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The Schwarz inequality then yields
uy Uy P 2
Z 1’
o < | § doda-| | ‘W‘ dvdu < |S'lz" 18]z = 18] ISl5 < D],
uy ﬁ; Ug p;‘
Letting #; — U, We got
d*(ue ~uo)* < - (D],
hence u, < co: The trajectory y necessarily has finite length in the metric | f(2)dz)-
In the general case, if y is an arbitrary geodesic ray, we subdivide it into its
straight open arcs y;, bounded by z, and the zeroes of f on . The orthogonal strips
S; of the arcs y; do not overlap, and we can use the above argument for every S;.
We get, by taking the square root,
d(uy—t;q) < VISd VIS »
hence

Q=) = 4 )" =) < 2L IST Y/ S |

Applying again the Schwarz inequality yields

Plug=tof < Y 1S D Sule < D] - .
i=1

=1
The bound is independent of n, therefore

d* (e —tto)* < m* | D,
as before. '
To finish the proof we remark that there exists a sequence of disjoint subarcs
v of ¥ with endpoints 21 — £, 2§ — {,, as both ¢, and £, belong to the cluster
set of ». The lengths of these arcs satisfy ), [y, < ly| < 0o. We conclude d(¢y, {5)
< lim |y,| = 0, contradicting d(¢,, ;) > 0.
N0
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The basic idea of the concept of generalized analytic functions is the following:
the class of holomorphic functions is to be replaced by a wider class in such a way
that fundamental properties of holomorphic functions should retain their validity.
It is possible to define generalized analytic functions of that kind either in C, C*
or in R

In this paper the following approach to the concept of generalized analytic
functions is applied: Instead of the real part » and the imaginary part v of a holo-
morphic function we regard a pair (4, w,), where u is a real-valued function and
o, is a closed differential form depending on # and its first order derivatives. The
aim of the paper is to discuss the interrelation between the periods of w, and the
boundary values of u. This theory generalizes the well-known facts about the de-
pendence of periods of a holomorphic function on the boundary values of its real
part. We remark that the associated partial differential equations of second order
are not necessarily self-adjoint.

1. A concept of generalized analytic functions in R”

In order to define holomorphic functions or their generalizations there are three
ways of approach. Firstly, one can define holomorphic and generalized analytic
functions as vectors (u,, ..., 4,) with components u; fulfilling a given first order
partial differential system of elliptic type (this type of definition includes e.g. the
notion of pseudo-analytic functions in L. Bers’ sense). The second way is to define
harmonic differential forms. This idea consists in replacing the real and imaginary
parts of a holomorphic function by a differential form and its dual. The basic idea
of the third generalization is to replace the imaginary part only by a differential
form. The precise definition is the following:

Let w, be a differential form of degree n—1 depending on a real-valued func-

22 Banach Center t. 11 [337]
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tion # and its first order derivatives. Xt will be assumed - that the second order
equation

dw, = 0
is a partial differential equation of elliptic type. Then the pair (#, w,) is called a gen-
eralized analytic function, if o, is closed.

ExampLE. If , is linear with respect to u, then it can be written in the form
i(n—i) au d Iy
( w, = (-1 a,j—a;;+b,u+c, Xppr A o AdXyLy,
]

where a;;, b;, ¢; are functions depending on X, ..., x, (the alternating product
dxp A o Adxioy stands for dxggA o AdiAdg AL Adxg_y). The differen-
tial form w, is closed iff u is a solution of the second order equation

e
I

In the case n = 2 from the equation dw, = 0 follows the existence of a function »
such that w, = dv. If one regards multiply connected domains, then o possesses
additive periods on the boundary components, in general. The function f = u+iv
is a solution of the first order system

o O ou
— = az; (—;u +ay, - N —+Dbautcy,

A
ov du ou
752‘= bt et ax, “12T’b1u Cy.

For a;; = 8;;, b; = 0, ¢; = 0 the function f is holomorphic.

