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1. Introduction

The basis for many, if not all, applications of convexity theory to complex analy-
sis lies in the observation that a subharmonic function f of a complex variable z
which is independent of Imz is convex. This makes it meaningful to consider
the function f conjugate to £, for f can then be retrieved from f. However, in sev-
eral complex variables it is often the case that a function f of n complex variables

. Zy, ..., Z, I8 a conveX function of some of the variables, say zpyy, ..., Z,, wWhen
the others are kept fixed. In that case we may of course form the function which
is conjugate to f in the variables z,,, ..., z,, but this is not so useful unless
we have some information on how the transformed function depends on the re-
maining variables zj, ..., z;. The minimum principle for plurisubharmonic func-
tions furnishes precisely this kind of information. Before stating it, let us recall
the concepts from convex analysis that we shall need.

If f* R™ » [—o0, +00] is any numerical function on R™ we define its Le-
gendre transform f (or Young—Fenchel transform, or conjugate or polar function),
as

fn) = sup . m~=f)), neR".
The transform of ﬁ

7o) = swp (. —fm), yeR,
e 4

is the largest minorant of f which is convex, lower semicontinuous and takes the
value —oo only when it is —oco identically (the Fenchel-Moreau theorem). In
particular, f = f if and only if f itself has these three properties. As general refer-
ences for convex analysis we mention Rockafellar [7] and Ioffe & Tihomirov [2].

Now if f is a convex function of x,, ..., X4, Y1, ey Vm and we regard x, ..., X,

s A

as parameters while performing the transformation, f will be a concave function

o* [131]
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of Xy, ..., X, for fixed 4y, ..., 7,. The corresponding result in the complex cage is
the following theorem.

TuroreM 1.1. Let v be a plurisubharmonic function in a pseudoconvex open
set £ in C**™. We write the variables of C™™ as (X, ..., Xy, Y1, «+vs V) and assume
that both v and Q are independent of Imy in the sense that if (x,y) €2 and Re y' =
Re p, then (x,y") € 2 and v(x, ¥") = v(x, y). Let us assume, this time for simplicity
only, that m~1(x)N§ is connected, thus convex, for every xe&n(Q), where n:
C+m s C" s the projection m(x,y) = x. Then a(£) is pseudoconvex and

(LD w(x) = incf o(x,¥), xen(Q),
yeCm

is plurisubharmonic. The partial Legendre transform of v,

(1.2) o(x, ) = fgcpm«Rey, m—v(x,)), (x,n)eC"x R;",

is thus plurisuperharmonic as a function of x € w(Q) for fixed n & R™ and convex as
a function of € R™ for fixed x € C". The transform of & is

(1.3) o(x,y) = sup (KRey, pp—8(x,m), (x,y)e.
neR™ ,

In (1.1) we make the convention that v = + co in the complement of Q;
hence y ranges effectively only over m~1(x)nQ. We make similar conventions
throughout the paper in order not to worry more than necessary about the domain
of functions. Note, however, that in (1.3) equality does not necessarily hold on
the boundary of Q.

The fact that w is plurisubharmonic will be referred to as the minimum prin-
ciple. For the general version of this result, as well as for its proof, we refer to
[3]. The transformation (1.2) can be used to study both global and local properties
of plurisubharmonic functions. To indicate this, let w be an open set in C" and
let fe PSH(w); by this we understand that f is plurisubharmonic in . Then the
function

u(x,y,t) = flx+e*™y), (x,y,t) eoxC'xC,x+e"ycw,
is plurisubharmonic wherever it is defined, for the mapping (x, ¥, t) b x-+e**y

is holomorphic. In general it is not independent of the imaginary part of any of
the variables, but if we form '

o(x,t) = S u(x, y, t)dS(y)/ S dS(y) = mean f(x+e>™y),
Iri=t I¥/=1 e
then v becomes independent of Im¢, and v € PSH(2) where
Q= {(x,) ewxC;d(x, C"\w) > [e?™|}.
If wis 'flssumed to be pseudoconvex, then 2 is pseudoconvex and we may form
the partial Legendre transform ¢ of o:

