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1. Notations
We will use the following notation:
K= {zeC; |z]<1}, K*={£eC; |8 >1}.

Sys M > 1, denotes the class of holomorphic and univalent functions fin K
which have the form

®» fz) = z+a,z°+ ...,
and satisfy the condition
® f)l <M, zek.

2w, 0 < m < 1, denotes the class of holomorphic and univalent functions F
in K* which have the form

3 F(&) = E+ao+oy[E+ ...,
and satisfy the condition
4 [F(®)| >m, £EeK*
Sk (B, p=1,2,...,M>1,0<m <1, denote the classes of functions
f» (F,) holomorphic and univalent in X (K*) which have the form
® fo(2) = z+aB 2P +af), 2P+
a?
(FI,(E) =& gﬁ‘j + )

and satisfy the condition (2) and (4), respectively. _

We have Si = Sy, 21 =2, SE = SP?, where S?, p =1, 2, ..., denotes the
class of holomorphic and univalent function f, in K which are p-symmetric and
28,p=1,2,..., denotes the class of holomorphic and univalent functions F, in
K* which are p-symmetric and F,(§) # 0, &£ e K*.

[143]
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In the sequel we will use certain relations between the classes S? and X7 (A
and 22).
Namely, if fe S (Sy), then

©® 5@ =ViE)es (), p=1,2,..,8'=8=¢,.
Moreover, if f, € S, then
M F &) =11/ €Zfp, p=1,2,..
For a fixed z = re’? € K,0 < r < 1, let us consider the functional
® 919 = tog P2 togi 2,

where fis a function ranging over the class Sy.

The compactness of the class Sy and the continuity of the functional 8)
imply that the set D of the values of (8) is a bounded closed connected set con-
taining the origin.

Moreover, since the class Sy, is rotation invariant, we may assume, with no
loss of generality, that z = r > 0.

Let us write

©) D, = {(U,7): U+iV=T(f).f,eSk}, p=1,2,..
D, = D.

’

2. Formulation of the results

In this note we determine the region D, given by (9). We find explicit formulae
for parametric equations of its boundary.
We also describe the region of variability

(10) G, = {(U,7): U+iV=J(F,),F,e32}, p=1,2,..,
where
(n J(F,) = log F"—?}a—ilogw;(f)[, F,e P,

and & = Re®®e K*, R > 1, is fixed.

To this end we will need the relation .

Using the regions D, and G, we will obtain the exact bounds for | f;(2)|, f € S&
and |Fy(8)l, F, € £2 in the terms of | f(2)| and |F,(£)], respectively.

Moreover, the region D, is also used in finding the exact estimates for the
functional

21 (z)

12) H({,) =
( () = log\ =iy

»  JoeSk, a, B real.
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For simplicity we restrict ourselves to giving the exact estimates (in terms of
M and r) of the functionals

(13) () = 1oglf @)l feSu,
IMELC
(14) Hy(f) = 1og 22, fesy.

Analogous estimates can be given for functionals corresponding to (13) and
(14) for the class Z,.

The main tool used in this paper is the method of Gutljanskii [2], 3] basing
on the general type of Léwner’s equation, which shows how one can reduce the
extremal problem on the class S, to the corresponding problem on the class of
functions with positive real part.

Our results extend the results of Aleksandrov and Kopanev [1].

Moreover, the estimates of (13) and (14) are obtained by a method comple-
tely different from that used in [5] and [7], [8].

Also, the results obtained make complete the corresponding results from [4]
and [6].

Now we state our results.

THEOREM 1. The set D of the values of the functional (8) on the class Sy
is a closed convex set. The boundary of D, which we call I', has the form I'
=IOl where I't = I'yulLUT. ‘

The arcs I'y, I';, I's are given by the following parametric equations:

42
U = U,(1) = log(14+7)*+(t— )logr+log 4’ +zlog%,
3 2 __
as) lv= Vl(t):bg%Jr’ . L ogr—log(1—r2)+
hand 1 .
2—1 1+t 1—r
2 ol <
+logt* + logl_t, 1+r<t\t1,
U= Uyt) = ’:1 logM,
(16) . i
1 _papp-2t
V= V(t) = 4 n logM+log( 1 ;jlr2—~), t, St<t,,
2 t+1
U= Us(t) = log(l—x2)2+(t—l)logr+logt ) 1"“103}{"1"

_ — (1=o)®  t
(17) V= V3() = log-l—_—l_—Mz——— +

't_l logr—log(1—r?)+

£-1, t+1 14
— 2 SIS s
t k’gt—l » hSisyg

+logt?+

10 Banach Center t. 11


GUEST


where t, = t,(r, M), t = t,(r, M) are the roots of the equations

ol [

respectively.

