation of an m-dimensional C*-differentiable manifold
M we mean a decomposition of M into a union of disjoint connected subsets
{L;: jeI} (I always uncountable) called the leaves of the foliation, with the
following property: Every point of M has a neighbourhood U and a system of local
C-differentiable coordinates x = (x!, ..., x™): U - R™ such that for each leaf L,
the components of UnL; are described by the equations x?*! = comst, ..., X"
= const.

Foliations arise naturally in various situations in mathematics and it would
be instructive to give some examples.

ExampLe 1: Submersions. Let M and N be C'-differentiable manifolds of
dimension m and n, m > n, respectively, and let f: M — N be a submersion, that
is, suppose that rank(df) = n. It follows from the Implicit Function Theorem that
Jfinduces on M a C™foliation of codimension n whose leaves are defined as the com-

f];oinents of f~*({y}) for ye N. Also differentiable fibre bundles are examples of
s sort.

ExaMPLE 2: Subbundles of the tangent bundle of a given C'-di ifferentiable mani-
Jold M. We say that a smooth subbundle E = TM is integrable if and only if
for any two smooth sections (resp. vector fields) X and ¥ of E the section (resp.
vector. field) [X, Y]is also a section (resp. vector field) of E. By the Frobenius the-
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orem the set of all maximal integrals E, of E (i.e. submanifolds of M such that
T.E, is contained in the fibre over x of the subbundle E for every x € E,) forms
a foliation of M.

A foliation always appears as the family of solutions for some nonsingular
systems of differential equations (cf. Example 2). The study of foliations consists
of studying the global behaviour of solutions. For instance a nonsingular system
of ordinary differential equations, when reduced to the first order system, becomes
a non-vanishing vector field. The local solutions (orbits of the local flow generated
by the vector field) form together a 1-dimensional foliation.

One can consider analogously ordinary differential equations in the complex
case (where dependence on the variables is holomorphic). One obtains non-singu-
lar holomorphic vector fields and corresponding foliations by complex curves.

Let now M be a 2n-dimensional C®-differentiable manifold and let TM be its
tangent bundle. Let J denote an almost complex structure on M. The spaces 7.
and TM®! may be defined by the splitting TM ®C ~ TM“°@TM®!, where
o = 1(os—-zJoz)@ (a+iJe). Hence also T*M ®C =~ T*M" °@T*M° 1, Under
this splitting, d = 0+ 0. We shall use the notation 9; = 8/dz; and 3; = 8/6Z;. We
denote by

APIM = AP(T*M ) A AL(T*M®Y)
the spaces of forms of type (p, g) on M, and the spaces of k-forms on M are given
by

AM= @ A"M.

pia=k
We also extend J* (the adjoint of J) to
AM = @ A*M
x

by the rule J¥f = fif fis a O-form and, in general, by J*(EAan) = J*EAT*. If
X e TM ®% C is any tangent vector, then _|X: A% - A% is the contraction by X
defined by
(@0_X)(Yi5 oors Yimg) = 0(X, Yi, ooy Yis)s
where w € A*M and _| stands for the inner product. If # € AM is an ideal, then
Am#F = (XeTM:w_|X €& for all w € F}.

The following lemma can easily be established [4]:

Lemma 1. Let & = (@, ..., w) be the ideal of AM generated by g-forms
s ., 0. If dF © F, then AmF is involutive, i.e. for X, Y e Ann&F we have
[X,Y]e Ann #.

Proof. The assertion easily follows from the identities

X, Y] = [Lg, Y] and Ly=do _JX+_IX od.
We also have [4]:
Lemma 2. If & = (w4, ..., ) is an ideal of AD, D = C", generated by real

(1, 1)-forms, then Ann% is J-invariant.

8*
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Proof. The conclusion follows from the observation that every real (1, 1)-form
o may be diagonalized into the form w = +£8,AJb % ... 2byAJby, Where by, ...
..., by are real 1-forms.

The following lemma is basic for our considerations:

Lemma 3. Let o, and w, be real (1,1)-forms with w, > 0, and let there
exist a;,b;e T*D, D < C", such that w, = Z tanda;, w, = — ij/\ij_ Then
dimspan {a;, Ja;, by, Jb;} = 2p if and only if (w1 +iwy)? # 0 and (w;+iw )P+ = 0.

For the proof we refer to [4].

Remark 3. There are situations in which the condition w, > 0 is unnecessary.
For instance, if w; and @, can be simultancously diagonalized, then the con-
clusion remains valid.

5. Foliations and certain equations involving
the complex hessian

Using the foliation technique we are going to study certain nonlinear partial dif-
ferential equations involving the complex hessian[(8?/0z; 8z;)u], which can be speci-
fied as (5) or (6). With the help of Lemma 3 we can obtain a generalization of
Theorem 5.1 in [4]:

THEOREM 3. Suppose that u: D — C, D being a bounded domain in C, belongs
to C*(D) and imu is plurisubharmonic in D. Let further w be a real (1, 1)-form of
the class C3(D) such that the rank of w is equal to k, 1 < k < n—1, at every point
of D and such that the following conditions hold:

®) o*A(ddu)f =0, 3<ktp<n,
) Wt A (ddu)P~t # 0,
(10) do € F = ideal(w, dd°reu, dd° imu).