B(x, 7) = sup (Retr— ”
) zecp( ett—o(x,1)), (x,7)eC"xR,

iom”®
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(remember that we have agreed to take v = +co outside Q even though the inte-
gral defining it may have a sense there). All information about fis contained in 2,
for —%(x,0) = f(x). The function f,(x) = — o(x, 7) has density (or Lelong number)
¥, = (vp—7)* everywhere in @ as we have shown in [4]. (This very regular behav-
jor of 9 as a function of 7 is all the more remarkable as the corresponding re-
sult for the density of a convex function in R" fails completely.) Thus the func-
tion ¥ can be used to study important local properties of . In the next section we
shall see that the domain of harmonicity of f, i.e. the open set w; = w\supp4f,
is revealed in a very simple way by 9, giving also the boundary distance in w,.

In Section 3 we shall consider the growth of convex functions, expressed as
the order and type with respect to a given function. These concepts are in fact
conjugate to each other under the Legendre transformation. The theory of relative
order of plurisubharmonic functions, as developed by Lelong [5], is simplified
a lot by the use of this symmetry, and we review it in Section 4, which also con-
tains an existence theorem for functions of prescribed relative order.

Section 5 is similar in scope to Section 4 except that we consider questions of
growth which are of interest for slowly growing functions.

As should be clear from the above, this paper is mainly expository. We empha-
size a unified approach and give new short proofs of known results on the struc-
ture and growth of holomorphic or plurisubharmonic functions. However, the
existence theorems (4.2 and 5.2) are exceptions: we believe they are new. Are they
also inconceivable without conjugate convex functions?

2. The domain of harmonicity

To illustrate the use of the Legendre transformation we shall give a new proof of
the following result due to Cegrell [1], p. 330.

Tarorem 2.1. Let o be a pseudoconvex open set in C" and let fe PSH(w).
Then the largest open set w; in which f is harmonic is pseudoconvex.

Proof. Consider the mean value of f over a sphere of radius eRet:

2.1 ’ o(x,1) = meanf(x+ey), (x,1)eL,
S
where
0= {(x,hewxC;le| < dx, C™\w)}.
If fis h;irmonic, or what is the same thing, pluriharmonic, in a neighborhood

of x, then o(x, £) = f(x) for all ¢ in some half-plane Ret < a. Now this prop-
erty is reflected in a nice way in the partial Legendre transform & of ©:

#(x, 7) = sup (tz—o(x, 1)), (x,7)cewxR.
teR
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Define w as the right-hand derivative of —o(x, 7) with respect to v at the origin,

ie.

—‘5()6, T)_f(x) = sup —5(}6, T)~f(x)
z .

T

Su]

Ww(x) = —0F(x, 0) = lim
70+ >0

Here we have used that —&(x,0) = f(x) and, for the last equality, that #(x, 7)
is convex in 7. Now f is pluriharmonic in w, so the last expression is, in view
of the minimum principle, a supremum of plurisubharmonic functions; hence we
have:

LeMMA 2.2. The upper regularization w* of w is plurisubharmonic wherever it
is < 4+ oo in wy.

In fact, we shall see in a moment that w* = w < +o everywhere in .
The next lemma shows this and gives the desired interpretation of w.

LeMMA 2.3. For every x € w; we have

(2.2) wH(x) = w(x) = —logd(x, C"™\wy).

Proof. We introduce two auxiliary functions to estimate w:

t {f(x) if ¢ < d(x, C\),

v =

1(x, 1) +00  otherwise;

v,(x, 1) = {f(x) if ¢ <d(x, C"\wy),
2 T 400 otherwise.

Then v; < v € v, and 9, < % < 9,. Assuming 7 > 0 we obtain an estimate

@y —logder, Ny < “2E DI ¢ 1o 4x, ey,

for the Legendre transform of v, is

tlogd(x, C"™\w)—f(x),
+00, T<0,

Ty(x, 7) = { 720
and similarly for v,. Taking the supremum over all = > 0 in (2.3) we get
@4) ~logd(x, C™\o) < w(x) < ~logd(x, C™\y),

proving one of the inequalities necessary to give 2.2).