The numbers #; = u,(r, M), %, = %,(r, M) are given by the formulae
(19) mo=QA-1)-2YA2=4, u, = (2B+1)-2y/B>°+B,
where

4 (S e 1

The arc I' is given by the following equation:
M>eV(1—r%) 1~r 1+r
V=log M U, T+r UL U, =)

THEOREM 2. The set Dy, p = 1,2, ..., of the values of the Sunctional (8) on
the class S% is a closed convex set The boumlary of D,, which we call Iy, has the
Sform:

L =IFuly  where I'f = I',0l,,Ul%,.

The ares Iy, Iy, I's, are given by the Sollowing parametrtc equations:

U= U, 0= [Iog(1+n1,,)2+(t-1)Iogrp+1og1 - o gi““:]
(r+2)/p .
V= V) = IOE(H;‘M) + =Do+n) logr? —log(1 —r*F) +
(21) —%ip pt
+logf+ 1P 1gd=t | tz_pl Sl
g ? g 7 Ogl
1—r?
T S St
t—1
U= Us(t) = ——logM,
(22)
t—1 +t 1 —p2Ppf-2p/t
V= V() = —(%_) ogM+log(——fl~_—rTr-—), tip S < tap,
U=T 1 2 1 t+1
B(t) = — log(l %2p) +(t—1)103r"+10g +tlogZ—
1=, Y2+2)p —
V= V) = Iog(T"fi—_ + —(-ﬂﬂmgw-log(mvn
(23) #2p pt
l-p. -1 ¢ t+1
+log#? 4 —= PogtT2
g 7 log 7t ot IOgt-l’
1+4r?
e SIS T4
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where ti, = t1,(r, M), t;p = t5,(r, M) are the roots of the equations:

1+t . AN,
@ )] = ()] -
respectively.
The numbers %y, = %;,(ry M), %55 = #,,(r, M) are given by the formulae
(25) Hip = (ZAF—‘]')_'z V Ag"Aps Hap = (2Bﬂ+1)_2l/B§+Bp:

where

= S A

The arc I'y is given by the following equation:

M2t DU (] _p2 1—r? 147P
V= log M“_rzfem D U“,( ) <U< Usp(—_—~).

THEOREM 3. The set G,,p = 1,2, ..., of the values of the functmnal an
on the class 2% is a closed convex set. I?te boundary of G,, which we call J’p, has
the form: ) . . .

f’,, = A;uIA’; where I = I7,0I,,0I%,.

The arcs IA"'1 . ]A’ZP, sp are given by the following parametric equationS'

~ 1— 1+12
U= U,(t) = —%[Iog(1+zu,)3+(1—t)logR"+log +tlo S ]
5, YP=21P t—1)(t—
V= V“,(t)=log(1+;‘1");‘ + E=DE=D) joope
%1
27
1 1—
—log(1 —R-27)+logr2— 2L jog -
p+t2 . 1+t RP—1 _ (<t
B A SR
t—1
U= U,(1) = logm,
(28) 2p__ 2Pt ~ A
V= Vp(t) = (l—t)(P t) ) Jogm +1log Rz—m“ s by St ty,
? R?*?—1
U= Usy(t) = — | log(~32,)*+ (1 — 1) logR? +log -t 4 11og 1F1
= Usp(t) = _'; 0og 2p. g ) =1
_ (1R )e-2lr  (1=D)(t— P) {oRP—
V= Va(t) = log 1+’¢zp + ot 0g
@ p+1 -1
~log(1—R~2P)+logt*— log v
P+ t+l a RP+1
—_— pt Iogt—_—l, 2p <Rp_la