2. Canonical representation of generalized analytic functions in the sense above -

A generalized analytic function (4, w,) possesses the so-called canonical represen-
tation if the coefficients b;, ¢; of the differential form w,, defined by (1) fulfil certain
additional conditions. Firstly, it may be assumed without restriction of generality
that each ¢; vanishes identically (see the concluding Remark 5). Consequently, it
is sufficient to regard differential forms w, of type

@, —2(——1)“" ’)(a —a—-+b,u)dx,HA v Ay

J
in a given bounded domain in R". The following conditions are imposed on the
domain G and the coefficients of w, (2 is a fixed real number, 0 < A < 1):

(a) The domain G belongs to 4}; this means that the boundary 0G possesses
representations belonging to %2.

(b) The functions a;; belong to 42(G), the b; belong to 44(G).
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(c) The differential equation dw, = 0 is uniformly elliptic. Thus there exist
constants k,, k, (with 0 < k, < k,) such that for arbitrary 4; the condition

k, Z B < Zaul, <k, Zl%

is fulfilled in the closure G of the domain G.
In order to get the canonical form of w, we write u as the product of two real-

valued functions ¢ and u, u = ¢ . Denote @y by Ay and bio+ay <2 by B.
J

Fixing the function ¢ we can regard the differential form w,, as a new differential
form £, depending on the function p, namely

0, = Z( 1)it- "(Aj ~~~~~~ +B,,u) dxp (A oo Adx_y.

iJj

The new differential form £, can be regarded as a new representation of the
given differential form w,. It is called canonical if the coefficients B; fulfil the con-
dition

0] 95 _

The meaning of this condition is the following. The differential equation d@, = 0
does not contain the function u itself. Each solution x of df2, = 0 satisfies, con-
sequently, the maximum-minimum-principle.

From the definition of the coefficients B; it follows immediately that condmon
(2) is fulfilled iff the auxiliary function ¢ is a solution of the differential equation

2 2
@ Z By ("“ ox, +”"’)‘ 0-
i

Consider the differential equation adjoint to (3):

@ Z ox, (“ 6x,) Zb‘ a, O

Since the coefficient at o vanishes identically, it follows that the maximum-mini-
mum-principle holds for the adjoint differential equation. The Dirichlet boundary
value problem with identically vanishing boundary values possesses, consequently,
only the trivial solution. Using Fredholm’s theorem for second order equations of
elliptic type we see that the Dirichlet boundary value problem with arbitrarily pre-
scribed boundary values possesses a uniquely determined solution for each of the
two equations (3) and (4) (see, for instance, C. Miranda [5]). In particular, there
exists a uniquely determined solution o of equation (3) with the boundary value 1
on the whole boundary of G. This solution o is different from zero everywhere
in the closure G of G. In the case of # = 2 the proof of this assertion was given in

2%
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[71; [9]; the proof is based on the fact that the zeros of u?+grad®u are isolated
(see P. Hartman and A. Wintner [2]). Since the zeros of u*+grad®u are isolated
also in the case n > 3, the proof of the inequality ¢ # O given in [7], [10] remains
valid in the case n > 3, as well.

From the inequality ¢ # O it follows that the differential equation dQ, =
is also uniformly elliptic.

3. The matrix of periods of generalized analytic
functions in R"

We assume that the boundary of G consists of a finite number of components §;,
j=1,...,q. Forany closed differential form £ of degree n— 1 the integral

S Q= z,[Q]

Sy
is called the period of £ on the boundary component S;. By virtue of Stokes’ the-
orem we get immediately
® Dl =o.
7

Let w, be the uniquely determined solution of the boundary value problem
dQ, =0, = &;on S;

The functions u, are generalized harmonic measures of the boundary components S;.
The matrix I7 consisting of the periods of the generalized harmonic measures p; is
called the matrix of periods of the generalized analytic function (x, 2,):

I = (7[2,)).
Together with the differential form £, we inspect the differential form
- 0
ot = Z (=1)ie-p4,, ”557‘1"“1 Ao Adxpg,
ij '

which is called the reduced differential form. Moreover, we define the so-called adjoint
differential form

)
=B dx g A o AdXy .
- axj i i+1 i~
i

The reason for this notation is the fact that the differential equations
dQ,=0 and dQ*=0
are adjoint to each other. Denote by IT* the matrix of periods of £%. Finally, write

S 'er‘iﬂ = C.

