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Introduction

Let f be a holomorphic function in a plane domain D, and let 4 be a positive real
number. We consider the metric induced by the line element |dw| = |f(2)|}dz].
For the special value A = 1/2 it is the metric |f(z)|*/?|dz| which is associated with
the quadratic differential /' (f transforms such that f(z)dz? is invariant). This metric,
first introduced and investigated by O. Teichmiiller on compact Riemann surfaces,
plays an important role for extremal problems in connection with conformal and
quasiconformal mappings. However, most of the basic properties of the metric
and its geodesies as well as the proofs carry over to the general case 4 > 0, except
that one can, of course, no longer speak of horizontal and vertical trajectories: There
are no distinquished line elements for arbitrary A such as dw? = f(2)dz% > 0
(horizontal) and dw? = f(z)dz® < 0 (vertical) in the case A = 1/2.

The area element which corresponds to the line element | f(2)|*dz] is | f(2)|*dxdy,
and it is of special interest to consider the metrics with finite- total area

SS |f(2)|¥dxdy. These are the metrics associated with the space A,;, the analytic
D

functions with finite L,;-norm, 0 < A < 0.
In the sequel, the considerations will mostly be restricted to simply connected
domains and holomorphic f; not necessarily of finite L,,-norm.

1. Local properties of the metric

1.1. For the investigation of the metric and, of course, in order to define it on
a Riemann surface, the line element must be invariant under a conformal or even
just an analytic substitution. Let f be holomorphic in the domain D of the z-plane
ztnd let z = A(Z) be an analytic mapping of a domain D into D. We want to define
Fin D such that, for z = h(3),

@ 1) a2 = |/ dz,

w [323]
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or, equivalently
1/A

A = 1]

dz
dz
Thus, necessarily

@ ©f@) = (@)@

If h is conformal (#'(%) #0 in D) and D is simply connected, one can fix the
argument of A’ and thlls choose a single valued branch of A’*A, Therefore f is
uniquely determined in D, up to a factor of modulus one. Conversely, the function
(2) evidently satisfies the invariance relation (1).

In particular, if 4 = 1/2, fi8) = £ (A())h'*(Z), which is uniquely determined
for any analytic mapping A.

1.2. Just as in the case of a quadratic differential it is possible to introduce,
locally, a natural or distinguished parameter, which allows a particularly simple
form of the weight function f. Let us first consider a regular point z, of the metric,
i.e. a point such that f(z,) # 0. We choose a single valued branch of f*in a neighbor-

hood of z,. The function
z

w=F(z) = { faydt
Zo
has derivative F'(zo) = f(z)" # 0 and hence maps some properly chosen neigh-
borhood U of z, conformally onto a disk |w| < r. The line element of the metric
becomes |dw| = | f(z)|*|dz|, i.e. it is the Euclidean line element in the F-plane. There-
fore, any two points w; and w, in. |w| < r/2 can be joined by a unique shortest
arc, namely the straight line segment- connecting the two points. Tts F~1-image is
the unique shortest arc connmecting z, = F~'(w,) with z, = F~!(w,) compared
with all connecting arcs within the entire domain D.

1.3. Let now z, be a critical point of the metric, i.e. a zero of f. Let z, = 0,
f@) = ayz"+a 2"+ ., a4, #%0,n>1

in a neighborhood of z,. Assume now that {, { = 0« z = 0, is a new parameter,
such that :

f(@dz = g(OVdL = Ag™c,
where 4 is a properly chosen constant. By integration we get

z

¢
4
F@@) = §f(t)‘dt =4 § Pt = g,

Chop;ing A =nl+1 we get the particularly simple representation F(z) = griet,
ze L, ;

On the other hand,

f@ = 4@yt apenz+ ), = 2X(bo+by 24 ...),
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where the bracket is a single valued branch of (g, +a,,,z+ ...)% Therefore

bo b
FG) = 27 2 nziz B L= Mgzt L),
by
%= markFi 0L

We have, necessarily,
ALY TS )
and hence
t=z(co+Crz+ )Y = g a4 d, 224 ., d = chfer+D

The last series clearly converges and provides the conformal transformation we
are looking for. It is therefore possible to introduce a distinguished parameter £
in the neighborhood of a critical point of the metric such that w = F({) = {"+4,
dw = f(2dz = (nA+1)¢"*d¢. Tt is uniquely determined up to a factor of norm
one.

