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In this note we discuss certain aspects of the problem, very general in its nature,
of applications of the Bergman kernel [2] to the geometrical theory of functions
of complex variables.

1. Basic notations and notions

As usual, by C" we will denote the space of n complex variables z; = x;+iy),
i=1,2,..,n B will denote balls in C", i.e.

B = B(z% ¢) = {z = (24,22, .., Z5) EC™: Z |z, —2z0? < ez},
y=1
while U will denote polydiscs, i.e.
U=U(z% 8= {zeC: |z,~2}| < ¢, ..., |z,— 20| < &}.

The usual symbols

will be used, where

i-i{a —i 8 9 ___1_(6 +i_a) y=1,2 n
9z, 2\ ox, dy, |’ 2, 2 \ox, oy, |’ oo e

A map f of a domain D = C" wﬂl be called bikolomorphic if it is holomorphic
in D and possesses an inverse map f~! which is holomorphic in the domain

G = f(D).

In a domain D = C* we consider the Hibert space of holomorphic functions

LH(D) = {fe HD): 1713 = {Iffide < + o]
D

[275]
18*
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with scalar préduct
(@, ¥op = \ppdo
D

(do is the volume element in C"). We will be concerned only with domains for
which this space is non-trivial. They will be called domains of a bounded type (such
are, for example, all bounded domains, while the space C” is not of that type),

There are various ways of introducing the Bergman kernel of a domain. The
most classical one is as follows: {p,}i2o denotes an orthonormal basis of L?H(D).
A Bergman kernel (of the system of functions {p,}%) will be called the sum of
the series

(M K@D =) 0@n®, (zIeD).
y=0

This is in fact the most natural way of calculating explicitly the expression
K(z,?) for a given domain. For instance, let U = {z€C": |z;] < 1, ..., |z,] <1}
be a polydisc, and B be the ball {zeC": |z; |2+ ... +|z,/* <1}. Then

L _ !
Koo, 5= 11 e EDd=
(1—.24’ V) TE"(].— Z 2, Z;)"""l

Practically, however, the cases when a similar calculation is possible, are rather
difficult to meet. Regarding some explicit expressions of the Bergman kernel
in certain domains, see, for example, [2], [5], [4].

The simplest basic properties of the Bergman kernel, which follow directly
from the definition, are _

(@) K(z, ) is holomorphic in z and antiholomorphic in ¢. We say that K(z, T)
is a holomorphic function in (z, {) in D x D*, where D* = {z= (21, ..., 25) €C™:
1, ..., Z,) e D}; ]

(ii) antisymmetry: K(z, {) = K(¢, 2);

(i) a “reproducing property”: for each function fe L2H(D) and for any
point (e D

10 = {K¢, D f@)do,.
D

Remark. The Bergman kernel, defined as above, seems to depend on the choice
of the basis {,}52.,. But this is not the case. Actually, there is exactly one Bergman
kernel, which will be denoted by Kp(z, £), assigned to a given domain D of a

bounded type in C". This follows from the fact that the following extremal prob-
lem has a unique solution:

“for a fixed £ e D to find a function f; in the class E = {fe L2H(D): f({) = 1}
which minimizes [|f]p.”
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Only one function f, = f3(z; {) exists for which
11fo I3 = infji£1I3.
feE

1t is usually denoted by Mp(z; £) and is called a minimal function Sor the domain D
with respect to the point {. Its relation with the sum of the series (1) is simple:

7 Molzi D)
@ KO = T,

Thus with every domain D = C" of a bounded type there is associated exactly
one Bergman kernel Ky(z, D) (z,¢ e D).

DeFINITION 1. Kp(2) = Kp(z,2) = Z lp,(2)|* will be called the Bergman
pe=0
Junction of the domain D, [2].

In domains of a bounded type this function assumes positive values since it
is the reciprocal value of inf||f]|3 in the class E.

We will also mention one way of characterizing the Bergman kernel due to
M. Skwarczyrdiski [18]:

Basic LeMMA. For an arbitrary domain D and t € D the function Kp(-,0) is
uniquely characterized as an element ¢ eL’H(D) which satisfies the conditions

@ o) = lipll3,

(b) if fe L2H(D) and f(£) = |11}, then f(£) < o(2).