Then there exists a foliation ¥,y of D by complex manifolds of codimension
p+k~1 with the property that for every leaf M € &,,,_, the functions imulM and

reulM are pluriharmonic, but d(imu)/dz;|M and d(reu)/dz;|M are holomorphic on
M for each j, 1 <j< n.

Remark 4. If the function u in Theorem 3 is, in addition, continuous on ¢l.D,
then the functions rew, |d(reu)/dz,;, and |d(imu)/dz;| satisfy the weak maximum
principle in clD, i.e. the maximum of rex on clD is equal to the maximum of
reu on. 4D etc.

Proof of Theorem 3. The ideal & is d-closed and invariant under J. It follows
from (9) that Ann# has the complex codimension at least k+p— 1. To show that

the codimension of Ann# is k+p— 1, we select forms Cys @y, by € T*D such that
K

teade,  ddreu = Y tapaday, ddimu = Y —by AJby.
; Z i k Z ¥ (2

w =

(1
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We claim that the real dimension of the span of

{¢;. Jes, a5, Jag, by, Tbs} = V*
is at most 2(p+k—1). Let us choose a J-invariant complementary subspace of
V¥ = span {¢;, J¢;}, i.e. V* = VF@V§. Thus we have

! rr
ap = ap 4k, bp = bptcy, where ap,bp € Vf and ¢, cp € VS

By the definition of ¥'*, span{ai, Jay, by, Jby} = V*. Therefore

K
ddreu = 2 tap AJay + 2 (e;As® +Tensi),
=t

k
ddfimu = Z —by AJby+ Z (At +Je A tP).
=1

Now, if dimgV*>2(p+k), then dimgV¥> 2p, Thus (X +apaJay~iY b AJby)
# 0 since {ay, Jai, by, Jby'} span V{. But this implies that

k
L3 + ! - 1
w* A (dduy? = (Z ichJq) A [Z tapAday —i Z by AJby+
=1
P
+ 2 (s s +TcsAsP +ic A +ide A t?’)]

= +k! zk: chchA(Z ia;"AJaL'—iZb;"AJb;’;')P
=

#* 0’

which contradicts (8). Since Anng has a constant dimension, it is integrable and
this gives the foliation &, g4s.

If we let ¢: M — D denote the inclusion mapping, then ¢*u = u|M and, con-
sequently,

aMEM(uIM) = 6M5M(reu[1ll)+i6M5M(imu[AI)
= (*ddreu+i(t*08imu) = 0

since TM = Ann(dd‘reu, ddimu). Finally we have to show that (im#),;|M and
(reu);|M are holomorphic. Let

n
= j 1,0
X= ; Clo,e TM
be any vector field. Since TM, JTM < Ann(dd°reu, dd‘imu), it follows that
‘n n
(ddoreu)_JX = (ddimu)_IX = ) Clujg = Z Climu,z = 0,
=1 =

and this proves that (reu),;|M and (imu),;|M are holomorphic indeed.

FxampLE 1. Suppose that F and u are real-valued C3-smooth functions on
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D < C" such that u is plurisubharmonic on D. Let further rank (dd°(Fw)) = 1 and
the following conditions hold:

Ad°(Fu) A (ddeuy=t = 0,  dd*(Fu)a (ddu)"=> # 0.

Owing to Theorem 3 we have the foliations of D by complex manifolds of codi-
mension n—1.

Exampik 2. Let u be a real-valued C3-smooth plurisubharmonic function
on D such that the following conditions hold:

(ddu)?** = 0, (ddu)? #0.
Owing to Theorem 3 we have the foliations of D by complex manifolds of codi-
mension p [4].

ExaMPLE 3. Let u be as in Theorem 3, satisfying the conditions
FUADuA(80u)" =0, &uABua(BBu)P~! # 0.
A simple calculation shows that the assumptions of Theorem 3 hold with w = idua
Adu and k = 1. This example was investigated in detail in [4].

TeEOREM 4. Let D be a bounded domain in C" and u a continuous function on
cl.D satisfying the additional assumptions of Theorem 3. Then the functions reu, |(rew) |,
and |(imu) ;| satisfy the weak maximum principle in D.

Proof. We are going to prove this theorem indirectly. Assume that, for instance,
the function reu does not satisfy the maximum principle, i.e. there exists a point
2, € D such that

max reu(z) = reu(z,),
zeclD

maxreu(z) < reu(zo).
ze3D
Further, let M € &, be the leaf of the foliation given by Theorem 3, passing
through the point z,. By Theorem 3 the function reu|M is pluriharmonic, so it sat-
isfies the maximum principle on M and, by connectedness of M, the function
reu|M would be identically equal to reu(z,). Since further clM is not a compact
subset of D (E. Bedford and J. E. Fornaess, to appear), we can find a sequence
of z, € M which is convergent to some Z € D. By the continuity of reu|M we would
have then reu(Z) = reu(z,) which contradicts our assumption. Similarly we prove
the remaining part of our theorem.

The last two theorems are due to J. Kalina.
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