icm
’ COMPLEX ANALYSIS

BANACH CENTER PUBLICATIONS, VOLUME 11
PWN-POLISH SCIENTIFIC PUBLISHERS
WARSAW 1983

SCHROEDER’S FUNCTIONS

HENRYKA SMIALEK
Institute of Mathematics, £6d¢ Technical University, Poland

Introduction and summary

The purpose of the present note is to give a characterization of the. complex uni-
valent functions which are solutions of well-known functional Schroeder’s equation
(13], [4], Chapt. VI).

According to the result given by E. Peschl ([8], p. 69), for any bounded uni-
valent function

.1 b(@) = byz+ ..., by >0,]b(@)]| < 1,2€K(0,D),

(comp. § 1, Point 1) there exists exactly one univalent, not necessarily bounded,
function of the form

0.2) G(z) = z4+G,2*+ ..., z€K(0,1),
which satisfies with b the above-mentioned functional equation
0.3) G(b(2)) = b, G(2);

the function G will be called Schroeder’s unjvalent function corresponding to the
function b, shortly Schroeder’s univalent function.
On the other hand, we know that every univalent function of the form

04 A(@@) = z+ 4,2+ ..., z€K(O,1),
has the parametric representation

0.5 A(2) = lim ef(z, 1), z€K(,1),
where o

©.6) w = f(z,1)

is the simple characteristic function (§ 1, Point 7) of the corresponding generalized
Loewner’s equation of the type '

o7 d—:’ = —we(w,t), weK(@0,1), te[0, 0]

[311]
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with the initial condition w = z for # = 0; the function on the right-hand side of
©.7

(0.8) cw,t), wekK(@0,1), te[0, o],

is, for any fixed #, holomorphic with respect to the complex variable w, and for
any fixed w, measurable in the sense of Lebesgue with respect to the real variable t,
moreover, ¢(0, ) = 1, Rec(w,t) >0 (§ 1, Point 10). In other words, for every
function (0.4), there exists a function (0.8) such that, for the corresponding simple
characteristic function (0.6) of (0.7), the representation (0.5) of (0.4) holds. There
may exist more than one function c(w, ¢) of the type (0.8) for a function 0.4).

In view of (0.3), (0.5) and (0.7), the set of all Schroeder’s univalent functions
constitutes a subclass of all univalent functions generated, in accordance with the
above, by a subclass of all functions of the type (0.8). Therefore, it is natural to
ask: For which function (0.8) will the suitable function (0.6) give, by (0.5), a Schroe-
der univalent function and what property does the Schroeder domain, i.e., the image
of the unit disc under the mapping by a Schroeder univalent function, possess?
The answer to these questions is given in this paper. Namely, any Schroeder uni-
valent function may be characterized by the representation (0.5), where w = f(z, 1)
is the simple characteristic function of generalized Loewner’s equation 0.7) in
which the function (0.8) is, for any fixed w, a periodic function with respect to the
variable # (Theorem 2.2). The Schroeder domain is characterized by pseudo-star-
likeness (comp. § 1, Point 2 and Theorem 3.1). Both the above theorems were
announced without proofs in [11], p. 948.

In this paper there is also given another proof of Theorem 2.1 due to E. Peschl,
[8], p. 69. The presented proof has been based on a power series representation
in the whole domain of existence of a given function without making use of Koenigs’
result from [3], as it was done by Peschl.

1. Preliminaries

In this part some notations, definitions and various results, which we shall find
of importance in the sequel, have been collected together.

1. The symbols Ju, B[, [, Bl, [, B[ denote, respectively, an open interval,
aclosed one and a left-hand side closed interval of the real line with the end points
o and B.

An open disc with centre [, and radius r, r > 0, will be denoted by K(fo, ).

‘We are allowed to denote a function by a letter or, if it is suitable, by writing
its value for any argument.

Let E be a set in the complex plane. A function q is called univalent in E if
4(Zy) # ¢(C,) for different points ¢ , and £, of E.
A sequence of functions g 5:J = 1,2, ..., uniformly convergent in every bounded

and closed subset of E, is said to be almost uniformly, or in other words, locally
uniformly convergent in E (cf. 21, p. 16; [9], p. 27).
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2. A set E of the complex plane is said to be pseudo-starlike with respect to
a fixed point if there exists a homothetic mapping with centre at that point and
ratio 4, 0 < A <1, transforming £ onto its subset. A set which is pseudo-starlike
with respect to the origin will be called a pseudo-starlike set.

