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The problem of representation of a function by series in a given function system
is essential in analysis. The significance of power series, Dirichlet series and orthog-
onal function series is well known. In particular, the so-called classical orthogonal
polynomials connected with the names of Jacobi, Legendre, Chebyshev, Laguerre
and Hermite, play an important role in the theory of functions. Moreover, there
are many applications in which these system of polynomials appear in a very natu-
ral way.

The purpose of this note is to state certain results on the representation of
analytic functions by series in classical orthogonal polynomials. In Section 1 we
recall the definitions of Jacobi, Laguerre and Hermite polynomials. Further, with
the aid of asymptotic formulas for classical orthogonal polynomials we give a
description of the regions of convergence of series in these polynomials. Section
2 is devoted to the main subject of this note, namely, the expansion of analytic
functions into series of classical orthogonal polynomials. The final Section 3 con-
tains another approach to the problem of representation of analytic functions by
means of series in Laguerre, resp. Hermite polynomials.

1. Classical orthogonal polynomials
For convenience, in formulating the definitions of Jacobi, Laguerre and Hermite
polynomials we follow G. Szegs [12], resp. H. Bateman and A. Erdelyi [2].

L1 If a, > —1, the system of Jacobi polynomials {P§*#(2)}3, is (uniquely)
determined by the orthogonality property

1

§ (1= + PP P() PP () dt = TIPSy,
21

[287]
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where
248+ 4o+ D (n+ f+1)

wp  |TEFDCH+aFpEDIG+atf+1) if n>1,
L8 = 2w+ + 1) T(B+1) £ neo
U Ia+f+2)

and the condition that the coefficient of z" in P{P(z) is positive.

If « = B, Jacobi polynomials are called ultraspherical or Gegenbauer poly-
nomials. Their particular cases are Legendre polynomials (« = f = 0) and Che-
byshev polynomials of the first (¢ = f = —1/2) resp. second kind (« = § = 1/2).

If « > —1, the system of Laguerre polynomials {L{(z)}%, is determined by
the property

o

T(nta+1)
Fexp(— ) LM LP )t = et et
| Fexp(=0) L D

and the assumption that the coefficient of z* in (—1)"L{®(2) is positive.
Finally, Hermite polynomials {H,(z)}i>, are determined by the property

6mn

]

{ exp(~ D HLOB0)dt = V7 2T(1+1) Sy

-

provided that the coefficient of z" in H,(z) is positive.

1.2, In order to describe the region and also the mode of convergence of a series
in Jacobi polynomials

@ > 4, PEP()
n=0

one needs an asymptotic formula for PP (z) as n — + oo and z belongs to an
arbitrary compact subset of the region C—[—1,1]. The corresponding formula
was given at the end of the 19-th century by G. Darboux [3], [12, (8.21.9)] and
has the form

1.2) PEP(z) = Peh () n=112 {w(z) {1 +pP(2)}.

Here w(z) is the inverse of Zukowski transformation z = (w-+w™*) for which
o(0) = w0, P@P(z) £0 and {p*H(z)}=., are analytic functions holomorphic
in the region C—[—1, 1] and such that lim p®#(z) = 0 uniformly on every com-

n—+too

pact subset of this region.

Further, if 1 <r < + o0, we denote by E(r) the interior of the ellipse y(r):
l@(2)] = r and we assume by definition that E(+ ) = C. Then, as usual, an appli-
cation of the asymptotic formula (1.2) leads to the following

ProposiTiON 1.1. Let 2 = Tim V/[a,] and R = A~1. Then:

e 0

@ I R< 1, the series (1.1) is divergent at every point of the region C—[—1,11;

icm°®
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@) if 1l <R< +oo, the series (1.1) is absolutely uniformly comvergent on
every compact subset of the region E(R) and diverges at every point of the region
C-E®.

O. Perron [5] has studied in details the asymptotic properties of the confluent
hypergeometric function D(a, c; 2) as z or one of the parameters a, ¢ tends to infi-
nity. Using his general results and also the relation

19 1@ = (1) @(-n, w112

one can derive asymptotic formulas for Laguerre polynomials in the region C— [0,
+) and on the ray [0, +00) [12, (8.22.3), (8.22.2)]. These formulas are suf-
ficient to describe the region of convergence of a series of the kind

o«

(14 a, L.

n=0
More precisely, if 4o = — Lim (2)/7) 'In|a,| > 0, then the series (1.4) is ab-
nos 00

solutely convergent at every point of the region 4(4,): Re(—2)"/? < 1,. But basing
only on Perron’s formulas one cannot answer the question what is the mode of
convergence of the series (1.4) on an arbitrary compact subset of the region 4(4o).