The following important property of the Bergman function is the reason for

its frequent use and application in a number of problems from the theory of func-
tions of complex variables.

Basic PROPOSITION [2]. Let f: D — G = f(D) be a biholomorphic map. Then
€] Kp(2) = (Kg ©f)(2) " 1 (2)|*

Ii(2) denotes the Jacobian of the map f at the point z. From (3) we obtain InKg(w)
= anD(z)—lnIf(z)—-lnm, where w = f(2).

Taking into account that 5111], = 611117 =0, in view of being holomorphic,
we find that the differential form

*InkK,
@ 89mK, = Z T dz,ndE,

is invariant under biholomorphic maps of this domain. The bilinear form, as-
sociated to (4)

®) ds3 = Z FInKy 2 s, i,

Tbz,07,

is called the Bergman form: of the domain D,
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It is easy to prove that in bounded domains the Bergman form is Hermitian
and positive definite. This fact implies the strict plurisubharmonicity of the function
InKyp(2), as well as the plurisubharmonicity of Kp(z). So, if D is a domain for
which its Bergman function increases to infinity when approaching its boundary,
then D is a domain of holomorphy.

DermyTioN 2. The Hermitian metric defined in the domain D < C" by means
of the fundamental form (5) is called the Bergman metric.

Every domain which is complete with regard to the Bergman metric, is a do-
main of holomorphy. The converse implication is, in general not true.

We recall that in this metric biholomorphic maps are isometries. If bp(zy, z2)
is the distance between two points z, and z, in this metric and f: D—G=f(D)
is a biholomorphic map, then

bp(zy,22) = be (f(zl):f(zz)):
where b is the distance in the Bergman metric in the domain G.
Finally, we mention a proposition due to Bremerman stating that the Bergman

kernel of the product of two domains D < C"(2) and G < C™(w) is equal to the
product of the Bergman kernels of these domains, i.e.

©® Kpxa(z, W, {, ®) = Kp(z, DKo, D).
Hence follows the rtelation between the elements of the Bergman metric in

the domains DX G, D and G:
¥) dsy = dsp+dsi.

2. Sequences of domains and their Bergman kernels

A. Consider a bounded domain D = C" and a sequence of subdomains of D
such that )

(8) Dm < Dm+1: D= Ul Dm.
m=

For arbitrary z, ¢ € D and for sufficiently large indices m one can consider the func-
tions Ky, (z, 1) and Kp(z, 7). The convergence of the sequence {Kp,(z,?)}i-1 is
the object of the subsequent comsiderations.

In 1967 I proved the following theorem [12]:

THEOREM 1. Let a bounded domain D < C be the union of an increasing sequence
of domains Dp, m = 1,2, ... Then the sequence of the Bergman kernels Kp,(z, 1)
converges to Ky(z, 1) locally uniformly in z in D.

The idea of the proof is quite simple, It is easy to see that the sequence of
the minimal functions M, = My, (z; t) for the domains D,, (regarding ¢ as fixed)
is a uniformly bounded family of analytic functions and one can apply the com-
pactness principle of Montel families. Then it is sufficient to employ relation (2).
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In fact, the proof of this proposition, given in [12], works under the more
general assumptions that D is an arbitrary domain of a bounded type in C"(n > 1);
moreover it can be proved that the sequence Kp,(z, 7) tends to Kp(z, 7) locally
uniformly in D x D*, i.e. without assuming that ¢ is a fixed point. This might be done
by merging the idea of the original proof of Theorem 1 with an argument of Skwar-
czynski [19]. Although I have been aware of this fact since 1968, a proof for the
general case has not been published yet, unless we count my Ph. D. thesis [Sofia,
1974]. Let us now prove

Taeorem 2. Under the assumptions (8) on the domain D and subdomains Dy,
the sequence Kp,(z,t) converges to Kp(z,t) as m — co locally uniformly in (z,7)
e D xD*.