1.4. Using the distinguished parameter we can now find the shortest lines in
the neighborhood of a critical point z,. Let y be an arc joining {; and &,. If [, |
and |{,| are sufficiently small, there is an arc joining ; and {, within |{] <
which is shorter than any arc leaving the neighborhood. We therefore only have
to consider arcs y in |{| < g, and without restricting the generality we can assume
¢, and w; = F(f,) to be on the positive real axis. The sectors 0 < argl
< n/(nA+1), 0 > argl = —m/(nA+1) are mapped onto the upper and lower half
circles respectively. It is mow easy to realize that in the w-plane (where the length
element is the Euclidean element |dw|) the shortest line is the straight line segment
between w; and w,, if {, is in one of the closed adjacent sectors, and it consists
of the two radii with endpoints w, and w, in all the other cases. The second state-
ment follows, because any curve y joining ¢, with {, has to cut one of the radii
argl = +m/(nd+1) and its w-image therefore cuts the negative real axis before
it proceeds to w,. We conclude that there always exists a unique shortest connec-
tion between ¢, and ¢,. If this connection consists of two radii, their angle at zero
must be > 7/(nA+1) (angle condition; it is equal to 2c/(n-+2) in the case 4 = 1/2).

2. Trajectories and geodesics

2.1. A curve y: z = p(¢) in D, defined and continuously differentiable in
some open interval of the real t-axis and with non vanishing derivative, is called
a straight arc with respect to the mettic | f(z)|*dz|, if f(y(z)) # 0 for all £ (i.e. y does
not pass through a critical point of the metric) and arg f(y(2))*y’(t) = const for
some (and hence every) continuous branch of f(y(z))*; equivalently, in the integra-
ted form, w = F(y(f)) is 2 straight open line segment in the w-plane. A straight
arc will always be assumed to be parametrized by the arc length with respect to
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the metric |f(2)|¥dz|, which is the Euclidean length on the corresponding rectilinear
segment in the w-plane. (We call it the natural or distinguished parameter.) If
this interval lies on the real axis, the natural parameter is --u--const, u = Rew.

A maximal straight arc, i.e. which is not properly contained in another straight
arc, is called a trajectory. Through a regular point z, of the metric there exists,
in every direction, a uniquely determined trajectory. We get it (in the natural
parametrization) by reversing a local function element F* near z, and continuing z
= F~1(w) along the straight line of the given direction in the w-plane. Since dz/dw
= 1/f(z)* # 0, F~! is locally a conformal mapping. Again assuming, for notational
convenience, that the straight line in the w-plane is horizontal and that the original
function element F satisfies F(z,) = 0, the trajectory is the curve F-~!(u), defined
in some (maximal) open interval —o0 < u#_ < % < Uy < 0. The uniqueness of
the trajectory follows from the local uniqueness, which is guaranteed by the local
homeomorphisms F.

A trajectory ray is the restriction of F~! onto a half line, ¢.2. 0 < 4 < ug,.

A trajectory ray can tend to a zero of f, in a well determined direction (as is
seen using the distinguished parameter in the neighborhood of the zero). It is then
called a critical, otherwise a regular, trajectory ray. If a trajectory contains at least
one critical ray, it is called critical itself.

A geodesic y: z = y(t) is a maximal locally shortest line. The latter means
that the image of the interval [t,, #,] is shortest, if #, and ¢, are sufficiently close
to each other. A geodesic can again be parametrized by the arc length in the metric
| de. :

A trajectory is an open subarc of a geodesic. If one of its rays tends to a zero
zy, the geodesic continuation at this point is to a certajn extent arbitrary; it only
has to satisfy the angle condition, which means that both angles between the two
arcs have to be > w/(nA+1). The extreme continuations to the left and to the right
are uniquely determined.

A geodesic ray which does not tend to the boundary of D must have infinite
length. For, let it be defined in 0 < ¥ < ue, 4 being the natural parameter, and
let u, — teo, y(un) = 2, — z€ D. If z is a regular point, it has a neighborhood U
(a disk in the metric |f(z)|*|dz|) such that every geodesic arc which has a point
in common with U can be prolonged to dU. Therefore there is a positive number d
such that every subarc of a geodesic which passes sufficiently near z contains an
interval of length at least d, and hence u, is contained in a horizontal interval Z, of
the same Euclidean length. Without restricting the generality we can assume that
the intervals I, are disjoint, hence ., = co. But the same argument works for a
critieal point z, as is seen using the distinguished parameter near z.