In the author’s paper [7] it was shown, by means.of the integral represen-
tation

0
z~%2ex;

(1.5) L@ = Tarl) +f)z S prei2exp(— 1) J,(2Y/%2 ) dt,
0

where J, is the Bessel function of the first kind with index «, that if n —» + co and
z - oo in the region A(A): Re(—2)"/? < 1 then (z = x+1ip)

L®(2) = O (}z[‘“”'”“n”‘/z‘l/“exp (x+24 1/;)) .

Further, it was shown how the above inequality can be used to get statements
analogous to the classical Abel’s lemma and Cauchy-Hadamard’s theorem. We
shall formulate the corresponding result as

Prorosimion 1.2. Let l, = — Lim (2/7) *In|a,), then:
B0

@) if Ao < 0, the series (1.4) is divergent at every point of the region C— [0, + ©);

() if 0 < A9 < +o0, the series (1.4) is absolutely uniformly convergent on
every compact subset of the region A(A,) and diverges at every point of the region
C—4(2).

For series in Hermite polynomials, i.e. series of the type

©

(1.6) > a,H,(2)

n=0

the following holds:

19 Banach Center t, 11
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PROPOSITION 1.3. Let 7o = — Lim (2n+1)"*2In|(2n/e)"?a, |, then:
R 00
(@) if vo <0, the series (1.6) is divergent at every point of the open set
C—(—, + ©);

() if 0 <To< + the series (1.6) is absolutely uniformly convergent on
every compact subset of the region S(vo): |Imz| < 7, and diverges at every point of
the open set C—S(%o)-

The proof is based on the asymptotic formula for Hermite polynomials given
by Szegs [12, (8.22.7)].

2. Representation of analytic fonctions by’ series
in classical orthogonal polynomials

Classical orthogonal polynomials are one of: the oldest and most powerful tools
of analysis. Nevertheless, some of the (main) results concerning the expansion of
analytic functions into series of these polynomials were obtained quite recently.
Maybe one of the reasons is that in the case of a system of polynomials orthogonal
over an infinite interval of the real axis (e.g. Laguerre or Hermite polynomials),
the classical tool of complex analysis, namely, the Cauchy integral formula cannot
be applied in general. As regards Jacobi polynomials, such a difficulty does not
exist and the representation problem can be solved by means .of the asymptotic
formulas for these polynomials and for the corresponding functions of second kind

{2&P @) 0.
The last system is defined in the region C— [—1, 1] by the equalities («, f > —1)

A=A+ PPEPW)

t—z

1
@y 0EP@ = - |

n=20,1,2,..

~ For the system (2.1) the following asymptotic formula holds:
200 QFPE = QEP@r Ha@) T HI4gEP@), > 1,
where Q®P(7) # 0 such that {g*P(z)}, are holomorphic functions in the re-
gion C—[—1,1] and lim ¢®®(z) = 0 uniformly on every compact subset of this
region {12, (8.71.19)]?4‘“)J
2.1, Basing on Christoffel-Darboux formula for Jacobi polynomials and func-

tions of second kind [12,(4.62.19)] and on the asymptotic formulas (1.2) and
(2.2), it is easy to prove the following

LemMaA 2.1. Let o, p > —1, 1 <r < + oo and let v be a function L-integrable
on the ellipse y(r). Then the function

S 'ZU—(_%df, LeC—y({)

)
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can be expanded in the region E(r) into a series of type (1.1) with the coefficients

1
O = FEm { vooer@i, =012,

()

A trivial application of the Cauchy integral formula and the above lemma
lead to the first one of the main results of the present note:

TreoreMm L. Let o, f > —1,1 < R< +o0 and let f be a complex Sunction,
holomorphic in the region E(R). Then, f can be represented in this region by a series
of type (1.1) with the coefficients (1 <r < R)

1
= T (S)f(é‘)Qa“"”(l)dt, n=0.1,2,..
»(r

Jacobi polynomials are particular cases of Gauss’ hypergeometric function
F(a, b, c; z). More precisely,

PPP(z) = (":“) F(=n,n+a+p+1, a+1; (1-2)/2)

= (_1)'*(":‘6) F(—n,n+a+B+1, f+1; (1+2)/2)

and if o, B are arbitrary complex numbers such that a, B, a+f # —1, —2, ...,
the above representations give a very natural generalization of Jacobi polynomials,
Without going into all details, we just remark that Theorem I is valid also for the
generalized Jacobi polynomials [1], [11].

