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In [7] two conditions were stated concerning the Bergman kernel function Kp(z, t)
of a bounded domain D eC", n > 1, and describing a good boundary behaviour
of Kp(z, t):

(Ax) The Bergman kernel function Kp(z, t) can be extended to a C*-function on
D xD. This means that every derivative of Kp(z, #) up to order & can be
extended to DxD to a continuous function (1 € k< ).

(B) For every z, € D there exist n+1 points %o, ..., t, € D such that

Kp(2o, 1))
det | 0K #0.
s g 1) frmovan,
6t, Jdi=1,..,n

We shall also need the following

DEerFINITION. We say that the boundary 0D of a bounded domain D satisfies
minimal regularity conditions iff it is locally the graph of a Lipschitzian function
from R?>*-! into R. This means that for every z € 0D there exist an open neighbor-
hood U of z, a coordinate system X, ..., X, in C"= R*" and a Lipschitzian
function ¢: R?*"~! —» R such that

UnD = Un{x € R™: X5, > (X1, ..., Xa0-1)}-

Conditions (Ay) and (B) are important in the theory of biholomorphic map-
pings because of the following fact, proved in [7].

TueoreM 1. Let D and G be bounded domains in C", whose boundaries 0D
and 0G satisfy minimal regularity conditions. If the Bergman kernel functions Ky(z, t)
and Ks(w, ) satisfy conditions (Ay) and (B), then every biholomorphic mapping be-
tween D and G extends to a diffeomorphism of class C* between some open neigh-
borhoods of D and G.

[217]
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It should be mentioned that a preliminary version of condition (B) and The-
orem I (less general than the above) was obtained independently in [6] and [8].

We shall also need the following fact proved in [7], Remark on Bell’s result,
with use of Bell’s “density lemma” [1].

TueoreM II. Let D be a bounded domain in C*, n > 1, with boundary of class
C=. Denote by W*(D) the usual Sobolev space and by H*(D) its subspace consisting
of holomorphic functions. Assume that there exist s > 2n+1 and M > 0 such that
the orthogonal projector K from L*(D) onto the space L*H(D) of square integrable
holomorphic functions (the so called Bergman projector) is a bounded operator from
W+ (D) into H*(D). Then

1. Condition (Ay), k = s—2n—1, holds for Kp(z, t).

2. Condition (B) is also satisfied.

The aim of this note is to prove the following

Tueorem. Let D < C be a bounded plane domain with boundary 6D satisfying
minimal regularity conditions.

Conditions (Aw) and (B) are both valid for Kp(z, t) if and only if the boundary
0D is of class C®.

Proof. (a) Suppose that the boundary 9D is of class C. Let K denote, as above,
the orthogonal projection from L*(D) onto L2H(D). For every f'e L2(D) the func-
tion h = f~K(f) is orthogonal to the space L2H(D). It was proved by Burghea

[2] that the space (LZH(D))J~ < L*(D) is identical to the space {—gﬂ ueWt (D)}
z

W(D) denotes here, as usual, the closure of Cg(D) in the Sobolev space W (D).
If fe W*(D), s > 1, then

Oh _ S pq Pu 1, O
0z oz 620z 4 &z’
Thus the function  is a solution of the nonhomogeneous Dirichlet problem Au
o .
= —‘,% with the boundary condition ¥ = 0 on 8D.

) Since the Dirichlet form for — 4 is strictly coercive over Vf/’l(D) and the do-
main D has a C*-boundary, it follows from Theorems 7.14, 7.20 and 7.32 of
[3] that:

. () If g e W*(D) then the equation du = g has a unique solution u &€ W*+2n
nW;.

(i) There exists a constant ¢; > 0 such that

ullera < ellgll s

This means that there exists a continuous operator § from W* into W+ W1

which solves the nonhomogeneous Dirichlet problem. We have K(f)=/— —(%(S (—gg) )
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for every fe W*(D). Consequently the Bergman projector X is a continuous oper-
ator from W*(D) into W*(D) for every s > 0. Thus, by Theorem II, conditions
(A,) and (B) are valid for Kp(z, #).