.2.2. Terorem (Uniqueness of geodesic connections). Let f be holomorphic in
asimply connected domain D. Then, any two points z, and z, of D can be joined by
at most one geodesic arc with respect to the metric | f(z)|*|dz|.
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Proof. The proof rests on the argument principle and is in fact the same as
Teichmiiller’s original proof for quadratic differentials.

Let y be a simple geodesic polygon, i.e. a Jordan curve with finitely many
distinguished points (vertices), the sides of which are geodesic arcs (the analogue
of a Euclidean polygon). But it is convenient to count also the zeroes of £ on y as
vertices. Therefore the sides of the polygon are in fact straight arcs: argdw =
arg f(2/'dz = Aargf(z)+argdz = const along any side.

The argument principle applied to f and the interior Dy of y (with possible
zeroes of f on the boundary) yiclds

oo = T T
(3) é‘v,c“gdﬂ"gf(z) = nt ) oy o
where the n; are the orders of the zeroes of f in Dy, while the ny > 0 are the orders
of the zeroes of f at the vertices z, of y, with 6, the interior angles between the
adjacent sides. The integral S is to be understood as the sum of the integrals along the
v
sides y; of . This integral can now be computed, using darg f(z)'dz = Ad(argf(2))+
+d(argdz) = 0 along each side of y. Moreover,
“) S d(argdz) = Z S d(argdz) = 21:-—2 (n—6)).
v 7oy J

Multiplying (3) by 2w and adding it to (4) gives
0= 27:12 n+A Z nj0,+27c+2 6;—7)
7 7 7
=2l an'I'ZTC-I-Z {Gn;+1)0,—=}.
i J

We conclude that 2mc+ . {(An;+1)6;,— 7} < 0, hence
7

® 3 {r— (10} > 2r.
J

Let now y, and y, # ¥, be two geodesic arcs connecting z; and z;. By passing
to subarcs, if necessary, we can assume that the two arcs together form 2 simple
closed geodesic polygon. The two interior angles 6, and 0, at z, and z; respectively
are positive, as straight arcs with a common endpoint and zero angle coincide, At
all the other vertices the angle condition for geodesics holds, i.e. (A +1)0; > .
Therefore, on the left hand side of inequality (5), all the terms are smaller or equal
to zero, except for two which are strictly less than =, so the sum is smaller than
2=, a contradiction.

2.3. There are several

COROLLARIES. (a) For a holomorphic f in a simply connected domain there are
no closed geodesics: The angle condition would hold everywhere or, z‘mqther argu-
ment, any two points on it would be connected by two different geodesic arcs.
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(b) There are no geodesic loops. This means that no geodesic can intersect
itself (the angle condition would hold everywhere except for one point).

(c) Two different geodesic rays starting at the same point evidently cannot meet
again. A similar result is the following: Let § be a closed straight arc with (regular)
endpoints z; and z,, and let y, and y, be trajectory rays with initial points z,
and- z, respectively and forming a right angle with f. Then y, and ¥, cannot meet,
Otherwise there would be a first intersection z, and the respective subarcs would
form a simple closed polygon with inner angles 7/2 or 3x/2 at z, and z, and 6, > ¢
at zo. Here, n; = 0 at every vertex, and thus inequality (5) would be vexed. Bui
the argument works just as well for geodesic arcs if the inner angles at zy and z,
satisfy 0;(Anmy+1) > ©f2, j = 1,2.

(d) Any two points.zy and z, in D can be joined by at most one shortest line (be-
cause it is necessarily a geodesic).

The following is less immediate.

(¢) TaEOREM. Let f be holomorphic in a simply connected domain. Then, any
geodesic ray y with respect to the metric | f(z)|*|dz|, A > 0, tends to the boundary.

Proof. Let y be a geodesic ray which does not tend to the boundary of D.
Let it be parametrized by the natural parameter ¢, 0 < ¢ < oo (i.e. the arc length
with respect to the metric |f(2)[|dz|), = O corresponding to its initial point z,.
Then there is a sequence of values £, t co such that z, = y (#,) tends to some point
zeD. Let U be a closed disk around z (with respect to the natural parameter),
As y is maximal, we can assume (by passing to a subsequence, if necessary) that
the subarc between any two consecutive points z,, z,,, leaves U. On the other hand,
if z, and z,,; are sufficiently close to z, they can be joined by a shortest, hence
a geodesic arc « which stays in U. This contradicts the uniqueness theorem.