2.2. The problem of expansion of analytic functions into series of Hermite
polynomials found a solution in 1940 by E. Hille [4]. In order to formulate his re-
sult, we shall introduce suitable spaces of holomorphic functions which in fact
have been described in Hille’s paper.

If 0 < 75 < +0c0, we denote by H(v,) the space of all complex functions
J(z) holomorphic in the stripe S(7,): |Imz| < 7, and having the following prop-
erty: for every 0 € v < 7, there exists a constant B(z) = 0 such that if z = x4
+iy e 5(7): |Imz| < 7, the inequality holds:

23) If(2)] < B(z)exp {x*/2—|x|(v*—y*)"/*}.
By means of the definition just given, Hille’s result can be formulated as follows:

THEOREM II. A complex function f holomorphic in the region S(zo) (0 < 7o
< +o0) can be representedin this region by a series of type (1.6)if and only iff € H(o).

Let us mention that the proof of Theorem II, given in [4], is not easy and
especially in proving the sufficiency of the condition (2.3) the author had to over-
come considerable difficulties.

2.3. In 1947 H. Pollard’s paper [6] appeard in which, basing on Hille’s work
[4], the author solved the problem of representation of analytic functions by series

19%
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in the polynomials {L.(z)}izo = {L{¥(z")}ax0, ie. by series of Laguerre poly-
pomials in the case of a = 0. Pollard’s result is the following:

Turorem 1L A complex fimction f holomorphic and even in the region S(x,)
(0 < 7 < +c0) can be represented in this region by a series in the polynomials
(L))o if and only if f& H(vo).

Remark. Tt is evident that by the mapping { = z* the stripe S(7o) is trans-
formed onto the domain A(7o).

In the case of & # 0, instead of Laguerre polynomials one can operate with
the polynomials {L§”(z*)}70. But the most striking thing is that the method used
by Pollard cannot be generalized to the case of arbitrary o > —1. Moreover, as
far as we know, the problem of expansion of analytic functions into series of
Laguerre polynomials in the general case, has remained open till the end of 1978,

A solution of the above problem, which is based also on Hille’s theorem but
uses a quite different idea, is given in the author’s paper [8]. As usual, the main
result is proved by means of certain auxiliary statements, which we now formulate
as the “key lemma”:

Levma 2.2. Let 0 < 7o < +00 and f€ H(z,), then:

(@) 2f(2) € H(ro);

1 1

®) {0t e Hizo) if {lp(d]dt < +oo;

(©) f'(2) € H(zo);

(d) if =1/2 < & < 1)2, the integral transformation

1

S (1—12)*-L2F (z1)dt
0

1

@y fl2) = PO(F;2) = TE+iD

is an isomorphism of the space H(w,) and its inverse is

1
a d 2
F(2) = Q9(f;2) = T{P(——oTiT/zT(S (1-ye-imes i),

Proof. The properties (a) and (b) have been established by Pollard [6, p.
362-363]. The property (c) is a consequence of Theorem II. Indeed, f(z) can be
represented in the region S(z,) by a series in Hermite polynomials, uniformly con-
vergent on every compact subset of this region. In view of the relation H,(z)
=2nH, ;(2)(n=1,2,3,..), f'(2) is also representable in S(v,) by a series in
Hermite polynomials, and therefore f'(z) € H(w,).

If F(z) e H(zo), then (b) implies that f(z) = P (F; 2) € H(,). Furthermore,
the equalities

o) — L k[2+1/2)
0= 2 (a+k/2+1/2)

lead to the conclusion that the mapping P® is injective.