It is easy to verify that every bounded simply connected domain containing
a point {o is pseudo-starlike with respect to that point. It is also obvious that, if
a domain is starlike with respect to the origin, then it is pseudo-starlike. There exist,
however, domains which are not pseudo-starlike, for example, the complex plane
from which a half-straight line p = {{: { = a+t,a> 0, te[0, o[} has been
removed.

3. We denote by S the set of all holomorphic and univalent functions 4 in the
unit disc K(0, 1) which have the expansion

(L1 A(2) = z+4,2*+ ..., ze€K(0,1).
4. Every holomorphic and univalent function b in the unit disc, which has the
expansion
1.2 b(z) = byz+ ..., 0<by <1, zeK(0,1),
and satisfies the boundedness condition
(1.3) |b(z)| <1, z€K(0,1),
is called the bounded in Loewner sense, shortly, bounded function ([7]). The set of

all bounded in Loewner sense functions will be denoted by Sy,. The condition (1.3)
can be written as the inclusion

(14) b(K(©, 1)) = K(O, 1).

5. For any function b € S(;, the sequence of iterates 5"(z) may be defined by
the formulae

1.5) Bo(z) = z, b'(z) =b(b"'(z)), zeK(0,1),n=1,2,..

b" is called the n-multiple iterate of & or, the iterate of b of the multiplicity n. (Fol-
lowing the notation used in [4], upper indices at the sign of a function will denote
the iterates. Exponents of a power of a function will be written after a bracket con-
taining the whole expression for the function.) We can state without difficulty that,
for any n

(16) b(b1(@) = b (b(2)) = Blz+ ..
Let us put
%) Ay = XD ek, 1,0 =1,2,..

b
where b"(z) is defined by (1.5). In view of (1.6) and (1.7) we have that
1.8 AM(z) = 24 ...
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" Therefore, the function (1.7) belongs to the class S and, by the distortion theorem
([9], p. 21), the inequality

(19) 46| < (oo 2 <KOD,

holds for r €10, 1[.
6. Let us take the set

(1.10) 4 = K(0, 1)x [0, co[

of the points (w,?), and denote by € a family of all complex functions ¢ defined
on 4, such that: (i) for any fixed ¢, c¢(w, #) is a Carathéodory function, which means
it is holomorphic with respect to the complex variable w and has a positive real
part, besides, ¢(0,t) = 1; (i) for any fixed w, ¢(w, ¢) is measurable in the sense of
Lebesgue with respect to variable z.

It will be said that a function d e is periodic with respect to the variable t,
shortly periodic, if there exists a positive number T, called the period of ¢, such
that for any w e K(0, 1) and t€ [0, o[, the equality d(w, t+%) = d(w, 1) holds.

7. Let us consider a generalized Loewner’s equation, i.e., the equation

dw
dar
where ¢ is a function of the class € ([5], [9], [12]). Every equation (1.11) is known
to have a general solution ¢(z, 7, 1), (z,7) €4, t€ [z, o[, otherwise called the
characteristic function. This means that, for any fixed z, 7, the function ()
= ¢(z, v, t) is absolutely continuous and satisfies almost everywhere on the inter-
val [z, o[ the generalized Loewner’s equality

(L.11) = —we(w, 1), W,t)ed,

(1.12) %w(t) = —w(e(w(t), t)
and the initial condition

(L13) o(t) = z,

ie.

(1.14) oz, 7,7) = z.

Besides,' the function described above is the only one which satisfies (1.12) and (1.13)
on the interval [z, co[ and, as it is seen, also on a lesser interval [v, TT.
Moreover, for any (z, 7)ed and v < T < ¢ < oo the equality

15 ?(9(z,7,%),T,1) = oz, 7, 1)
holds, )

' Fm@er, for any fixed 7 and ¢, a function a(z) = @(z, 7, #) is holomorphic and
univalent in the unit disc K(0, 1) and satisfies the conditions

(1.16) lp(z, 7,0l <1, ¢0,7,6)=0, ¢(0,7,1)=eD,
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Hence, in particular, every function of the form

1 f(z,1) = (2,0, 1)

is, for any fixed ¢, holomorphic and univalent with respect to the complex variable
zZE K(O, 1); and

(1.18) fz, )] <1, fl0,1)=0, f(0,)=¢"

(comp. [6]; [9], Chapt. VI, Section 6.1; [12], §§ 3, 5).