10*
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where ty, = typ(R, m), t2p = t,,(R, m) are the roots of the equations:

@0 [Rn(i+t)]‘ = m*, [Rp( t+i)]t =m

We have the sharp estimate from below

, M (1-r) |7 M (- [E-V
INZ g | F Trrs e~z | T
(9 &= 3 rer ] =
respectively.
The numbers %y, = %1,(R, m), Hap = %2p(R, m) are given by the formulae where
S . S E* (E7) = max (min)|f(z)].
Gl fup= QA-D-2V A4, = B,+)—2V B+ B, e
where THEOREM 5, Let f, € S%, p=1,2, ..., then for fixed |f,(2)| and z = ré? ¢ K
L4t -1 1\ -1 the following sharp estimates hold:
6 =l o) demn{[ (e ) M U A )
. MPP—f(21*") (=) | z X1p
The are I'y is given by the following equation: for 1£,(2)] < rMi=1it
V =log m‘z_"f;";:’_(zlp——,li;;") s Ul"(—g:—i ) U< (1§:+i) Mr 1-r2PM "~ (k’g Jf,,(z)\)/k’gM
R * 6 KO < T a2 T
TueOREM 4. Let fe Sy, then for fixed |f(2)| and z = re’® € K the following for rMI=1te < [f(2)] < rMI=Htas,
sharp estimates hold: x x
i4 M2P (1 *3,)? ‘fp(z) il"*i X2y 4x3pl(1—33,)
M? (l—xf)z ) f(z) 2(_,:_)— x3/(1-x%) (sz_lfp(z)lzp) (] 2p) l z l r"
(Mz"]f(z)lz) (1-r?) z X1 Jor £, = rMi-e,

for |f(z)] < rM*-Yn
Mr ) /ngM i< ’ where t,,, t,, are the roots of the equations (24).

M 1-rM ‘2(]“ 1@ The numbers x,,, X,p are the unique roots of the equations:
33 IfI< (-7 M(Iog Tj%%l—/lagM)z

M2 5@ "( bl )2""”’" -
Jor ¥ < [£(2)| < P 9 orinen TR =t
M? (1=x3) | f2) [2[ %2 4x3(1—-x3) M2P ) 1 2x/(1-x)
M- 1f@1P) " (-r) <,) @9 PPy Y = (‘x“) =L

for |f(2)| = M=,

respectively.
where t1, 1, are the roots of the equations (18). ” !

R We have the following sharp estimate from below:
The numbers x,, x, are the unique roots of the equations:

. M2P(1—r?7) | f(2) [P M2P(1—r2P) (E; i
. a2 -, @ e e | > aea )
where
M? 2%/(1-%) o ‘
(35) M=)y (1-x)? f(Z) ( ) =1, E; () = mjii;(;nm)] 1)1
respectively. M

(see Lemma 4 below).
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TugoreM 6. Let F,e X5, p=1,2, ..., then for fixed |Fp(8)|, & = Re'? ¢ k* o
’ ’ f 1° for every re (0,1) and M e (M,(r),
the following sharp estimates hold: y ©.0 € (Mi(n), + ), where

- _r__ -k _ L+r
M) max(l, T o ) h(r) = —1+_ﬁ,

(1 - %ﬂ)z
(IF ()22 —m*P) (R*" 1)

Fo (& 'p+1
£

(RP %y )41l -3

A we have
Jor [Fy(§)| > Rmtip)=1,

pllog L‘M logm 5 1F(®)]
(i) |F;(E)I < m LP(R";I;jl) ) [Rzp-m-—h(luz Rm) /lozm)]

_y (~@/M) 1+r
(48) B(r,M) = - ——_(1+(y/M)) T

where y € (0, MA(r)) is the root of the equation

for Rm(lan~1 < |F,(£)] < RmMii=1,

(1-33,) EO ™ o s s 49) (Om-1 _ (1-n*
EEP—m @ | £ | FE o — ;
for ]Fp(f)l < Rm(”’:p)-l, have or every re(/2, ) an € (Mz(")s M1(f)], where Mz(r) = 8r3, we

where t,,, t,, are roots of the equations (30).
The numbers X, ,, X, are the unique roots of the equations:

o 20— (M7 _

(50) logB(r, M) = lo, g

LG G ] e ]/u e u ]/ g

w GGl A e E _ (i) +20aa) - ogr 1+ 5)+ (i) +2(5)-
\F ()22 LE®] . . 1+ L ( u )- .I/Tu—j s