2.4. Tt is of course not true that two arbitrary points z; and z, in D can be joined
by a shortest arc, as f = 1 in a non convex domain shows. But if one only con-
siders connecting arcs within a fixed geodesic polygon, then there always exists
a unique (relatively) shortest connection. The same is true (for an absolutely shortest

connection) if the boundary of D is further away from. one of the two points than
the other point.

TerorEM (Existence of shortest comnection). Let z, and z, be two arbitrary
points in D, and let yo be a simple closed geodesic polygon (the sides are straight
arcs) containing z, and z, in its interior Dy, with Dy < D. Then there is a unique
shortest connection y between z, and 2z, in Dy,

Proof. The proof proceeds as in [2] for the metric associated with a quadratic
differential. It is easy to see, by local considerations (using the distinguished para-
meter), that the theorem holds for any two points in 50 which are sufficiently
close to each other. We now start with a minimal sequence (y,) of connecting arcs.

Let a, =,§ @z, ay — ay = l(n)fS |f(2)|"dz|, where the infimum is taken over
" v} ¥

iom®
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all rectifiable arcs connicting z, and z, within D,. Let N be a fixed number such
that any two points in Dy of distance a/N, where a > a, for all , can be joined by
a unique relatively shortest arc in Dy . Subdividing the parameter interval 0 < ¢ <a,
for y, into N subintervals of equal length, we can choose a subsequence of (y,)
such that the images of the subdividing points converge. Connecting their limits
by relatively shortest arcs in D clearly provides a shortest connection y of z, and
z, in D,. If ' is another shortest connection, we can proceed as before to show
that y = y'. Of course, the angle condition can now be vexed at a vertex of y,.
But the change of the angle by the obstacle y, is such that the interior angle of
a closed polygon is magnified, which even strengthens the inequality and hence the
sontradiction.

In this theorem, D does not necessarily have to be simply connected, as D, is.
But in the addendum in the introduction of this section D must be simply con-
nected. The curves y, of the minimal sequence then stay in a compact subset, which
assures the convergence.

2.5. COROLLARY. Let f be holomorphic in a simply connected domain D. Then
for the metric |f(2)|*|dz|, every subarc of a geodesic is the unique shortest connection
of its two endpoints.

Proof. Let y be a geodesic arc connecting z, and z,, and let y, be a simple
closed geodesic polygon the interior D, of which contains y (such a polygon can
always easily be constructed). There is a relatively shortest connection 9’ of z; and
z, in Do. As y and 3’ are both relative geodesics in D, (¥ is an absolute geodesic,
hence a fortiori a relative geodesic), they must coincide, as was shown in the pre-
ceding section.

2.6. A consequence of this result is that, under certain conditions, there is no
geodesic loop starting from a boundary point z, and returning to it. Let D be simply
connected, and let ¥ be such a loop. It necessarily is a simple closed curve. Let z,
and z, be points on y tending to z, and such that the sequence of subintervals
Yo = [21,2;] of y is increasing and exhausts y. Then

lim d(z,2) >yl = § /) dzl,

Zy,Za=rZo »

with d(z;, z,) = inf § |f(2)|*dz], {8} ranging over all curves connecting z; and z,
#
in D;
If lim d(z, z;) = 0, i.e. if there are points z,, 2z, arbitrary close to z, which

ZtyZa =+ Zg

can be joined by arbitrary short arcs S, we get a contradiction, For this again it
is sufficient that z, has a neighborhood U of finite area |U] = 9 | f(2)|**dxdy, or

even that [D,| = SS |f(z)|**dxdy < 0. This follows from an application of the
Dy

Schwarz inequality to the arcs §, between the two ends of y on the circles |z—zo| = 7.
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The length of such an arc is

10) = §If(zo +re®) rdo.

Br

Therefore

120y < v 2 § [ fzo +re) [2rdo),

and the left hand side in the inequality

r

{20 ar < 20 [ e+ re vt < 221D
0

must converge, which shows that I(r,) —+ 0 for a properly chosen sequence r, - 0.