. NConversely we have for every w; and every positive 7 in view of the convexity
of o:
—9(x, 1) ~f(x
—__’;.__Q < w(x),

or equivalently, introducing an arbitrary real number t,

tr—o(x, 1) < f(x) +tr+w(x) 7.

icm°®
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Taking the supremum over all 3> 0 we get v back, for 9(x, 7) = +co0 when
7 < 0 so negative values do not contribute to the supremum; thus

F) € o(x, 1) = sg;())(tr—ﬁ(x, 7)) <f(x)+su}()) (t+wx)7 = f(x)

provided (x, ) € 2 and #+w(x) < 0. This shows that f satisfies the mean value
property with respect to all spheres of center x and radius r such that r
< d(x, C"™\w) and r < exp (— w(x)). Hence f is harmonic inside these spheres, i.e.
d(x, C™\w;) > inf (d(x, C"\w), €¥®) = ™™,

where the last equation holds in view of (2.4). Thus —logd(x, C™\wy) < w(x)
and this concludes the proof of the lemma.

Combining the lemmas we see that —logd(x, C"\wy) is plurisubharmonic
which means that o, is pseudoconvex.

Remark 2.4. A similar analysis can be made of the function

o(x,y,t) = meanf(x+€zy), (x,y,1)eR,
s
where now
0 = {(x,y,1) eaxC"xC; |&'] <dy(x, c\w)};

d, denoting the distance in the direction y € C". This time, however, we have to
use the upper regularization of w(x,y) = —&79(x, »,0) and we obtain, as a re-
sult corresponding to Lemma 2.3,

w¥(x, y) = —logdy(x, C"™\wy), (x,y)€w,xC"

3. Order and type

The classical growth scale for entire functions can be generalized in a natural
way to the concepts of order and type with respect to a given convex function.
Tt turns out that order and type are conjugate to each other.

DermNiTIoN 3.1. Let & and © be two numerical functions on the real line,
ie. h,v: R— [—c0, +]. We shall say that o has finite h-order if there is a num-
ber o > 0 such that

o(f) < —;—h(at) for all large 1.

We define the h-order of v as the infimum g of all such numbers « and denote it
by ¢ = order(v:h) € [0, + ].

This definition would perhaps have looked more familiar had we required only
that () < Ch(at) for some constant C and all sufficiently large 7. Note, however,
that when h increases so fast that A((1+)¢)/h(z) tends to +co as 71— 40
for every & > 0, then this weaker estimate defines the same A-order. The reason for
taking C = 1/a will be clear in a2 moment.
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If fis an entire function on C* we put

o(t) = :uptloglf(z)\ and h(t) =&

|z;se
to get the usual order for such functions.

Dermvrion 3.2, For any two numerical functions 2 and » on R we define
the A-fype ¢ of v as the infimum of all real numbers # # 0 such that

o(t) < fh(t) for t large enough.
Note that ¢ may be negative. We shall use the notation ¢ = type (w:h)e[-ow,
+ o0].
Prorosrtion 3.3. Let h and v be two numericdl increasing convex fimctions
on R and let
h(v) = sup (tr=h()), veR,
t

denote the Legendre transform of h, and similarly for v. Assume that one of v
and h is real-valued and that one of them grows faster than any linear function. Then
order(v:h) = type(h:3)  and type(v:h) = order(fi:5).

Proof. Assume first that both 4 and v are real-valued and grow faster than
any linear function. Then / and & are of the same kind and it is easy to check that
o(r) < h(2) for large ¢ if and only if 5(<) = ﬁ(r) for large 7.

Define h,(t) = a~'h(ut) for any « > 0. Its transform is ﬁm(r) = a~'h(7).
Now a > order(z:4) implies that v(t) < hy(?) for large ¢ and by the remark just
made this~is equivalent to &(7) > «~'/(z) for large 7, which in turn implies that
o > type(h:9). Thus order(v:/) > type(h:3), and similarly we see that type(f:5)
> order(z:h). Applyir:g the Legendre transformation we get the second relation:
order(il:z'}) = type(5 :}7) = type(v:h).

' Next consider the case when one of the functions, say », grows at most like
a linear function whereas A grows faster than any linear function, possibly being
+co for large values of the argument. It is then easy to see that all orders and
types listed in the statement of the proposition are zero. If conversely it is 4 that
grows at most like a linear function, then all orders and types are +co.