Proof. First, let us fix an arbitrary ¢ € D. Denote by F an arbitrary closed sub-
domain of D. An index my = my(F) exists such that F < D,, for any m > my.
Then

1Mmllr < IMm!lpa < {IMlp

in view of a well-known monotony property. The sequence M, = My (z;t) con-
sists of holomorphic functions whose norms are uniformly bounded and it is possible
to extract a subsequence which is uniformly convergent on F. Denote by g(z) its
limit. This is a function holomorphic in D and g(#) = 1. As regards its norm, we
get ligllr = “uLana”F = Hin”MmaHF < |IMllp, ie. lgllo < |IMllp. By the uni-

queness of solution of the extremal problem in the class E it follows that g = M
or

O] M(z; 1) = imM,,(z; 1),

where the convergence is uniform in z on F < D.

Applying once more the monotony property we find that Kp,(z, t) form a mon- .
otonely decreasing sequence of real numbers bounded from below by Kp(t, 7).
In view of (9) and (2), it contains a subsequence converging exactly to Kp(t, 1),
ie. for the sequence itself we have
(10) Kp(t, 1) = lim Kp, (2, 7).

m-—+0

Finally, consider Kp,(s,5) for an arbitrary seF. It is easily verified that
my = m,(F) exists, as well as a constant A, so that Kp,(s,s) < 4y for any s eF
and m > m,. Examine the absolute value |Kp,(z, 1)| on any compact subset L
of D x D*, which can obviously be included in a compact set of the form Fx F*,
Then

Kon(z> D < [Koulz, DI [Kn,(t, DI < 45

for m m, and (z,7) € D x D*. Thus the sequence {Kp,(z, D}s-; is uniformly
bounded and a convergent subsequence {Kp,s(z, 1)}; can be extracted which tends
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uniformly on L to a function denoted by k(z, ). Let us fix # € L and form the inte-

gral _
Jik(, 012 = 1im Koy, DI < lim § 1Kpy(-, DI
L B L B Dumg

= limKp,,(t, ) = k(t, 1) = Kp(t, 1).
A

Therefore,
k(- L DI < k(t, ) = Ko(2, 7).

The above inequality shows that k(z, ¢) satisfies the condition (a) of the basic
lemma from § 1. Bach function /& L2 H(D) satisfying (a) satisfies also f(¢) < K (t, 7),
and the right-hand side of the inequality is exactly k(z, t), i.e. K, and k satisfy the
conditions of the lemma and hence Kp(z,?) = k(z, t). Since the sequence Kby
was chosen arbitrarily, the sequence {K,,(z, 1)}2., itself is locally uniformly con-
vergent in D x D* and tends to Kp(z, 1).

This theorem gives grounds to conclude that if 7 denotes some biholomorphic
invariant related to the Bergman function, then I(D) = UmlI(D,,).

nm—co

Theorems 1 and 2 found applications in certain problems concerning the

so-called Zu Qi-Keng conjecture (see, for instance [17], [15], [13]). The conjecture

says that when D is a bounded domain in C", the Bergman kernel does not van-
ish in D xD*. Following Skwarczyiski [17], we introduce the following

DermvrTION 3. A domain D = C* will be called a Lu Qi-Keng domain if the
equation Kp(z, £) = 0 has no solution in D x D*.

It turns out that the Lu Qi-Keng conjecture does not hold, for example, in
the case of multiply connected domains in the plane. In [17] it is shown that for
a suitable choise of the number r, the annulus R = {zeC:0 <r < [z] < 1} is
not a Lu Qi-Keng domain. Moreover, Rosenthal [15] proved that “for any p > 3,
there is a p-connected domain G, in C which is not a Lu Qi-Keng domain”.

In the case of simply-connected domains in C" (n > 2), the problem of val-

idity of the conjecture seems to remain open. There are some results concernmg
this subject (see [1], [3], [11]).

B. Let us now turn our attention to the analogous situation when a given
domain is approximated from “outside”, that is, when we are concerned with a de-
creasing sequence of domains D, o D, , > D. Certain interesting results regard-
ing the problem were obtained by Skwarczyfiski and Iwifiski [19], [20].

The matters are now much more complicated, even in the case of domains in
the plane. For instance, if U, is the unit disc, D = U,\[0, 1), D,, = {z€C: |z|
< 1+1/m}, then K, - Ky, # Kp. Therefore one has to exclude from consider-
ations slit domains and assume that D = intD. Another natural assumption to
make is that |8D] = 0. With these assumptions on D, it is not difficult to prove

o0
TreoREM 3 [20]. Let D = () Du, D & Dy & Dy, D = intD and D] = 0.
m=

icm
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Then Kp,(2, 1) - Kp(z, 1) as m — o locally uniformly in D x D* if and only if the
space H(D) of all functions holomorphic in some neighbourhood of D is dense in L2H(D).