3. Strips of parallel trajectories

3.1. For many purposes it is necessary to consider not only an individual tra-
jectory, but the set of all parallel trajectories through an interval, i.e. a strip of par-
allel trajectories. Let 1 be holomorphic in a simply connected domain D and let
B be a straight open arc. It is the image of a rectilinear open interval £’ in the w-
plane by a branch of F~* defined in an open neighborhood of p'. As D is as-
sumed to be simply connected, 8 is a Jordan arc. We now continue z = F-1(w)
analytically along the straight lines o’ orthogonal to f’. The set S’ of points which
are reached by this continuation process is open. For, if w; o’ belongs to it and
Wo is the common point of «’ and £, then the function element K- which is de-
fined in a neighborhood of w, can be continued to w, along a finite chain of
disks, and the same chain also serves for the continuation along the neighboring
lines. Therefore a neighborhood of w, is also contained in S'. Evidently, S’ is con-
nected. But it is also simply connected, as any closed curve in S’ can be contracted
along the lines o’ to the interval f’ and then along B’ to a point. As it is defined,
z = F~1(w) is single valued on §'. But it is also injective. For, let F~1(w,) = F~(wy)
= zp for wy # w,. If the two points w, and w, are on the same line o', its subin-
terval [w;, w,] is mapped by F-* onto a geodesic loop, which is impossible. If they
are on two different lines af and «, respectively, the intersections wy and wy
of these lines with 8’ are different and so are their images z;, = F~'(w), i= 1,2,
on f. The subinterval [z, z,] of B together with the subintervals [z,,z;] and
[20, 23] of the trajectories o; and a, respectively form a geodesic triangle. The
interior angles on the basis [z, z,] are 7/2 or 3x/2, while the angle on the top vertex
is ‘positive. This is impossible as was shown in Section 2.3 (c). We conclude that
F~1is a conformal mapping of §' onto a simply connected domain S swept out
by the trajectories which cut £ orthogonally. §'is called the strip of trajectories orthog-
onal to f or just the orthogonal strip of B. As it is simply connected and does not

contain zeroes of f, the integral F(z) = § f(2)*dz has single valued branches in S.
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ewo branches can only differ by a factor ¢, k an integer. Therefore any

bArr;}rIlch of F maps S conformally onto a Buclidean sirip which is congruent to §’
and has Euclidean area

SS |F'(z) |*dxdy = SS |f(2)|*dxdy = SSdud@,

s s ki
which is the area of S with respect to the metric | f(z)"|dz|. Let us denote Bucli de.an
length and area with two bars with a subscript E, whereas length and area with
respect to the metric |f (2)*|dz| are denoted without subscript. Then the above

equation says
NENFE

3.2. Let us now assume that
Il = {{ 1f2)|#dxdy and  |Dis = {§ axay
D D
are finite. Let § be a straight interval, and let S be the orthogox}al stri'p of 8.
For convenience of notation we assume that the F-image B of f is vertical and
A
hence §" is a horizontal strip in the w = u+iv-plane. Let 1(2) = |o,] =§v 1/ (@)|Hdz|
be the length of the trajectory o, corresponding to the subinterval af‘,’ o.f the hor.i-
zontal Tmw = v in §'. I(2) is equal to the Buclidean length of this interval, in
our notation I(v) = |op|z. As
{i@do = (audo = ({1 1#dxdy < DI
5 §

is finite, a.a. trajectories orthogonal to § have finite length (in the metric | f(@}dzl).
The same statement can be made about their Euclidean length:

‘ i )
loty |z = Ig(@) = Sldzl = S .ﬁw—i— du, z=F"*w).

o oy

Therefore

dudv,

SzE(v)dv - SSS lj%

and an application of the Schwarz inequality yields

. . i

(S lE(w)dv) < SS dudv - &S

% kY

which is finite. Thus ||z must be finite for a.a. values of o. We conc}:}gg:nﬂﬁ; ;ﬁ:

trajectory orthogonal to any fixed straight intervg.l B h.as finite Euc1 o
There are at most denumerably many critical trajectories orthogonal R

2
dudo < D) \{ axdy < 101" 1Dls,
N

dz
dw

Zeroes.
* two rays can meet at the same zero and fhas at most denumerably many

; i t both
Therefore, in particular, a.e. trajectory which cuts  orthogonally is & cross cu
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ends of which converge to well defined boundary points. If D is the disk, we wil
show that every geodesic ray converges to a boundary point. The same is then true,
by conformal mapping, for any Jordan domain.