In the sequel the function (1.17) will be called the simple characteristic function
of (1.11) ([12], § 3).

8. According to the above, we state that every function a(z) = ¢(z, 7, f) be-
longs to the class Si,. Hereby, ¢(z, 7, ¢) is the characteristic function of an
equation (1.11), 7, ¢ are arbitrarily fixed numbers from the intervals [0, oo,
[z, o[, respectively, z is the variable from the unit disc, and a'(0) = e=¢-», In
particular, every function
(1.19) b(z) = f(z, T),
where f(z, ¢) is the simple characteristic function of (1.11), belongs to the class S,
and
(1.20) b'(0) = e T.

T is a fixed number from the interval [0, cof.

9. Conversely, it has been stated that every function b € S, has the represen-
tation (1.19), where T = —1logh’(0), and f(z, t) is the simple characteristic function
of (1.11). More exactly, for every function b e S, there exists a function ce€
such that (1.19) holds, where f(z, ¢) is the simple characteristic function of (1.11)
with the above-mentioned ¢ (cf. [1], p. 2; [10]; [12], § 5).

In connection with the above, for any given function b € S, and the corre-
sponding function ¢ described above, ¢ is said to be the function of representation
for b or, in other words, b has the function of representation ¢ ([12], § 5).

It is remarkable that, in general, there may exist many functions of represen-
tation for a given b.

10. It has been stated that the limit
(1.21) A(2) = limeé'f(z, t)

1-ro0

exists almost uniformly in the unit disc (0, 1) and belongs to the class S for any
simple characteristic function f(z, ) of (1.11) (comp. [2], p. 95; [9], Th. 6.3; [12], § 5).
11. Conversely, any function of the class S has the representation (1.21), where
fiz, 1) is the simple characteristic function of (1.11). More exactly, for every func-
tion 4 €, there exists a function ¢ €€ such that, for the simple characteristic
function f(z, ¢) of (1.11) with the above-mentioned ¢, the representation (1.21) is
valid (cf. [2], p. 95; [9], Th. 6.3; [12], § 5). . .
Similarly to Point 9, for any given function 4 € § and the corresponding func-
tion ¢ described above, c¢ is said to be the function of representation for 4 or, in

- other words, & has the function of representation ¢ ([12], § 5).
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12. Now, we shall show a specific property of a characteristic function of some
gencralized Loewner’s equation, which will play an important role in the proof
of the main result.

Lemma 1.1. Suppose that a function d € § has a positive period T, and y(z, 7, t)
is the characteristic function of the equation

dw

(1.22) T —wd(w, 1), W,t)ed.
Then, for (z,7) €4, te[r,of, k=1,2,..., the equalities
(1.23) ¥(z, THKE, t+kT) = y(z, v, 1),
and

(1.29) »(y(z, 7, 1+kT), T, 1) = 9(z, v, t-+kI)

.are satisfied.
Proof. Let us consider, for fixed z, 7 and k, two functions:

(1) w(t) = "P(Z: 7, t)
and
(i olt) = p(z, T+kT, 1+kI),

where ¢ € [, co[. It results from Point 7 that these functions satisfy almost every-
where the following equalities and the initial conditions:

(iii) —g{w(t) = —o(t)d(e(t),t), o()=:z
and
(iv) —dd?wk(t) = —ay()d (wut), tHET), o) = 2.

In view of the periodicity of d we have that
d(ex(t), t+kT) = d(w(2), 1)

for any ¢t (comp. Point 6). Hence and from (iv) it follows that
d
(\] @ t) = ~ay(1)d(wi(2), 7).

Thferefore, inview of (iii}-(v) and the uniqueness of the function satisfying (iii) (comp.
Point 7) we infer that the function (ii) is identical with (i). This shows that (1.23) is
true.
) I'\Tow, if we replace z by y(z, 7, v+kT) in (1.23) and then apply the basic
identity (1.15) we immediately get (1.24),

In particular, if we put

1179 8z, 1) = v(z,0,1)
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and

(1.19" b(z) = ¢(z,7),

then we have that

(125) b(2) = 8"z, ) = ¥"(z,0,T) = 9(z, 0,nT) = ¢(z,nT) = "%z + ..,
where b" is the n-multiple iterate of b from (1.19°).