At present there exist no general characterizations of domains in C* (n > 2),
for which H(D) is dense in L2H(D). In the case # = 1 such a characterization was
given by Havin [6]. From Havin’s result we obtain

[ve]
TueoreM 4 [20]. Let D = () Dy, D © Dyyyy < Dy, D = intD and |6D| =
m=1

Then KD,,,(Z,;) — Kp(z, 1) as m ~ oo locally uniformly in (z,t) € D x D if and only
if the set of all z € 0D which do not belong to the fine closure of the complement
of D has a zero logarithmic capacity.

If C\.D has a finite number of components none of which is reduced to a single
point, then the conditions of Theorem 4 are fulfilled. On the other hand, there are
domains which do not satisfy conditions of that kind.

dometrics. related to sequences of complex
manifelds

3. Kobayashi and Carathéodory p

A natural question that arises is to generalize Theorems 2, 3 and 4 from Section
2 to the case of complex manifolds. In this section we present the results obtained by
V. Hristov [7], [8].

Let M be a connected complex manifold. The Carathéodory and Kobayashi
pseudometrics can be introduced in the following way [9]. Let g(a, b) be the Poin-
caré-Bergman distance between two points @ and b from the unit disc U, defined by

|1 —ab|+|b—al

e(a, b)‘““ ST —2b|—lb=al -

DEFINITION 4. By the Carathéodory pseudodistance between points p and ¢
from M we mean the number

eul(p, @) = supg (@, f@))»

where the suprémum is taken over all holomorphic maps f: M — U. oM, U)
denotes the family of all these maps.

DerNiTION 5 (following Royden [16]). Let M be a complex manifold, p € M
and let ve T,(M) be a tangent vector. Consider the holomorphic maps f* U
= {lz| < R} -+ M, f(0) = p, £'(0) = v. Write

®(p, ) = 1/[sup {R: 3f: Ug ~ M, f(0) = p,f'(0) = 2}].

The Kobayashi pseudodistance in M between the points p and ¢ is defined as the
number

1
las(p, @) = inf § B(y(1), '(8)) dt,
0
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where y: [0,1]> M is a piecewise-smooth arc with origin p = y(0) and end
q=7yD.

These two pseudodistances possess the following important property, which
can be viewed as a generalization of the Schwarz lemma: holomorphic maps between
complex manifolds are distance-decreasing in each of these pseudometrics, that is,
for every holomorphic map f: M — N and any two points p, g € M, we have

en(@, ) = o (f0).fD);  ku(®, @) > ky(f), f(D).

Besides, the inequality
eu(p, ) < ku(p, 9)
holds for p, g € M, and turns into the equality

(D, @) = ku(p, @) = onlp, 9)

when M = U. The above inequality shows that the Kobayashi (Carathéodory)
pseudodistance is the “greatest” (the “smallest”) among those distances which do
not increase under holomorphic transformations of U (M) into M (U).

To obtain his results Hristov uses the notion of “kernel of a sequence of mani-
Sfolds” and “convergence of a sequence of manifolds to its kernel”. He considers a se-

quence of complex manifolds {M;}; with the same dimension, for which the
2]

intersection () M; (as an intersection of sets) is not empty and has an open interior
J=1 :

in all M;. Moreover, let every pair of manifolds of the sequence have compatible
structures in their common parts.
DrrINITION 6. A manifold M is called a kernel of the sequence {M;}; if M is

@

a maximal subset of | J M; whose every point is contained in M; with an open neigh-
j=1

bourhood for all sufficiently large indices j. We will say that the sequence {M};
fends to its kernel M if M is a kernel for every subsequence of {M;};.

The analogues of Theorem 2 hold when a given complex manifold is approxi-
mated “from inside”. More precisely, we have

THEOREM 5. Let M be a complex manifold and {M;}; be a sequence of sub-
manifolds having M as a kernel and converging to M. Then the limit limey,(p, 4)
Jro0

exists for any p, q € M (which, for sufficiently large indices, belong to M) and this
limit equals c\(p, q).