3.3. In this section we generalize the length inequality for geodesic arcs ip
the following way: We consider a closed straight arc 8 and orthogonal trajectories
o, and a, through its endpoints. Then the length of any curve y joining a, with
a, is at least equal to |]. The same is more generally true for geodesic ares instead
of just straight arcs,

Trrorem (Divergence principle). Let § be a closed geodesic arc with endpoints
2z, and z,, and let o) and &, be geodesic rays with initial boints zy and z, respectively,
Let the angles between the rays o, and B be at least /2(In+ 1), where n; > 0 is
the order of the zero of f at z;, i = 1, 2. Then the length of any curve ¥ joining a point

1 €8y to a point {; €a, is |y| > Bl

Proof. The proof is the same as in [3] for quadratic differentials, We first
choose a simple geodesic polygon Yo the interior D, of which contains f and y
as well as the two subintervals [z, , ¢ 1] and [z, &,] of a; and a, respectively. D,
contains at miost finitely many zeroes of f. We now mark the two endpoints of g
and the possible zeroes of f on B. Through every other point z of B there is a well
defined trajectory which cuts B orthogonally. Each of its rays either tends to a zero
of fin D, (without leaving Dy) or else has a first intersection with y,. We now
also mark the initial points of these finitely many (relatively) critical rays on f.
By the markings, f is subdivided into finitely many straight intervals Bi. Every
orthogonal trajectory o through a point z € §, has, in both directions, a first inter-
section with y,. The corresponding subinterval & of « is a cross cut of D, which
separates {; and {,. By a final marking of points on # we eliminate those trajectory
intervals & which meet a vertex of Yo- We call the (open) subintervals of § gener-
ated by the markings f; again. Let now Sy be the strip of trajectories orthogonal
to ;. Its top and bottom intervals are straight segments such that its F-image S;
is a parallel strip cut by two rectilinear intervals. At least one of the subarcs of y
in S crosses S, and therefore the length of this subarc in the | /(2)*|dz|-metric
is at least |f,]. As the S, are disjoint, we get, by summing up, [y| = 3. 8] = |f].

Let equality hold. Thus ¥ must cross every S orthogonally in a single arc ¥,
and there can be no other arcs on ¥ except the y;. Let y have a point in common
with 8, and assume, for convenience, that it s the initial point z,. Then, the first
interval f; must coincide with 71, and, by induction, we get y = f. We have thus
reproved the theorem, that a geodesic arc is the unique shortest connection of its
endpoints, :

X yng = G, the two arcs § and ¥ together with the intervals [z;, £;] < o
and [z,, %,] < a, bound a rectangle with respect to the metric | f(2){*|dz| which
does not contain any zeroes of f. Its inner angles at the four corners (where two
arcs come together) are 72(An+1), n > 0 being the order of the respective zero,

while at all the other zeroes the inner angle is equal to 7/(An+1).
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3.4. Using the divergence principle we can extend the corollary of Section 2.5
:0 geodesic cross cuts. Let f be holomorphic in the disk D-and let y be a geodesic
é,o ss cut of D with endpoints z, and z, on 0D. Assume that both points hm-:e Tfeighbor-
hoods Uy of finite area |Uy|. (By Section 2.6 the two points z; cannot comc1df.) Let
7 be any arc joining z; and z,. Then |7 > |y|, and equality can only hold if F=m

Proof. By areasoning similar to the one in Section 2.6 we can show that TR
There are sequences of arbitrarily short circular arcs tending tq zy and z, respecti-
vely and connecting 7 and y. An application of 2.5 tf’ ths subintervals of » and 7
and the corresponding circular arcs gives the inequality || > lyl.~

Let equality hold. Then, $ necessarily is a geodesic. Assume ¥ # y and let z,
be a regular point on p which is not a point of 7. Let § be a sufficiently
short straight arc orthogonal to y through z, which does not meet f As y and §
are cross sections of D, they subdivide jt into domains A, B, 4, B respectively,
where the notation is such that 4 and A4 have a common boundary on dD. Let
fe A, and let z be that endpoint of B which lies in B. Without restricting the
generality, we can assume that the trajectory « orthogonal to 8 through‘ z has well
defined endpoints {; and {, on D. It follows from the divergence principle that
7 # { for i = 1,2. (The length of the segment [z,,2] on f is a lower.bou'nd
for the length of any arc connecting o and y.) Therefore 7 must cut.a at interior
points Z; and Z, which contradicts the uniqueness of geodesic connections.