Finzf.lly we have to look at the case when one of the functions, say v, is + o0
to the right of some point. Then, however, § grows at most like a linear function,

bu.t_h gows fast, so we are reduced to the case just considered. Hence the prop-
osition is completely proved.

COROLLARY 3.4. With h and v as in Proposition 3.3 the h-order @ of v is given

by
1 . -~ ~
G “EzliTﬁpT?i)ﬁz type(~#:h) € [~ <0, 0].
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Proof. By the proposition,
o = type(h:) = limsuph(2)/3(2),
T +00

from which (3.1) follows immediately.

4. The relative order of partial functions

With the symmetry between order and type established in Section 3, properties
of the relative order of partial functions of a plurisubharmonic function can easily
be deduced. This subject has been developed by Lelong [5], Chapter 6, and we
shall give a new proof of the main result. Then we shall prove an existence the-
orem for plurisubharmonic functions with prescribed orders for their partial
functions.

Let u be a plurisubharmonic function of two groups of variables, x e C"and
y eC™, We shall consider the growth of the partial functions y+» u(x, y). Let us
define

o(x,t) = sup u(x,y) = supu(x, ez), (x,t)eC"xC.
lyisle’] lz]<1

Since the mapping (x, )+ (x, €'z) is holomorphic for every fixed z the last
expression shows that v is plurisubharmonic. All questions on the growth of y
— u(x, y) involving only x and [y| will therefore be reduced to studying the function
¢ which is independent of Imt.

THEOREM 4.1. Let h: R — R be convex and increasing faster than any linear
Sfunction, let v € PSH(w x C) be independent of Imt, t € C, and assume that t— v(x, t)
is uniformly of finite h-order for x € w in the sense that

4.0 o(x, 1) < a~h(at) for some o and all t > 1,

where t, does not depend on x € w. Let o(x) denote the h-order of t+>v(x, t). Then
—1/o* e PSH(w); as a consequence g* and logo* are also plurisubharmonic.

This result follows easily from Corollary 3.4: we know that —3(x, 1)
= inf(o(x, t)—t7) is plerisubharmonic in x by the minimum principle and
—o(x, 7) /l;(-r) < 0 for large 7 if (4.1) holds, so an application of the “lim-sup-star
theorem” to (3.1) gives the desired conclusion. Lelong ([5], Theorem 6.6.2) proved
this using instead an inverse-function theorem. It follows from Theorem 4.1 that
the set of x € w such that p*(x) = 0 is either polar or equal to o (assuming o
to be connected), and that, in case p* is a constant, the set of x € w such that
o(x) < p* is polar.

It is natural to ask if the regularized order p*(x) has any other property than
that expressed by Theorem 4.1. The answer is given by the following existence
theorem.

THEOREM 4.2. Let h: R — R be an increasing convex function which grows
Jaster than any linear function, and let u < 0 be plurisubharmonic on a manifold w.
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Then there exists v € PSH(w xC) whose partial functions tw— v(x, t) have h-order
(@) = —1/u(x), x € .
Proof. Let } denote the Legendre transform of 4,
h(7) = sup (tr—h(1)), 7TE€R,
t
and define
w(a, 7) = —a(R(D+h(©), «<0, 7veR.
Then w is convex in 7 for fixed o < 0 and linear and decreasing in o for fixed
z (for A(7) > infk = —A(0)). Now

h(t) = h(t) = sup (tv—h(7)), (€R,
T
so that the partial transform of w with respect to v is

wat, 1) = sup (tv—w(e, 7)) = —oh(—t/a)+«h(0), « <0, teR.

Now # is obviously convex and finite when « < 0, ¢ € R; moreover it is increasing
in « for fixed ¢ This implies that the composition

o(x, ) = w(u(x), Ret), (x,1)€wxC,

is plurisubharmonic as a function of (x, ). We claim that v solves our problem.
Indeed, we can easily calculate its i-order using (3.1); the partial Legendre trans-
form of v is

(%, 7) = srlex}i)(tr—w(x, ) = wu), ) = —u(x) (k(x)+h(),
so that (3.1) gives .

u@) (R +h©®) _

—1/p(x) = limsup -
T 00 h(-[)

).

5. Functions of minimal growth

In this final section we present results analogous to those of Section 4 but now
for functions of slow growth.