In fact, this follows at once by making use of Point 5, Point 8, (1.16), (1.20),
(1177, (1.19), (1.24) and reasoning by induction.

2. Properties of Schroeder’s umivalent functions

At the begining, we shall recall a well known result due to Peschl, [8], p. 69, and
prove it in a somewhat different way.

TugoreM 2.1. For any function b € S¢y, of the form (1.2) there exists a function
G, holomorphic in K(0, 1), vanishing at the zero point and satisfying with b the Schroe-
der functional equation, i.e.,

@ G(b(z)) = b,G(z), zeK(0,1).

Basides, G is univalent and belongs to the class S.

Proof. Let us consider a function b € Sy of the form (1.2) and a normalized
sequence of univalent iterates A™, generated by b of the form (1.7), (1.8). First,
we prove that the sequence (4“) is almost uniformly convergent in the disc K(0, 1)
to a function of the class S. To this aim, it is sufficient to show that the series

@2 AD@)+ Z (A"+D() - AM(), 2K, 1),

is uniformly convergent in K(0, r) for any r €]0, 1[. In fact, on account of (1.2),
(1.6) and (1.7), we get

@9 are) -y = L T8 - o (b(r@)-0(0)

*Bfrr (bt +ba(B"(@)*+ .. —b,b"(2)

00

1 < 1O, [ P@
= ~wi»~~£— Z bk(b"(z))" = "‘l‘)‘g,."ﬁ’ Zbk(bl)k( b}
k=2 k=2
1, e s _
= bm;bkcbok(w @), zeKOD,n =12

Let us remark that, for any fixed r €]0, 1[ and for a given by €]0, 1[, there exists
a number N such that

@.4) B <

=7 5 n>N.
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By making use of (1.9), (2.3) and (2.4) we obtain the inequality

n r 2
. 1 f°ﬂ k 1 (bl"—m)
(29 14"DE -4 < e Z(bi (1_rr>z) = €=

k=2

2
< 2b71 (”(T‘—EF)T) , zeK@©,7,n>N.

Hence, recalling the condition 0 < b; < 1, we conclude that the series (2.2) is con-

vergent in every closed disc K(0, r), r €]0, 1[. This implies almost uniform con-
vergence of the sequence (A™) in the wnit disc K(0,1). In that situation let us
assume that

26 - 6(2) = lim4™(2).

Then, in view of (1.5), (1.6) and (1.7), we can write

@7 AHD(z) = b;’;(lz) - _% b"(gglz)) — %A""(b(z)),

zeK(0,1),n =1,2, ..

If we let n tend to infinity in (2.7), we obtain, by (2.6), the equality of the form
(2.1). This completes the proof.

Let us remark that (2.6) is the only holomorphic function in the unit disc
which satisfies the equation (2.1).

Really, it follows immediately from Koenigs’ result ([3], p. 31; [4], p. 140)
according to which the uniqueness of the holomorphic solution of (2.1) in a neigh-
bourhood of the zero point takes place.

Henceforth, the solution (2.6), described above, of the Schroeder functional
equation (2.1) will be called the Schroeder univalent function. Because of the above
we see the set of all Schroeder functions, if b runs within the class Sy, is a sub-
class of S.

Now, we prove the main result.

THEOREM 2.2. A function of the class S is a Schroeder Sunction if and only if it
has a periodic function of representation.

Proof. At first, assume that a function G is a Schroeder function. This means
that it satisfies the equality

(2.8) G(b(2)) = b, G(z), zeK(0,])
with a function b of the form (1.2). Let us put
29 : T = —logh'(0), T>0.