4. Convergence of the geodesic rays

4.1. In this chapter, f is supposed to be holomorphic in the unit disk D and
of finite L,ynorm, 0 < 4 < o0. In our terminology this means that the area of D
with respect to the metric |f(2)[*|dz| is finite:

1D| = {{1f&) #axdy < oo,
D
In [3] T proved that for 1 = 1/2 (metric associated with a quadratic diﬂ‘.‘erentile)
every non critical trajectory ray converges to a well determined bot_mdary point
of D. As was pointed out to me by R. Fehlmann, the proof contains an error.
Here, that part of the proof is replaced by a different argument which in fact works
for arbitrary 4, and for any geodesic ray. )
For arbitrary points z,, z, € D we define the distance

d(zy, 25) = inf { f(2) Pldz],
oy

where {y} ranges over all rectifiable arcs connecting z, and z, in D. It satisfies the
triangle inequality
d(zy, 2,)+d(z;, 23) 2 d(z1,23).

For, let y,, and y,5 be arcs joining z, to z, and z, to z5 respectively. Then y 3
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= y15+¥2s Is an arc joining z, to z; and for their lengths with respect to the
metric [f(z)/"|dz] we have [z |+[y2s] = 713]. Therefore [yis|+1y25] > d(z,, 2,),
and as y;, and y,3 are arbitrary, this is true for the respective infima.

If |£,] = 1, z, € D we define

d(zy, &5) = lim d(z,,2) = lin; inf{d(z1,2);z€ D, |z—{,] <1},
z=+{3 r—

As the guantity under the limit sign increases with decreasing r, the limit d(z,, L)
exists and 0 < d(z;, {) < co. The set of points £, for which d(z, ,) = o is inde-
pendent of the point z;. It follows from the Schwarz inequality that a.a. points
of the circumference are at finite distance. Let /,(6) be the length of the radial seg-
ment of the annulus 0 < p < |z| < 1 with angle 6. We have

1 1
® = § 1f6ePar < = § e rar,
e Q
hence
2n 2r

0

1
1
1L,0)d6 < —\ \ |fre!®) Prdrdo,
<21

and by Schwarz’ inequality

2r 2r 1
2

(S 1,,(0)de)2 <n lzf § § | fre®) |PPrdrdf < oo,

0

Similarly we define, for two boundary points £, and {,,
8 = liminf(d(zy, 2221, 72 € D, [z = L] < mlza—Lal < 7).

We call this quantity the distance (in the |f(2)|*|dz]-metric) of the two boundary
points {; and £,. Of course, d(;,, £,) = oo is possible.

4.2. LemMA. Let f % 0 be holomorphic in the disk D: |z| < 1 and let d(Cy, {,)
be the distance of the boundary points £, and t,, as defined above. Then, for {; # La,
d(¢19 Cz) > 0-

Proof. Let there be two points £, and £, # {;, |&y] = |£,] =1, such that
d(Z,, L;) = 0. Then, there is a sequence of arcs y, with initial points z{ — £, and
endpoints z{» — [,, the lengths |y,| = §|f(z)/"|dz] of which tend to zero. As the

] R
lengths of the curves y crossing a fixed annulus 0 < ry < |zl < ry < 1have a posi-

tive lower bound, the curves s must tend to |z| = 1 and hence span one of the
subarcs of D determined by the two points {; and ,. Let this arc be denoted by
[:{'1, £). Choose the radii g;: argz = 0;, i = 1,2 of finite length with endpoints
¢ in the interior of this interval. For n_ large enough, the arc y, cuts both f; and
B8:. We find an increasing sequence of subdomains S, of the sector S of D which
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is bounded by the radii §; and the subinterval [£, {,] of [l1, (] The length of
the boundary of these exhausting domains S, is uniformly bounded, and therefore
f belongs to the Hardy class H, of this sector (for the definition see [1]). We con-
clude that f has a radial limit f(¢"’) almost everywhere on [f,, £ Let fe #0
on a set of positive measure. Then, by Egoroff’s theorem, there is a closed set £
of positive measure m(E), a number a > 0 and a number 0 < 0 <1, such that

for g <r <1, 0€E, |f(re")] > a. Therefore |y,| = § |f2)dzl > a* 0 m(E) for

¥n
all sufficiently large n, contradicting |y,| -+ 0. We conclude that the radial limit of
fis zero ae. on [£;, 5], and hence f = 0.(%)

4.3. We are now ready to prove the convergence of every geodesic ray for all
holomorphic functions of finite Lyy-norm in the disk. The proof is partly the same
as in [3], partly based on the lemma of the preceding section.