Let, as in the beginning of Section 4, « be plurisubharmonic of two groups
of variables, x e C" and y € C™. Define

v(x, 1) = nllé‘ranu(x, e™7), (x,t)eC"XR,
z|=1

to be the mean of u over the sphere of radius e*™ and center at the origin. If

o(x, t) > —o0, its right-hand derivative

0*o(x,t) = lim
&0
>0

(x,t) eC"xR,

3

ofx, t+8)—v(x, )
&
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is equal to the mean (2m—2)-dimensional density in the ball ¢*™B of the Riesz
mass of the partial function y u(x, y), in symbols
N _ ___ _#e™B)
Ho D = @ Bae )
where B is the closed unit ball, A,,_, Lebesgue measure in R*"~2 and u = 4,u,
the measure defined by u, x being a parameter. For a proof of this, see [4], p.
297. In particular, if m = 1, & v is just the total mass. For functions of the
form u = (2w)~log|f|, f entire, 8fv is the mean (2m—2)-dimensional density of
its zero set; for m = 1 simply the total number of zeros in |y < &*™.
Now define

(5.1) M(x) = lim & o(x,t) = lim o(x, )/t < +o0.
ts 40 A=t
If v(x,t) = —oo for all # let us agree to set M(x) = —co.

Thus M(x) is closely associated with the mass distribution of the partial func-
tions y i u(x, ). If M(x) <0, then u(x,y) is independent of y and generally
speaking functions with M(x) < + oo have the slowest possible growth in y except
for the constants, justifying the name minimal growth.

Tugorem 5.1. Let w be a pseudoconvex domain in C* and let v € PSH(w xC)

be independent of Imt, t € C, the variables in w X C being written as (Xy, ..., Xu, t).
Define M(x) by (5.1). Then for every 7€ [0, +c0] the sets

(5.2) E, = {xeo;M(x) < 7}

and

(5.3) E, = {xew; M(x) < 7}

are either equal to w or polar in .
Proof. Define
9,(x) = inf(v(x, )—t7), (%, 7) €wWXR.
>0

If M(x) < 7 then w,(x) = —oo. Conversely, if M(x) > v for some 7€ [0, +oof
then v.(x) > —oo. Writing

P(g) = {x cw; g(x) = —o0}
or the polar set of a function we may express these implications as follows:
(5.4) E,cP@)cE, 0<7t<+o0.
Now let 7€]0, +co] and let 7, — 7, T < Tps1 < 7. Applying (5.4) to 7, we
get

E‘—'k < P('v'rk) < E':'k < E‘tk-H.;
thus E, = {J P(v,). Now o, is plurisubharmonic by the minimum principle, so
each P(v,) is either polar or = w. Since the union of a denumerable family of

polar sets is polar, we are done. Similarly, E] = () P(v,) where 7€]0, +oof
and () is a strictly decreasing sequence of numbers tending to 7.
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Theorem 5.1 is due to Lelong [6], p. 177. Let u = (2m)~log|f], f entire in
CxC, and let v be related to « as in the beginning of this section n=m= 1.
Then the statement “Eq is polar or equal to C” means that the partial functions
¥ f(x, y) are either constant or have a zero except when x belongs to a set of
logarithmic capacity zero. This special case of Theorem 5.1 was proved by Tsuji [8].

As a converse to Theorem 5.1 we shall now construct plurisubharmonic
functions with the sets E, (almost) prescribed.

THEOREM 5.2. Let @ be an open set in C" and let u, e PSH (w) be given for 0
<7< +oo aswell as for 7= —co such that u(x) = —0 if u(x) = —co for
some T < o. Then there exists a plurisubharmonic finction v in o x C, independent
of Imt, such that the sets E; and E; defined as in (5.2) and (5.3) satisfy

E1=UP(HU)CP(ur)CmP(Uu):E-:; 'L’E[O, +OO].
o<t o>T

(In particular Ey = P(u_,,) and E, = UP(u,).)
Proof. Let (K))§ be a fundamental sequence of compact sets in w.If 7 is
a positive number not of the form k2-™ for any k, m e N we take v, as the con-

stant ' —oo; for 7= —o0 we take v, = u,; for other (dyadic) values of 7 we
take v, as u, plus a constant chosen so that