(43) -——————————-—(IFF(E)IP”mP)Z(I_x) ——~£ (RPx)Zx/(l )= 1, M 1+——M (—M +2(_M) 1

h Mh(r),1M) i i
respectively. J where u & [Mh(r), $ M) is 2thc root of the equation
We have the following sharp estimate from below: (i’_ - 1)

, R2r—1 lF (5)ip+1 R2P_1 (E+ )p+1 51D log - +
44 F > d > — -r_ R u u
“ IBO mem— e | 7 Gpye—mer R 2 (52) 2[5
where " g
A A u u u
By (&) = max (in)|F,(8). (1 * 7\2) 1 (‘ * ﬁ)+ l/(ﬁ) +2('M")_1
Fpe 2, e |OgT = =0;
Vil el (i V G el
THEOREM 7. For every function f€ Sy the following sharp estimates hold: M M M M M
(45) A, M) < |f' ()] < B, M), z=ré®eK, 3° for every re (1/2, 1) and M e (1, M,(r)] we have
where for every re(0,1) and M e (1, + ) we have (52) logB(r, M) = logM l*l(f/ry)z + M:’:vz 10g~;;_r,
(46) A(r, M) = :((11_:((;‘%)2 . % , where © € [EM, M] is the root of the equation
and x € (0, M) is the root of the equation (53 logM + M;-;—wz 102'% = 0.
én (/M) +1)* — (1+r) . THEOREM 8. For every function f€ Sy the following sharp estimates hold:
X r

zf'(2)

o) < ﬁ(r, M), z=réveKk,

(5% A, M) <

The quantity B(r, M) is defined in a more complicated way, namely:
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where for every re (0,1) and M e (1, + o0) we have
A 1+(x/M) 1—r
63 M= TGy W
and x & (0, M) is the root of the equation (47).
The quantity B(r, M) is defined in the following way:

1° for every re (0,2~ V3 and Me (1, +00), as well as for re 2-y3,1)
and Me (Ml(r), + ), where

. 2—-i1(r)) (1 r)
M () = 1, =—), =
0 max( e ) 0 Vo
we have
1- (y/M) 14r
6o B0 = om0 i
where y is the root of the equation (49)

. hij’v:‘or every re[2—y/3,1), Me(Mz(r) Ml(r)] where Mz(r) =[(2+ [/3)r

)] logﬁ(r,M)=l/_2£ ( ) l/M1 o 1_(%)2

B

" T
1+ 2 - - .

M (1+ M)+I/2M 1+(V)

where u e (M, (r), (2—V§)M), is the root of the equation
' u Mlu\?
— 1 H{* u
L 1) ] )+]/2

@8 togmrt JUM] ] "M,

3 —— ogr =0,
u u
I (l+-) Vi
and 7,(r) is the root of the equation
G+ he)+2
TE T g
3° for every re[2—y/3,1), M e (1, Jflz(r)] we have

1+ (i’— o o)
(59) logB(r, M) = M) log "L +logr-1;—(~—]\z)~.
2[1— (%) ] g (1—-1‘2)—;4—
where » € (2—/3)M, M) is the toot of the equation

60 1—("J/M)z r
0 B s 1+(YJ/M')2 (‘D/M) —logM = 0.

icm®
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3. Lemmas
Let P denote the class of holomorphic functions p in X which have the form
(61 p(z) = 14ciz+ ...,
and satisfy the condition Rep(z) > 0,z€e K.

Further, by ™ we denote the class of functions p: Kx [, f] = C such
that for fixed w € K the function p is measurable viewed as a function of x e [, B8]
and for almost all x € [«, 8] the function p regarded as a function of w e X be-
longs to the class .

Let us consider the differential equation

) O = w3, W= W), peP

with the initial condition w(z,0) = z, ze K.
We have
Lewma 1 [2]. 4 function f belongs to Sy iff it can be represented in the form
(63) fi} = lm e*w(z,x;p), pePo+=),
x—logM
where w = w(z, x; p) is the solution of (62) for almost all x € [0, + o) and sat-
isfies the initial condition w(z,0;p) = z,ze K.