Tueorem. Let f be holomorphic in the disk D:|z| <1 and let |D

= {{ [f(@)dxdy < 00, 0 < A < 0. Then, every geodesic ray with respect to the
metric | f(2)|*|dz| converges to a point on 8D.

Proof. As a special case, let v be a (non critical) trajectory ray with initial
point z, and suppose that £y and {, # {, are points of its cluster set on 8D. Then,
this set contains at least one of the subintervals of D, [£,, £,] say, with &, and ¢,
as endpoints. Let f, be the orthogonal trajectory through z,. By an arbitrarily
short shift of z, along y we can assume that f, is a convergent cross cut of D,
As proved in Section 2.6, its two endpoints are necessarily distinct. It subdivides
D into two Jordan domains. The curve y and all its orthogonal trajectories § are
contained in a fixed one of them. Moreover, no subray of a trajectory § can con-
verge to an interior point of the interval [{y, {,]. Therefore there exists a positive
number d such that every # (except possibly denumerably many critical ones) has
Euclidean length at least d.

Multiplying f, if necessary, by a factor ', we can assume that y is the image,
by F-{, of the interval ug < # < 1, W = u-+Jv, u—u, being the arc length on y.
The total length of y is u,—uo. We now look at the orthogonal strip S of y
and its Buclidean image S’ by F. Using the notations of Section 3.2, we get (for
all but denumerably many )

du.

d< Jﬂnlﬂ = lﬂ'(u) = S [£IZ| = S g—%
Bu B

Integrating over the finite subinterval [uo, u,] = [y, %) We find
ny

au, = § §

o B

dz

s dvdu.

() It was remarked by Li Zhong that this argument works as soon as there is a dense set
of radii of linite length.
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The Schwarz inequality then yields
uy Uy P 2
Z 1’
o < | § doda-| | ‘W‘ dvdu < |S'lz" 18]z = 18] ISl5 < D],
uy ﬁ; Ug p;‘
Letting #; — U, We got
d*(ue ~uo)* < - (D],
hence u, < co: The trajectory y necessarily has finite length in the metric | f(2)dz)-
In the general case, if y is an arbitrary geodesic ray, we subdivide it into its
straight open arcs y;, bounded by z, and the zeroes of f on . The orthogonal strips
S; of the arcs y; do not overlap, and we can use the above argument for every S;.
We get, by taking the square root,
d(uy—t;q) < VISd VIS »
hence

Q=) = 4 )" =) < 2L IST Y/ S |

Applying again the Schwarz inequality yields

Plug=tof < Y 1S D Sule < D] - .
i=1

=1
The bound is independent of n, therefore

d* (e —tto)* < m* | D,
as before. '
To finish the proof we remark that there exists a sequence of disjoint subarcs
v of ¥ with endpoints 21 — £, 2§ — {,, as both ¢, and £, belong to the cluster
set of ». The lengths of these arcs satisfy ), [y, < ly| < 0o. We conclude d(¢y, {5)
< lim |y,| = 0, contradicting d(¢,, ;) > 0.
N0
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The basic idea of the concept of generalized analytic functions is the following:
the class of holomorphic functions is to be replaced by a wider class in such a way
that fundamental properties of holomorphic functions should retain their validity.
It is possible to define generalized analytic functions of that kind either in C, C*
or in R

In this paper the following approach to the concept of generalized analytic
functions is applied: Instead of the real part » and the imaginary part v of a holo-
morphic function we regard a pair (4, w,), where u is a real-valued function and
o, is a closed differential form depending on # and its first order derivatives. The
aim of the paper is to discuss the interrelation between the periods of w, and the
boundary values of u. This theory generalizes the well-known facts about the de-
pendence of periods of a holomorphic function on the boundary values of its real
part. We remark that the associated partial differential equations of second order
are not necessarily self-adjoint.

1. A concept of generalized analytic functions in R”

In order to define holomorphic functions or their generalizations there are three
ways of approach. Firstly, one can define holomorphic and generalized analytic
functions as vectors (u,, ..., 4,) with components u; fulfilling a given first order
partial differential system of elliptic type (this type of definition includes e.g. the
notion of pseudo-analytic functions in L. Bers’ sense). The second way is to define
harmonic differential forms. This idea consists in replacing the real and imaginary
parts of a holomorphic function by a differential form and its dual. The basic idea
of the third generalization is to replace the imaginary part only by a differential
form. The precise definition is the following:

Let w, be a differential form of degree n—1 depending on a real-valued func-

22 Banach Center t. 11 [337]
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