2%(X) < —7*  when x€K,,j <7,
and that

%(¥) < -m—1>  when x €K, T ¢2"mN,
In particular, P(v,) = P(u,) for dyadic 7> 0 and for 7 = —oo. Now define
v(x, t) = sup (o(x)+Retr), (x,t) cwxC.
We claim that v is upper semicontinuous and < 400 in @ xC; this will show
that » € PSH(w xC). Let (x°, % be an arbitrary point in w xC and let 4 be any

real number. Fix j so that x° belongs to the interior of K;.
Next fix an integer m and a number « such that

—m+(Ret®[+1)2/4< 4, m >,
and

~*2< A, a>j, o> 2|t°|+2.
Now‘v(x, £) is the supremum of a denumerable family of functions, indexed by
dyadic numbers = and — 0. We divide the set of = into three subsets T, 15 T2, T
defined by means of m and ¢ as follows:
Ti= {re2™N;v < oju {~ oo},
T = {re2™N;7 > o},
Ts= {r> 0; v ¢2-"N}.

The first set T, is finite, so the supremum over this set is an upper semicon-
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tinuous function v; < 4 c0. When 7 € T, we have, provided x € K; and £ < |10+
+1<a/2,
o (x)+Retr < ~72+Retr < —72+07/2 < — 732 < —a?[2,
giving
(%, 1) = sup (z:(x)+Ret7) < —a?/2< 4.
el

Finally, when 7 €T3 we have the estimate

2(x)+Retr € —m—124+Retr € —m+(Ret)?/4.
This gives
v3(x, t) = sup (z,(x) +Retr) < —m+(Ref)?/4 < 4.
16Ty

Combining these inequalities we obtain
o(x,t) = sup sup(w(x)+Retr) < sup(v,(x,1), 4)
g=1,2,3 7eTy

provided only x € K; and Rer < [Rez°|+1. Since v,,-as noted above, is less than
+00, we do have v < 400 in a neighborhood of (x° ¢%). Next, repeating the
argument with 4 taken to be an arbitrary number greater than ©(x° 1°), we see
also that @ is upper semicontinuous. This completes the proof that o is pluri-
subharmonic.

Now let 7> 0 be given and let o be any real number greater than 7. If x
€ P(u,) we know that 7,(x) = ~o0 so, if Ret > 0,

v(x, t) = sup (z,(x)+Reta) < supw,(x)+Retr < v(x, 0)+Retr.
O<T ORT

Since we have proved that o(x,0) < + oo we see that M(x) < 7; in other words
we have proved that P(u,;) < E; forall 7 > 0. Theinclusion P(u_,) < E., holds
trivially.

Conversely, to any positive = and any point x ¢ P(x,) we can choose a dyadic
number ¢ < v but arbitrarily close to . We must have #,(x) > —oo and so the
estimate
. o(x, t) = v,(x)+Reto .
shows that M(x) > o, thus M(x) > v. This proves that E, < P(u) if v > 0 and
it is easily checked that E, = P(u_,) = P(u,). The proof is now completed by
taking unions and intersections in the relation E, = P(y,) < E;.
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1. Notations
We will use the following notation:
K= {zeC; |z]<1}, K*={£eC; |8 >1}.

Sys M > 1, denotes the class of holomorphic and univalent functions fin K
which have the form

®» fz) = z+a,z°+ ...,
and satisfy the condition
® f)l <M, zek.

2w, 0 < m < 1, denotes the class of holomorphic and univalent functions F
in K* which have the form

3 F(&) = E+ao+oy[E+ ...,
and satisfy the condition
4 [F(®)| >m, £EeK*
Sk (B, p=1,2,...,M>1,0<m <1, denote the classes of functions
f» (F,) holomorphic and univalent in X (K*) which have the form
® fo(2) = z+aB 2P +af), 2P+
a?
(FI,(E) =& gﬁ‘j + )

and satisfy the condition (2) and (4), respectively. _

We have Si = Sy, 21 =2, SE = SP?, where S?, p =1, 2, ..., denotes the
class of holomorphic and univalent function f, in K which are p-symmetric and
28,p=1,2,..., denotes the class of holomorphic and univalent functions F, in
K* which are p-symmetric and F,(§) # 0, &£ e K*.
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