LemMMA 2 [2]. Let O < t = #(x) < 1, @ = O(x) be continuous real valued func-
tions and let wo(x) = (x)e"®™, x € [a, f]. Then for any functionp = p(w, x) € P=A1
we have

i— .
p( I_Xv e'®, x)—ilmp(Wo, x)

(64) H(w, x) - Rep(w()y JC)

€ Lo,

and the formula for the “inverse transformation” has the form

—we—i@
H( 'I—t'——twv;egjiﬁ', x)— iImH(t, x)

ReH(t, x)

The next lemma is the key lemma; it is a consequence of (62) and (63) and
it shows how to reduce the extremal problem from the class Sy to the class
PLo11 and then to the class .

The lemma in its form presented here is an immediate conseqience of The-
orem 1 from [2].

(65) p(w, x) =

LemMmA 3 [2]. The functional ;(F) mapping the class P onto D, has the fol-
lowing form
(66) I(F) = S Re(F(t, t)—l)fi—t i S Re(F(t £)— 14— Fi(0, t))

elM e/M
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where o = o(F) is the unique root of the equation

r

dt
©67) logM = S ReF(t, t)—t.
e/M

The function f'€ Sy for which J(f) = f(F) can be found from (63) and (62),
where p has the form (65) and H(w,x) = F(w, t(x)).
The functions #(x) and O(x) are solutions of the system of equations
ReF(t, t)dlogt+dx = 0,
ReF(t, t)dO—-ImF(t, t)dx = 0
with the initial conditions: #(0) = r, @(0) = ¢.

Lemma 4. If f, € Sk, then for arbitrary z = re'® e K the following sharp esti-
mates hold

(69) E;= [

(68)

2 2/p
— <
W)+ V4P =47 p? ] r< 5@
2 2/p
—_— = E*
s ’[ (=) + Y (A —r?)2 47 |M? ] E;.

This result can be obtained from the corresponding result for the class Su [2]
and relation (6).

Lemma 5 [9]. Let D(&,w) be a real valued function defined in the domain
{(¢,0): Re& > 0,]0| < + o} and assume that, in every disk |w—w,| < R, @
attains its proper supremum and infimum in the boundary of the disk.

Let z=re"eK,0 <r <1, and let us write

(70) I= exqtlrlefctrdi(p(z), 2p'(2)).
peP |z|=r

Then 1 is attained within the family of functions which have the form

14ze 1+zé-ia,
PO = by e T

Where 8, 0, are real numbers and MZ0,2,20, 4+, =1.
Moreover, we have the equality

I = extrextr &(£, o),
§ o

Where £ is ranging over the disk |£—a] < b and w over the circle (& being fixed)

m {01 lo-3@-1) = 302~ g -a2)},
where
1472 2r
72 - T _
72 “=qm b=g

Lemma 6. Let te(0,r], re(©,1) and Ae(—

o, +w) are fixed numbers
and assume that q is a function Jrom the class P.

icm®
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Then the values of

t
i A+1 5 '0—1]
() ma?:ggﬁm)Re[( +DaO)+1=z4'©

are attained for functions qo € P such that:
(a) in the case of maximum:

1—t 0 < 1—t

1+ for < TSTip

1-t 1+t

(74 Reqo(t) =1 7 for 1t STS7;»
1+t 1+t s -1
- Ty wdiz -l

(b) in the case of minimum:

I+t for 0<7<g],

7 Rego(t) =

™ ° _i__t for z=1, ad 1> ~1,
+t

where T = (—A-1)"Y%, 1 < -1,
Moreover, the extremal function satisfies the equality

t |, 1 142
(76) Top 20 =a- Rego@)” °~ 1-2°

Proof. Let the assumptions of the lemma be satisfied. Then for any zo e K
and 6 € [—m, ™) we have

i0
o
[

an P2 = s ep.