THEOREM 6. Under the same assumptions, the limit limky(p, q) exists and
J-o0

equals ky(p, ).
The case of approximation from “outside”, as in item B of § 2, seems to be
more complicated and together with the natural restrictions imposed on the sequence

of manifolds, we need additional “density” on the families of holomorphic maps
carried by the manifolds.
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TueoreM 7. Let {M;}; be a sequence of complex manifolds containing M,
having M as a kernel and converging to M, and suppose that every holomorphic map
fiM— Ucan be represented as a limit of a sequence of holomorphic maps it M; - U
Then, if the limitllim em(ps q) exists for two points p, g € M, it equals cp(p, q).

I~ 0O

TueoreM 8. Under the same assumptions on the sequence {M};, assume that
there is a sequence of holomorphic maps @;: M; — M which converges to idy. Then,
if for two points p, q € M, the limit limky (p, q) exists, this limit equals ky(p, q).

Joo

4. The Bremermann theorem and its inverses

In this section we discuss a problem posed by me in 1975 in [14]. In § 1 we referred
to the following proposition:

TueoreM (H.J. Bremermann, Lectures on functions of a complex variable,
Univ. of Michigan Press, Ann Arbor, Mich., 1955). If G is the Cartesian product
of domains B < C"(z) and D <= C™(w), then

(1) Koz, w, L, ®) = Ky(z, DKp(w, B).

The problem is to find some kind of an inverse to this theorem. For the time
being two ways of approaching the subject have been found. In [14] I suggested "
to consider domains satisfying conditions as follows: let G be a bounded domain
from C” xC™ containing the origin of this space and such that

(@) for each point z€B = =;(G) the open set S, = = (Gnayl(d)) = {w
eC™: A(z,w) € G, z = m (2, w), w = m,(z, w)} is a domain in C™ containing the
origin of C™; ‘

(i) for any point z € B, there is a biholomorphic mapping ¢.: R — S, with
®,(0) = 0, where R = 7,(G).

Examples of such domains can be given: such are, for example (when
n=m= 1), all Reinhardt domains, all Hartogs domains with symmetry plane
w =10 and so on.

Remark. In. the original definition, given in [14], condition (ii) is missing. I owe
this change to a remark of K. Diederich in 1976.

Let (z, w) be an arbitrary point from such a domain G. Obviously, we can
form Kg(z, w), Ky(z) and Ks (w). The direct Bremermann theorem states that,
if S,=R, thenK; = K- Ks..

Now, consider a domain of the above type, for which

(12 K(z, w) = K5(2)Ks,(w)

at every point. Is it true that the “fibres” S, do not differ, that is, is it true that
G = BxS,?

The answer of this question is not so simple. Without loss of generality, the
case n = m = 1 can be considered. Moreover, we can consider a Reinhardt domain;
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for example, let G = {|z] < 1, |w] <g(|zD}. Then (Theorem 2.3 of [14]), if at
a point from G, say, at the origin, we have Ks(0,0) = K5(0)Ks,(0), then G = {2
< 1}x{wl <gO}

Things do not look like that, as far as Hartogs domams are concerned. Even
if we take a Hartogs domain which is complete, that is, if G = {(z, w)e C?:
e B < C, |w] < R(z)}, it does not always follow that (12) implies G = B x§,. Let
us point out a counter-example: let the unit disc be the base of the domain and
let R(z) = %exp(z+?). Here the condition (12) is fulfilled, but the domain is not
a cartesian product. The least we can say in this case is that the given domain is
biholomorphically equivalent to the bidisc U? (cf. [14]).

In this way we come up to the conjecture that the domains for which the
corresponding equality between the Bergman functions (12) holds are biholomorphi-
cally equivalent to cartesian products. But it again turns out that this is not always
true. The reason is: as we showed in § 1, the direct Bremermann theorem asserts
that the equality (6) holds. But the latter also yields (7), whence we find that

2 2
dsixpls = dsg,

ie. the Bergman metric element for the domain B x D restricted to the base B coinci-
des with Bergman metric element for the base. When considering domains of our
class satisfying only (12), we find that dsi|s = dsi+a certain expression depend-
ing on aéans,(w)lw:o. The vanishing of the above expression actually involves
imposing new restrictions of geometric nature on the domain G.