F®©), k=0,1,2

3 Ly oaes

icm°®
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Let us note that in view of the properties (a), (b) and (c), the integral trans-
formation F(z) = Q®(f;2) is “well defined” and F(z) € H(z,) if f(2) € H(to).
Moreover, by using power series with centre at the origin for the functions F
and f, it is easy to show that PO(F; 2) = f(2). In other words, the mapping (2.4)
is surjective.

Now we are going to prove that the mapping (2.4) is continuous with respect
to the topology of the space H(7,). Let us mention that if G = C'is a region, we
assume (as usual) that the space A(G) of all complex functions holomorphic in G
is endowed with the topology of uniform convergence on compact subset of G. It
is well known that this topology is metrizable and that 4(G) is a Fréchet space.
In what follows the (linear) subspaces of A(G) are considered with the induced
topology.

Let a sequence {F,(z)}5%.1 < H(7,) be convergent in the space H(7,) to a func-
tion F(z) € H(v,). For arbitrary T' > 0 and 0 < 7 < 7, the convergence is uniform
on the set K(T,7) = {z = x+iy: x| < T, |[y| < 7} and (2.4) implies that the
sequence {P®(F,; 2)}i4 is also uniformly convergent to the function P®(F; z)
on the set K(T, 7). Since every compact subset of the region S(zo) is contained
ina set of type K(T,7), one can conclude that lim P®(F,;z) = P®(F;z) in

n—++0
the topology of the space H(%,). Therefore, the operator P i3 continuous and in
a similar way it can be proved that the same holds for the operator 0.

Remark. The integral transformation P® js in fact an integro-differential op-
erator of Riemann-Liouville’s type and Q is its inverse. Let us also note that the
operator P has been used in [6, p. 362, 364] but without saying anything about
the property (d).

Now we are able to prove a statement which is a generalization of Theorem
TII. At first we observe that Lemma 2.2 holds if one replaces H(t,) by the space
ﬁ(ro) of all even functions belonging to H(7o).

Let us note that a natural generalization of Laguerre polynomials is given
by the relation (1.3) under the only assumption that the parameter « is an arbi-
trary (complex) number different from —1, —2, ... From now on we deal with
Laguerre polynomials {L{(z)}®., assuming that « is real and not a negative in-
teger.

Turorem IV. Let a# —1, —2, ... be real and 0 < 7o < +o0. 4 complex
function f analytic in the region S(to) can be represented in this region by a series
in the polynomials {L®(z*)}%.0 if and only if fe H(my).

Proof. It is sufficient to prove Theorem IV in the case of —1/2 <« < 1/2
since by means of elementary relations for Laguerre polynomials [2, v. IT, 10.12,
(23), (24)] the statement can be carried over to the case of any reala # —1, =2, ...
The case of @ = 1/2 also can be omitted, since

LD(z2) = (=1)2-24(n) 1z Hypyy (2), 1 =0, 1,2,..
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Let us put
L“"’ = {£2@) )0 = {(- 1T+ a+ 1)) L) }io,
= (A} = (2V/7 (@) Hau@} o

Then, in view of the relation between E{ermite and }aguerre polynomials
due to Uspensky [13], [12, (5.6.5)], we have L®(z) = P™(H,; z)N(n =0,1,2,..).
Further, by Theorem II the system H is a basis for the space H(z,) and Lemma
2.2(d) yields immediately that the system £ is also a basis in that space. In other
words, every function fe H(v,) can be expanded in the region S(z,) into a series
of the polynomials {L{*(z%)}20.

Let us assume that a complex function f is represented in the region S(z,) by
a series in the polynomials {L{(z%)}%, and put F(z) = Q®X(f;z). By Lemma
2.2(d), H(2) = @@®;2) (n =0,1,2,...) and since the operator O is con-
tinuous and the function F is even, one can assert that F is representable in the
tegion S(7,) by a series in the polynomials {H,,(2)}% 0. According to Theorem I,
the function F belongs to H(z,) and, therefore, f(z) = P(F; z) & H(zo).