From (77) we find

1-Z4z

P (e-“’—z—?i) —iImp(—zoe™"®)
Rep(—z,e7%) )

(78) q(z) =

Choosing z, and @ appropriately we get

1—iTmp(t) _ (@=Hp'@)

) = Rep(t) ° 70 = Rep(t)

Now we can apply Lemma 5. Writing

, 1—iImé¢ ,_ (Do
¥="Ref > © = 1R’
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we see that the disk |é—al < b goes onto the disk |£'~a <5 and the circle
(71) goes onto the circle .

o E=DE+D] B =g —ap?
) {‘”“’ BReZ |~ " BReF }

Now we see that in order to find (73) it is enough to evaluate

1—¢2
where @’ ranges over the circle (79) (£ being fixed) and & ranges over the circle
¢'~a| = b. :
It can be shown, by a not too long calculation, that the extrema in (73) are

attained on the boundaries of the corresponding circles and that equalities (74)-
(76) hold.

extrextr [(l+ NE+ —t—w'— 1] s
¥ oo .

4. Proofs of the theorems

Proof of Theorem 1. From (8), (9) and Lemma 3 we infer that every point
W = U+iV of D has the representation

[0 = 10e2
lU = log >
(80) ,
—_ — t ’ dt
V= e[S Re[F(t, -1+ Fpen F,(0, t)] - F =F(w, 1) e Proty,

where g = o(F) is the unique root of the equation

r

(8D logM = S ReF(z, t)i:, ¢ = f(z)],
o/M

and F is an arbitrary function of the class §peo.11,

v —It? clear that if Fx:)Fz ate in P12 then also for every y € [0, 1] we have
u};i 14 ;;(I—V)Fz € P>, which implies that if W;, W, e D, then by (66) also
o =W+ —.7)'W2 €D. So the set D is closed and convex, and in order to
lescribe it fully it is sufficient to find its boundary.

D(Q)L(:; lt; ebe :h; bo.undary of D Fo.r every fixed ¢, ¢ € [E-, E*], the intersection
! set D with the straight line U = log(p/r) is a segment or point. Thus

in order to find the boundary of D it is enou

s : gh to find the ends of the segments
D(e). This in turn is equivalent to determining the values of

(82)  max (min) V(F) = ot t o, dt
F@gg»u) F) Hﬁqugﬁ(.{r]un) Re| Ft, ) =14+ 1> Fi(0,1) | =,

elM

where BLOD consists of functions F from P-4 which satisfy the equality (81)

icm®
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The extremum (82) under condition (81) is equivalent to evaluating the ex-
tremum of

@ o =1 Rere, 084 Re[F(t,t)—HljtzF;(o,t)]—d},

o/M e/M

where 1 is a real number and F is an arbitrary function from the class %13,
From Lemma 3 it follows that a point W, eI’ is the image of a function
Fp € Pro-11 iff
: d
t
Ug = log% (= S Re(Fo(t, t)—l)—t),
M
(84 )

r

Vo = extr S Re[F(t, -1+

0,1
Fepp"? o/M

t
1—-22

Fl(0, t)] izit-, E- < o< E%,

i.e. iff for arbitrary fixed real A the function F, realizes the extremum of the func-
tional

ro r I at
(85) {z S ReF(1, z)%ﬂu S Re[F(t, -1+ 1_’12 Fi(0, :)] T}’
eolM 2o/M
where g, = o(Fp) is the unique root of the equation
‘ dt
(86) logM = S ReFo(t, 1) o

o/M

For arbitrary fixed ¢ € (0, r) and real 4 consider the functional

(87) Qg t, By = ZReq(t)+Re[q(t)—l+1—_t-t7‘J'(0)]

defined on the class P.

Now we select from the class Bf0-11 all functions F = F(w, t) which for every
fixed te (0, r) realize the maximum of (87) within the class . The collection of
such functions is denoted by P[1].