Next, take the representation
(2.10) b(z) = f(z,¥) = %2+ ..., =z € K(0, 1),
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where f(z, 1), (z, 1) € K(0, 1) x [0, o[ is the simple characteristic function of (1.11)
with a suitable function of representation ¢ (se¢ § 1, Point 9). Next, take a periodic
function d with period T (comp. § 1, Point 6), for example, the function defined by
the formulae

{d(w, t+3) = d(w, t), tel0, o], w €K, 1),

d(w,t) = c(w, 1), te€[0,T],

Further, consider the simple characteristic function g(z, 1), (z, t) € K(0, 1) x [0, oo
of equation (1.22) with d defined by (2.11). Then, it is easily justified that, from
the identity c(w, t) and d(w, r) for t e [0, ], the identity '

(2.12) gz, 1) = f(z, 1), te[0,%]

follows (comp. § 1, Point 7). Now, using (1.25), (2.9), (2.10) and (2.12), we get that,
for any n,

2.13) b'(2) = f(z, D) = &'z, T) = gz, nT) = ez + ...
Therefore, from (1.7), (2.6), (2.8), (2.10), (2.12), and (2.13) it follows that

@.11)

@14) G(z) = lim &%b"(z) = lim &%g(z, nT)
- 00

n—o0 n

where the convergence is almost uniform in K(0, 1).

On the other hand, we know (§ 1, Point 10) that there exists a limit of e'g(z, t)
almost uniformly in K(0, 1), as ¢ tends to infinity, Moreover, the limit belongs to
the class S. Hence, in view of (2.14) and the uniqueness of the limit, we conclude
that

(2.15) G(z) = lim e'g(z, 1), z€K(0,1).

This means that the Schroeder function G has a periodic function of representation,
namely, the one defined in (2.11) (comp. § 1, Point 11).

Conversely, assume that a function G € S has the representation (2.15), where
g(z, 1) is the simple characteristic function of (1.22) with a function of represen-
tation d having a period I,

Let us take the function b defined by the formula

(2.16) b(z) = g(z, %) = e"%z+ ..., z€K(,]1).

It belongs to the class iy (see § 1, Point 8). Now, if we use (1.6), (2.13), (2.15),.
(2.16), putting # = n in (2.15), then we obtain successively that

G(2) = lim e%g(z, nT) = lim "Tb"(z) = €% lim e V%" (b(2)) = €%G (b(2))-
"0 R+ 00 R0

This proves that G is the Schroeder function corresponding to the given function
(2.16). :
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3. Schroeder’s domains

The image of the unit disc K(0, 1) under the mapping by a Schroeder univalent
function is said to be Schroeder’s domain.

Besides, let us utilize the definitions of a pseudo-starlike domain (§ 1, Point 2)
and the conformal radius (inner mapping radius) of a2 domain with respect to
apoint (see [2], p. 32; [9], p. 1D).

In what follows we shall give a geometrical characterization of Schroeder
univalent functions.

TueoreM 3.1. A domain D of the open complex plane is a Schroeder domain if
and only if the following characteristic conditions are satisfied: (i) D is simply con-
nected and other than the whole plane, (ii) D contains the origin, (iii) D has the con-
Sformal radius with respect to the origin, equal to one, (iv) D is pseudo-starlike.

Proof. Let us assume that D is a Schroeder domain. This means that
31 D = G(K(©, 1)),
where G is a Schroeder function which satisfies the equality (2.1) with a suitable
function b € S¢yy. Then, it is easy to verify that D satisfies the conditions (i)-(i)
(cf. (1.1), Th. 2.1, (3.1) and [9], Corollary 1.4, p. 22). Further, if we take h()

= b, {, where b, is defined in (1.2), then, using (1.4), (2.1) and (3.1), we get the
inclusion

D = G(K(0, 1))  G(b(K(0, 1)) = h(G(K(0, 1))) = h(D).

Thus D satisfies also the condition (iv) (cf. § 1, Point 2).

Conversely, suppose that a domain D satisfies the conditions (i)-(iv). According
to (i) and (iv), there exists a homothetic transformation KO =2, 0<2<],
such that
3.2) WD) = D

(cf. § 1, Point 2). Moreover, according to (i), (ii), (iii), there exists a uniquely
determined function G of the class S, such that (3.1) holds (cf. [2], p. 32). Hence,
in view of (3.2), the inclusion

(3.3) h(G(X(, 1)) = G(K(0, 1))

holds. Next, basing ourself on (3.3), we define the function

(3.4 b(z) = 671(h(G(2))) = G (A6G(@2)) = byz+ ..., ze€K(0,]),

where G™* denotes the inverse function of G. Using (3.4), it can easily be verified
that b, = 1 and G(b(2)) = b, G(z) for z € K(0, 1). This means that G is a Schroeder
function. Thus, in view of (3.1), D is a Schroeder domain. :
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