(b) Let us now assume, that conditions (A,) and (B) hold for Kp(z, 1). Since
oD satisfies the minimal regularity conditions, D must be finitely connected. By
the Koebe theorem (see [S], Chapter V, § 6, Theorem 2) the domain D is biholo-
morphically equivalent to certain circled domain G (a circled domain is a domain
whose boundary consist of a finite number of disjoint circumferences). Since the
boundary of G is real analytic, we see, by part (a) of this proof and Theorem I,
that the biholomorphic mapping from D onto G can be extended to a C®-diffeo-
morphism between some neighbourhoods of D and G. This implies that 4D is of
class C*.

As a corollary we obtain the following well known fact:

COROLLARY. If D and G are two bounded plane domains with C®-boundaries
then every biholomo_rphic mapping from D onto G can be extended to a C*-djffeo-
morphism between D and G.

Remark 1. The first part of the proof of the Theorem together with the Cor-
ollary can serve as an instructive example of connection between the theory of
boundary behaviour of biholomorphic mappings and partial differential equations.

Note that this proof follows the scheme of the proof of Fefferman’s theorem
given in [7]. The one-dimensional situation, however, is much simpler because
we use the classical nonhomogeneous Dirichlet problem instead of §-Neumann
problem. The 3-Neumann problem is much more difficult to handle.

Remark 2. It follows from part (b) of the proof of the Theorem that if D is
a bounded plane domain whose boundary satisfies minimal regularity conditions
and is not of class C¥, conditions (A;) and (B) cannot hold simultaneously for
Kp(z, t). Therefore the operator S solving the nonhomogeneous Dirichlet problem
cannot be a continuous operator from W7(D) into W*(D) for any r, s > k+3.

One might expect that if the boundary 8D is of class C* then conditions (A;)
and (B) hold for Kj(z, t). However, for k = 1 this is not true in view of Webster’s
example [8].

DerINITION. We say that the Bergman kernel function Kj(z, t) satisfies con-
dition (A,) if it satisfies condition (A,) and for every ¢ € D, Ky(z, t) can be extend-
ed to a function analytic in some open neighbourhood U of D.

It was proved in [7] that if D and G are bounded domains in C", the bound-
aries 9D and OG satisfy minimal regularity conditions and conditions (A,) and
(B) hold for Ky(z,t) and Kg(w,s), then every biholomorphic mapping from D
onto G can be extended to a biholomorphic mapping between some open neighbour-
hoods of D and G.

ProrosiTioN 1. Let D < C be a bounded domain. Suppose that the boundary
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aD satisfies minimal regularity conditions. Conditions (A,) and (B) are valid for
Kp(z, t) if and only if the boundary 0D is real analytic.

Proof. Suppose that 8D is real analytic. It follows from the Theorem that
conditions (A,) and (B) are valid for Kp(z, #). Fix t € D. There exists a function
@(2) € C2(D) such that for every f'e L2H(D)

£ = é.f(Z)rp(Z)dﬂ(Z)
(see for example [1] or the proof of Theorem 3 in. [7]). The function Kp(z, t)— g(z)
is orthogonal to the space L?H(D), and so, as in the proof of the Theorem, there
exists u € C®(D), u =0 on 8D, such that 8u/dz = Kp(z, 1)— p(2).
Since ¢ has a compact support in D, u is harmonic near éD. The function
u is equal to zero on 0D and 0D is real analytic, and so, by the symmetry rule, u
can be extended to a harmonic function on some open neighbourhood of oD.

Since a harmonic function is real analytic and %; = Kp(z, t) on DN\supp e, Kp(z, t)

can be extended to a holomorphic function on some open neighbourhood of D.
Hence condition (A,) is satisfied.

Let D be a domain such that Kp(z, t) satisfies (A,) and (B). We can find,
as in part (b) of the proof of the Theorem, a circled domain G biholomorphi-
cally equivalent to D. The boundary of G is real analytic, so the biholomorphic
mapping between D and G extends to a biholomorphic mapping between some
open neighbourhoods of D and G. Thus the boundary of D must be real analytic.