We remark that if g, € P realizes the extremum of (87), then for every fixed
t (0, r) there exists a function Fy(w, ¢) € P11 such that go(w) = Fo(w, t) and,
moreover, Fo(w, £) € B[A]. Thus for an arbitrary function F(w, #) we have (handling
the case of maximum, the case of minimum being similar):

S (lReF(t, t)+Re[F(t, -1+ T_ft—zF,',(o, t)])
eolM

ﬁ
t

r

< S max (zReF(t,t)+[ReF(t, -1+

t , dt
ax 1—¢ FW(O; t)]) T
ol 5T
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= S max(/lReq(t)-f—Re qt)—1+ 'zq'(o)J)ﬂ
A 9P 1-t t

i
C ey

(lReqo(t) +Re [qo(t)— 1 +T_Ltz-q{,(0)]) i’t_’.

|

/M
which proves the equality

(1ReFo(t, t)+Re [Fo(t, 1)~1+ T_’;;F{,W(O, z)]) %,

r

max S (lReF(t, t)+Re[F(t, t)—1+lT’t2F;(o, t)])#

0,13
FepOn e

- S (AReFo(t, t)+Re[Fo(t, 0= 14 F3, 0, t)])%.
o/ M

Now we see that to a function F, which realizes the maximum of (83) corre-
sponds a function g, which realizes the maximum of (87). Hence in order to find
the function Fy = Fy(w, t) € Po11 which defines, via the transformation (80),
the desired point of I, it is equivalent to determine the function g,(w)e Py
which gives the extremum of functional (87).

Thus the boundary I' of D is the image of the set L‘zj PB[A] under trans-

=0 <A< + 00

“formation (80).

Now we will find the equations of the boundary of D. To this effect we inte-

grate the extremal function 9o and use the formulae (84) and the results of Lemma 6.

First we will determine the part of the boundary which corresponds to the
case of maximum in (82).

According to the result of Lemma 6 we will consider the following cases:

@0<rg (I=n/(1+7). In this case we have Rego(?) = (1—1)/(1+1) and
then by (84) we have (writing » = e/M);

r
1-1 dt 1+x)?
U, =S(__ @ _
° 1+t 1) t 10g(1+r) ’

*®

r

1+ 1+t\ &t T—r\ [ 14%)\?
Vo=, S(M*% a@ _
o o+x l_tz l—t) t 1 (‘—1_%)(4‘1—‘_)’ s

where % is found from the condition (86),. i.e.

et
§l+tT=I°gM’

icm®
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.
e R

Finally, in this case, we get one point on I'+, namely the point
1 1+#\?
Uo =log\73+) >

1—r 1+x\?
Yo =log{T— N\ 157)
where » is given by (88).

(b) = (1+r/(1—r). In this case we have Rego(t) = (1+1)/(1—¢) and then
by (84) we find:

2
1+t dr l—u)
UO=S('1—_—{"'1) . = Og( 1—7‘ >

r 3
1422 1-t\dt _ 1+r)(1-%) -
Vo= U°+S(1—z2 - 1+t)T— log| T )\1=
»

(89

which implies

1-ry? U= ]2__
(90) x=[M(—2;r)~+l]—]/[M‘2r—+1 1

In this case we also get one point on I+, namely the point

2
1—=x
Uy = log( 1—-r) s

T1+r 1—x )3
Yo =log\ o7\ 7] -
where » is given by (90). ) )
Now we consider the third case, a more complicated one: .
© (=N/1+r) <7 < (+r/(~r) (then we have Reqo(t)l-r) .Thcn e
1° First assume that (1—r)/(1+r) <7 <1 and x> (1-7)/(L+7)-
condition (86) has the form

©n

Srfti = logM,

x
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which implies
92 % = rM-r,
Then by (84) we obtain (using also (92)):

r

d -
Uy = Uo(®) = { (-0 % = = Liogay,

®

(142 1 dt 2_ a2l
Vo = Up(z)+ S(l—- -——~)—-—~ = T—T;llogM—Hog(}.lfM_i).

*

(93)

If v=1, we get one point on the ¥V axis

U0=Os
94 —r2M-
) V0=10g1 r2M-2
1-r2

The condition # > (1—7)/(1+ 7) is equivalent (in view to (92)) to the condition
o [
1-z /| =7

It is easy to see that the equation [1(—;~+—r)] = M has a unique root 7,
-7
= 7,(r, M) e ((1—-r)/(1+r), 1).