3. Hankel’s transform and the representation of analytic functions by series in
Laguerre polynomials

The integral representation (1.5) shows that the complex function I'(n-+1)z%/% x
x exp(—2)L{(z), which is analytic in the region C—(— o0, 0], is the image of the
function 1***2exp(—¢) under a transformation of Hankel’s type. Therefore, one
might suppose that if an analytic function f(z) is represented by a series of type (1.4),
the function z*?exp(— 2)f(z) must be also Hankel’s transform of a suitable complex
function. A result in this connection is announced in the short communications
[9), [10]. Here we shall give in some details the proof of the corresponding state-
ment basing on the properties of Laguerre functions of second kind {M{(z)}%,
The last system is defined in the region C— [0, + o) by the equalities

0
o o (@),
G.1) M©®() = _S t—%@"_(‘lm, n=0,1,2,..
0

Using the Rodrigues formula for Laguerre polynomials, from (3.1) we get
easily

no _—
32) M®@) = —S ‘(tﬁc’g’fﬁ‘lm n=0,1,2, ..
! 0

If Rez <0 and /(z) is the ray {{ = (~2)-1,0<t < + w}, the Cauchy
integral theorem gives

n+ & — nio
Mo = - | S "("Z)“S N
)
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The last integral representation leads to a generating function for the system
(3.1), namely the function (Rez < 0,weC)

- (a)
63 M=y MEE

n=0

—(=2) S 1+reXp{1+t+2t}d

Let G(0) (0 < o< +00) be the class of all entire functions g(w) having the
property

34) lim (2)/[w]) ™ (tnlgw) | —Iwl) < —

W]+ o0
The class G(o) can be described by means of the following

LeMMA. An (entire) function

(33 g00) = ) dr

is in the class G(o) if and only if

(3.6) lim (2y/7) 'In|a,| < —o.
n—+c0

Proof. In the case 0 < ¢ < + oo the necessity of condition (3.6) can be estab-
lished directly by means of the Cauchy inequalities for the Taylor coefficients of
an analytic function. Namely, for every 0 < 8 < o there exist D(§) > 0 and
N(8) > 0 such that if n > N(J) then

la,| < n! n'"{max lg(w)| < D(S)nl n~"exp [n— 2o~ V7]
w]=n

and Stirling’s formula yields Iim (2y/7) 'In|a,| < —o+4.
=400

In proving that (3.6) is sufficient for a function (3.5) to be in the class G(o)
we shall use an asymptotic formula for the Laguerre functions of second kind:

BT M®() = —y/mexp(z/2)(—z)2 -2 exp] — 2y/n (—2)Y2} {1+ pP(2)}.

Here {u{*(z)}2., are holomorphic functions in the region C—[0, +o0) and
such that Lim u{(z) = 0 uniformly on every compact subset of this region. The

n-3 400

above formula can be derived from the relation
M®P(2) = ~I(n+oa+1) (=2 ¥n+a+l, a+l; —2).

where ¥(a, ¢; z) is Tricomi’s confluent hypergeometric function.

Having in view the asymptotic formula (3.7) we can assert that if the sequence
{a,}2. o satisfies (3.6), then for every 0 < 6 < ¢ there exists C(8) such that |a,|
S CO{-MP[- (6~} (n=0,1,2,...) and, therefore, lg(W)| < —-C(®)x
X M®[— (0~ 8)?, [w|]. Further, from (3.3) it follows that
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IO = {§ expllw| 11+ 11 = (o - 8)?)d]}

{DSO exp[|w| —(o’—d)zt—]wlt“]dt}
1

and after some computation we get that if [w| — +co then

lgw)| = O (YWl exp [Iw|—2(—8) YV IWI]}.

Since 0 < 8 < o is arbitrary, it follows that the entire function g belongs to
G(0).

Now, by the aid of the Lemma just proved we establish the following

TuporeM V. Let 0 < 4 < 400 and o > —1. A complex function f analytic
in the region A(A) can be represented in this region as a series of Laguerre poly-
nomials {L{(2)}eo if and only if in the region A(/lo) = A(Ao)—(—23,0] the
representation holds:

(3.9) £z) = z-expz | #12exp(—1)g ()], (2V/2t ) dt,
Jt

with a function g € G(4o).

Proof. If g € G(4), then the integral in (3 8) is absolutely uniformly conver-
gent on every compact subset of the region A(lo) We shall prove this in the case
do < +o0. If K = A(d) is compact, let A = su}l)fRe( )2 and 6 = (lo— /2.