We shall now state more precisely the invariance of conditions (Ay) and (B)
under Cartesian products, which was mentioned in Remark 1 of [7].

PRroPOSITION 2. Let Dy be a bounded domain in C" and let D, be a bounded
domain in C™. Suppose that the boundaries 0D, and 8D, satisfy minimal regularity
conditions. The function Kp,xp,(z,t) has properties (Ax) ((Aw)) and (B) if and
only if Ky (21, t,) and Kp (25, t;) have these properties.

Proof. Tt follows from Bremermann’s theorem that
Kp,xp,(z, 1) = Kp (21, t1) Kp (22, t2), 2z =(21,25), t=(t;,12).

Hence it is obvious that Ky ,p, has property (A, ((Ao)) if and only if K,
and K;, have this property.

Thus we only need consider property (B). This property is equivalent to the
following: For every z, € D = C" there exist r-+1 points f, ..., 7 € D such that
Kp(zo, 1) # 0 and

ou Kp(z, 1)
det oy ] = DD\#; 2
© [azi @) =1, #0, where  u,(z) Kp(z,t0)

Suppose that X, and K, have property-(B). Let z, = (z},23) e Dy x D,, let t§, ..., 2
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1
be points of D; such that K (2§, ¢) # 0 and [det%:—{—(zg)] #0 and let £2,..
i

2
., 12 be points of D, such that Kp (23, t2) # 0 and det [g:; (z%)] # 0.

Put to = (¢§,13), i = (¢}, ¢3) for I<mand t, = (4§, ) for n < I < n+m.
Then by Bremermann’s theorem, we have u(z) = uf(z") for I< n and u(2) =

1 2
uf_,(z%) forn <I< n+m. Thus det [—g—:ii (zo)] = det[ Ouj (le))] . det[ ‘;:‘; (zg)] £0

oz}

and property (B) holds for Kj, ,»,(z, t).

Now assume that property (B) is valid for Kp ,p,. It was proved in Remark
1 of [7] that (D, xD,) satisfies minimal regularity conditions. Thus, by prop-
erty (B), for every z, = (z3,23)eD,xD, there exist points # = (¢, t7),
1=0,..,n+m, such that K} ;p (2o, #o) # O and the mapping h(z) = (u,(z)) can
be extended to a diffeomorphism from a neighbourhood of z, into C"*™, If we
restrict this mapping to the set of points z = (z%, z), we obtain a diffeomorphic
imbedding of a meighbourhood of z} in C* into C**™. Hence the rank of the Ja-
cobi matrix of this restriction at z§ must be equal to #. This means that there exist

. ou} )
n points among all ¢, say #, ..., ?,, such that det[ aZ{ () - u;(z%)l,_l,,,,,,, #0.
i di=1,.,n

1
This implies that det [%S{— (zé)] j=1,..,n = 0, and so property (B) is valid for Kp, .
i i=1, 0,0

In the same manner we can prove that this property holds also for Kp,. From
the Theorem, Proposition 1 and Proposition 2 we obtain immediately

PrOPOSITION 3. Let D = D;x ... xD, = C", where each D; is a bounded
plane domain with boundary satisfying minimal regularity conditions. Then:

1. The Bergman kernel function Kp(z, t) satisfies conditions (A,) and (B) if
and only if each D; has a boundary of class C®.

2. The Bergman kernel function Ky(z,t) satisfies conditions (A,) and (B) if
and only if each D; has a real analytic boundary.

Remark 3. The Theorem and Proposition 1 yield one more significant differ-
ence between the boundary behaviour of the Bergman kernel function in the
one-dimensional case and in the case of several complex variables. In the latter
case product domains and complete circular strictly starlike domains provide
a large class of bounded domains, whose Bergman functions satisfy conditions
{Aw) (or even (A,)) and (B) and whose boundaries satisfy minimal regularity
conditions and are not of class C*. This phenomenon is characteristic for the
multidimensional case.