Now we see that in the case of
the function ¢,
equations (93),

-+ <r<land x> A=7)/(1+7),
such that Reqo(r) = 7 gives rise to the part of I't which has
o the parameter v changing in the interval [z:(r, M), 1].

condly, -

o baver ¥, assume that (1-r)/(1+r) < 7 < 1 and x < (1—7)/(1+ 7). Then

1—¢

—— for <t i:_r_
1 t = = s
Rego()=] © 1 I+7
-7
' v for < b SA
Using (84) we get:
H -/l +7) M

Us = Ua(®) = \ (Reqo(ty— 1) 2. — S -t \at dt
,S e ) t T-T-T“I)T"‘ S (=N~

* U=Df(1+7)

= 1oo L+2(147)2

= log =T 4D +(‘r—l)logr(%"i)’
-7

r

Vo = Vo(7) = Uy(n)+ S(“" ‘R‘l(ﬁ) F
] €40 t

icm
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1-2)/(1+7)

142 14t)\ dt
=UQ(T)+ ( )T

_ 1+ 1\dt
-2 11—t 7

1-£2
(1-5)/(1+7) T 4

I e 1_+f_> (1+"
= log 2 +(r—Dlogr - +logT — +

r 1-22 1 1+7
-}-logl_r2 log ye —;logr(l_r).

In order to find » = x»(r, M) we use condition (86) which in the case consi-
dered takes on the form
U=j(l+1) 1—t dt r dt
T oy = logM.
(1-D/(1+7)

After simplification we get
(96) %= u(r,M, )= (24—1)— A2 4,

where A = Mr~*(1+7)" 4?1 - 1)~ -7,
Finally, in the case of (1-A)/(1+r) <7 <1 and » < (1-7)/(1+7) we ob-
tain the partion of the boundary I'* with parametric equations

4

Uo(7) = log T—%

+(1:-—1)Iogr( l+r),

2 2
O o = 1ogi1i’5)~§—ﬂ)—+(r~1)logr( if:)+
1+ r 1—12 1 1+‘r)
l +log-z(1_”)+logl__r2 —log p ——_L_—logr(l_'r s

where x is given by (96) and the parameter v is changing in the interval

1-r
['m, 7 (r, JM)] .

To complete the proof we consider the case of 1 < 7 < (1+n/(1—-r) and
% > (t—1)/(z+1) or # < (v—1)/(z+1); but this can be done in a way quite anal-
ogous to what was done above.

It is also worthwhile mentioning that all the three arcs which form the curve
I'* meet tangentially.

The equation of I'~ has been obtained by the integration of the function g,
given by (75).

After suitable rearrangements, simplification and change of the notation we
get the final form of Theorem 1 (formulae (15)-(20)).

Proof of Theorem 2. We get the results from Theorem 2 if we apply relation
(6) in Theorem 1.

11 Banach Center t. 11
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Proof of Theorem 3. The results of Theorem 3 are obtained from Theorem
2 by applying relation .

Proof of Theorem 4. Using the convexity of D we find the maximum value
of ¥ when U is fixed on all the three arcs I, I',, I's. For example, taking into
account the equations of T, we determine from the first equation of (15) the
parameter ¢. Using the formula for %, and putting the value of f just calculated
into the second equation of (15) we get (33).

Proof of Theorem 5. The result of Theorem 5 follows from the results of
Theorem 4 by using relation (6).

Proof of Theorem 6. The result of Theorem 6 follows from the result of The-
orem 5 by using relation (7).

Proof of Theorem T and 8. As an application of Theorem 1 we get distortion

zf'(2)
1)

These estimates have a rather complicated form; they were found in {5] and
[81, respectively, by the variational method of Charzyniski and Janowski.

Here these results are simple corollaries following from the shape of the
region D for the class Sy (Theorem 1).

In order to prove the statemants we have to extremize ¥ and (V—U) respect-
ively, as (U, ¥)eD. But this is a linear case and so the extremum is attained on
the boundary. As far as we have not too bad parametric equations of I'*, we ob-
tain the results of Theorems 7 and 8 by straightforward calculations, which are
rather long.

The fact that I'* consists of three arcs implies that in both upper estimates
we have ‘three formulae, but in the lower estimates we have only one.

All results and estimates contained in the paper are sharp, which follows from
Lemma 6 in which the corresponding estimates for the class B are sharp.

theorems for the class S, namely the sharp bounds for [f'(2)] and
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