It is only under those restrictions that one can prove theorems (analogous to
Theorems 4.2, 4.3, 4.4 from [14]) asserting that such a domain is biholomorphically
equivalent to a polydisc or to a ball. For example, 2 Hartogs domain of the form
G = {(z,w) e C*: z& B, |w| < R(z)}, where B is simply-connected can be mapped
onto the bidisc U? by a transformation which leaves the symmetry plane {w = 0}
ground, if and only if —InR(z) is a function harmonic in B.

I will end with a short remark on another way of approach to the problem.
Here I mean the results obtained by E. Ligocka and published in [10]. For this
purpose, recall that a domain D < R" is called a domain of existence of a function
S (assumed to be analytic in D) if and only if: whenever U is a domain in R" and
g is an analytic function on U such that U n D # @ and f = g on some nonempty
open set W, W < UnD, then U< D and f=g on U.

Ligocka proved a general proposition concerning the domains of existence of
real-analytic functions, whence follows another inverse of the Bremermann theorem.

THEOREM 9. Let D = R" X R™ be a domain of existence of an analytic function f.
Suppose that there exists a point zo = (x,, yo) such that f(x, y) = g(x)h(y) on some
open neighbourhood of z,, g(x) and h(y) are real-analytic functions defined on neigh-
bourhoods of x, and y,, respectively. Then:

L. D = 7, (D) xm,(D), where m, denotes the projection of R"xR™ onto R"
and m, denotes the projection of R*xR™ onto R™,
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2. f(x,5) = GO)H(y) on D, G(x) = g(x) onaneighbourhood of x,, H(y) = h(y)
on a neighbourhood of y,.

3. G(x) and H(y) are real-analytic, m;(D) is the domain of existence for G(x)
and m,(D) is a domain of existence for H(y).

An immediate consequence of this theorem is

Tueorem 10. Let D be a domain in C"xC™ which is a domain of existence
for its Bergman function Kp(z). Suppose that there exists z, € D such that

Kp(2) = Ki(2,)Ka(z), z= (z1,22),2, €C" z, e Cm

on some neighbourhood of z,. Then

1. D = 7, (D) x7,(D).

2. Ko(z, %) = Kz, 0)(z1, W1) Kuyo(22, W2) on D, where Ky, denotes the
Bergman kernel of the domain 7,(D)  C", K, p, denotes the Bergman kernel of
7y (D) = C™.

3. There exists a constant ¢ # O such that

- 1 -
Ki(z) = K 0)(Z1,21),  Ka(zy) = s r0{(Z25 Z2)

on some neighbourhood of z.

Up to the present we do not have a satisfactory characterization of domains
in C" which are domains of existence of their Bergman functions in the general
case. We can only say that every bounded domain which is complete with re-

spect to the Bergman metric is also a domain of existence for its Bergman func-
tion.
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The problem of representation of a function by series in a given function system
is essential in analysis. The significance of power series, Dirichlet series and orthog-
onal function series is well known. In particular, the so-called classical orthogonal
polynomials connected with the names of Jacobi, Legendre, Chebyshev, Laguerre
and Hermite, play an important role in the theory of functions. Moreover, there
are many applications in which these system of polynomials appear in a very natu-
ral way.

The purpose of this note is to state certain results on the representation of
analytic functions by series in classical orthogonal polynomials. In Section 1 we
recall the definitions of Jacobi, Laguerre and Hermite polynomials. Further, with
the aid of asymptotic formulas for classical orthogonal polynomials we give a
description of the regions of convergence of series in these polynomials. Section
2 is devoted to the main subject of this note, namely, the expansion of analytic
functions into series of classical orthogonal polynomials. The final Section 3 con-
tains another approach to the problem of representation of analytic functions by
means of series in Laguerre, resp. Hermite polynomials.

1. Classical orthogonal polynomials
For convenience, in formulating the definitions of Jacobi, Laguerre and Hermite
polynomials we follow G. Szegs [12], resp. H. Bateman and A. Erdelyi [2].

L1 If a, > —1, the system of Jacobi polynomials {P§*#(2)}3, is (uniquely)
determined by the orthogonality property

1

§ (1= + PP P() PP () dt = TIPSy,
21
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