Then the asymptotic formula [2, v. II, 7.13, (3)] and inequality (3.4) yield that
if t - +c0, then

(3.9) #l2exp(—1)|g(1)J, (2121 )| = O {#%exp(—26V/1)}
uniformly on z € K.

Further, if g is represented by the power series (3.5), the inequality (3.6) holds
for ¢ = A, and, therefore (Proposition 1.2), the series (1.4) is convergent in the
region A(4,).

If we define for v =0, 1,2, ... and z € A(4o)

R =)= D @ L(2),

n=0

from (1.5) and (3.8) it follows that

(3.10) R,(2) _z—aﬂexpzstalzexp( t){ Z Onf” }J(Z]/zt )dt.

n=y+1

The function

©

n=0

icm°®

is also in the class G(o), therefore, if we replace g by g* in (3.9), we can assert
that for every ¢ > 0 and every z & A(2) there exists T = T(g) > 0 such that
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S t“/‘cxp(»-t)g*(t)l.]“ (2]/5?)](# < e.
T

Thus for every » = 0,1,2,... 'we have

} T2zt ) dt

©

S t"‘/zexp(——t){ mZ

ne=p 41

(3.11)

<\ erep(- g2 LV ar < .
T

There exists N = N(g) > 0 with the property that if » > N and 0 ¢t < T,

o0
then| Y, (n!)“a,,t"[ < ¢ and, therefore,
n=p+1

(3.12) \STt"‘/Zexp(-—T){ WZ a;f"}Jm(Z]/ET)dt‘
0 n=v4 1

0

=0 {eS #l%exp(—1) [J,(zl/zt“)]dt} = 0(¢).

From (3.10), (3.11) and (3.12) it follows that R,(z) = O(&), » > N, i.e. the series
(1.4) represents the function f'in the region 4 (Ao) and, therefore, in the region 4(o)
as well.

' Now suppose that a complex function f is represented in the region 4(4,) by
the series (1.4). Then it follows from Proposition 1.2 and the Lemma that the (entire)
function (3.5) is in the class G(4,). By means of the integral transformation (3.8)
this function defines a complex function f, analytic in the region A(%). But as we
have just seen, the function fis represented in this region by the series (1.4) and,
hence, f= f.

As a consequence of Theorem V and the relations between Hermite and La-
guerre polynomials [12, (5.6.1)], one can easily get a statement which gives a
necessary and sufficient condition for an analytic function to be represented by a
series in Hermite polynomials, namely

THEOREM VI. 4 complex function f holomorphic in the region S(vo) (0< 7o
< +) can be expanded there into a series of Hermite polynomials if and only if
in S(t,) the integral representation holds:

f(z) = expz? S exp(—12) {g(t?) cos(221) + h(1*)sin(2zt) } dt
0

where g, h e G(zo).
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ON THE EQUIVALENCE BETWEEN LOCALLY POLAR AND GLOBALLY
POLAR SETS IN C"
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B. Josefson [3] has recently proved that every locally C"-polar set is a globally C*-
polar set. Using the method of the proof developed by Josefson we prove that
every locally C"-polar set E is an L-polar set (i.e. there exists a function W pluri-
subharmonic in C" such that W = — oo on E and W(x) < B+log*|x| forall x e C",
where B is a real constant).

1. Introduction

Given an open subset D of C" we denote by PSH(D) the family of all functions
plurisubharmonic in D. We denote by L the class of all functions U plurisubhar-
monic in C” such that

U(x) < f+logtlx], xeC”,

where f§ is a real constant depending on U and |x| := max [x;].
. 1

<ign

The aim of this paper is to prove the following

THEOREM. Given any subset E of C" the following conditions are equivalent:

(2) E is locally C™-polar, i.e. for every point a € E there exist a neighbourhood
U, of a and a function W e PSH(U,) such that W = —co on EnU,;

(b) E is L-polar, i.e. there exists a function W of the class L such that W = —co
on E;

(¢) E is globally C"-polar, i.e. there exists W e PSH(C") such that W = — o
on E.

The implication (1) = (c) was a question posed by P. Lelong [4] which has
been recently solved by B. Josefson [3]. The main tool of the proof given b)-' Jo-
sefson is an “clementary” Lemma on systems of homogeneous linear equations.
The same lemma will be basic for the proof of our theorem.

The equivalence of locally polar and globally polar sets in R" with respect to
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