Remark 4. Let D = {zeC": lexpz,| <1, ]z < L, i=1, ...,n}. Note that
D is a Weil analytic polyhedron in C". The domain D is the Cartesian product
Dy x ... xD,, where D, is the left half of the unit disc and D is the unit disc for
i> 1. It follows from Proposition 3 that properties (A;) and (B) cannot be sim-


GUEST


icm°®

222 E. LIGOCKA

ultaneously valid for Kp(z, t) for any k > 1. However, we do not know whether
properties (A;) and (B) are valid for certain special classes of Weil analytic poly-
hedra, e.g. for polyhedra in C* whose skeleton is totally real or for polyhedra in
C* which are defined by n holomorphic functions.

CoNCLUSION. If we join together the results of [6}, 8], [7] and this paper we
obtain the following picture:

Conditions (A,) and (B) hold for Bergman kernel functions of the Jollowing
bounded domains: 1. Plane domains with C®-boundaries; 2. Strictly pseudoconvex
domains with C®-boundaries; 3. Pseudoconvex domains with real analytic bound-
aries; 4. Complete circular strictly starlike domains; 5. Cartesian products of do-
mains belonging to the union of classes 1-4.

Thus our approach to the problem of the smooth extension of biholomorphic
mappings, based on conditions (A,) and (B), seems to be quite universal. How-
ever, there exist at least three important classes of domains, for which we have
no information about the boundary behaviour of their Bergman kernel functions:
pseudoconvex domains with C®-boundaries, strictly pseudoconvex domains with
boundaries of class C*, 2 < k < oo, and analytic polyhedra (see Remark 4). It
is a difficult and important problem to study the boundary behaviour of the Berg-
man kernel function in these cases.

Added in proof. Inapaper: E. Ligocka, The Hélder continuity of the Bergman
projection and proper holomorphic mappings (Studia Math., to appear) it was proved that if D
is a strictly pseudoconvex domain with a boundary of class C*+# then conditions (Ag) and (B)
are ‘valid for D.
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0. Introduction

Let S"~! be the unit sphere in R". The space #(S"~1!) of hyperfunctions on §*~1
is, by definition, the dual space of the space &/(S"-1) of real-analytic functions
on §"~*, For a hyperfunction T € #(S"~1), Hashizame-Kowata—Minemura-Oka-
moto [2] defined the transformation

0.1) Py TeB(S" D= 2, T(E) = (T, exp(i¢, ),

where & = (&4, &, ...,&)e R"and 1 # 0 is a fixed complex number. They show-
ed that the image of #(S""') under the transformation £; is strictly contained
in the space C°(R") of C®-functions fon R" which satisfy the differential equation
0.2 (/—‘e+ (€)= 0,

02 0%

-ﬁ";— + 8—£§ + .. 3 f
4 (5"-1) which contains strictly #(S"~*), using the sequence of spherical harmonic
functions and claimed the transformation #; maps #(S""*) onto C(R"). But
the meaning of 917(.5‘"'1) was obscure for us. In the case n = 2, Helgason [4]
showed that .é(S"“) is the space of “entire functionals”. (See our previous paper
[9] for the details of the case n = 2.) Our aim in this paper is to extend Helga-
son’s result in the case of general n. The space #(S"~) turns out to be the dual
space of the space Exp(§"~*) of the holomorphic functions of exponential type
on the complex sphere $"~1 = {zeC"; z3+2%+ ... +2F =1}

We will consider the following spaces of functions or functionals on the sphere
S"-1: L2(S"-1) is the space of L? functions on S"~%, C®(S"~!) is the space of
C=-functions on $"~* and &/ (§"1)is the space of real-analytic functions on §"~*.
G(S"") is the space of holomorphic functions on the complex sphere $7~ and
Exp(§™-1) is the subspace of 0(S*1) of holomorphic functions of exponential
type. By the restriction of variables, the spaces @(5"~*) and Exp(§"~1) are con-

where 4; = - is the Laplacian. They constructed a space

1223


GUEST