Sy

icm
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The matrix
’ Mg = (Cy)
is called the reduced matrix of periods of 2, (we remark that, in general, Qre¢ ig
not closed). Then the following theorem holds:
TuroreM 1. The matrix of periods of the adjoint differential form Q% is equal
fo the transposed matrix of periods of the differential form Q,:
’ I = []lens
For the proof we introduce the so-called mixed differential form
Dy 2 w82 — 0%

It is easy to check that £, , is closed if £, and 2% are closed. Froth the definition
of §,, it follows that
7B ] = 04 Cl— 00y, [Q%].
Applying (5) to !:’,,k,,,l we obtain
0 = Cp—m[24],
and the theorem is proved.

Since the solutions g fulfil the maximum-minimum-principle, the signs of
the Cj, are given by

(©
(see [7]). The same relation is valid for the reduced matrix of periods in the case

of the adjoint differential form. On the other hand, it follows from the theorem
just proved that

sign Cy = (— 1)1

1T = (IT% ),
, Consequently, we have
COROLLARY 1.
signm[Q,] = (— 1)1,

For the specific case of w = |, the differential form £, is equal to
0 == X (= D'=DBdx i A o AdX-y
9]

Therefore in the general case the differential form £, can be written as
| Q= Qe+ ;.

Setting M=y we get
7[R ] = Cet Oy [2,].
Using Corollary 1 and taking j = k we hence conclude that

Cig+m[2,] > 0.
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Now we look for a solution p of d€2, = 0 with constant values on each bound-
ary component, assuming that £2, possesses arbitrarily prescribed periods d; (by
virtue of (5) we assume AZdj = 0). Such a solution u can be represented in the

o= chﬂk'

In order to determine the unknown real coefficients ¢; it is enough to solve the follow-
ing linear algebraic system:

form

Y aml,) = d.
k

Using Corollary 1 we arrive, by means of purely algebraic éonsiderations, at
the following results (see [6], [7], [9]):

COROLLARY 2, For given d; with Zd = 0 there exist solutions p of dQ, =0

with constant boundary values on each boundary component S, such that
[} = d;.

The solution x is uniquely determined if we prescribe arbitrarily one of the
constant boundary values of u.

CoRrOLLARY 3. If all d; are equal to zero, then the corresponding c, have the
same signs.

Applying the maximum-minimum-principle, we obtain as a consequence of
Corollary 3 the following

COROLLARY 4. Let pu be a solution of the partial differential equation d, = 0
with constant boundary values on each boundary component S; of G. If all periods of
9, vanish, then we have either p > 0 or y = O or u < 0 in G.

4. Applications

If ¢ is a solution of the differential equation (3) and u is a solution of d, = 0,
then u = gu is ‘a solution of dw, = 0. Since ¢ > 0 in G and ¢ = 1 on 3G, the
Corollaries 2, 3 and 4 to Theorem 1 are valid for the differential form w, itself.
On the other hand, the maximum-minimum-principle holds for d@, = 0, This
means that each boundary value problem dQz = 0in G, ji = g on 8G, is uniquely

solvable: To the given numbers d; with ; d; = 0 there correspond constants ¢
such that :
aQs = 0,
f=¢ on S,
Q8] = dj—m,[Q;].
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Consequently, the function p = ji+ o fulfils the conditions
dQ, = dQp .4 = dQu +dQp =
p=g+e onS;, mlQ)=d,.

Hence the following theorem holds: ’

THEOREM 2. Let g be given boundary data and d; given real number_s Sulfilling
the condition Zd} = 0. Then there exist constants ¢; and a function u such that the
7

following conditions are fulfilled
dw,=0 in G, u=g+e on 8, mlo)=d,.

The function u is uniquely determined if we prescribe one of the constants c;.

The meaning of Theorem 2 is the following: if we admit the boundary values
g+¢; instead of g, then there exist solutions # of the partial differential equation
do, = 0 fulfilling the side-conditions m;[w,] = 4;.

Using the notation of generalized analytic function in R" we reformulate The-
orem 2 in the following way:

Let g be a given function on the boundary 0G of domain G possessing q bound-
ary components Sy, j=1,...,q. Let d; be given numbers fulfilling the condition
S d; = 0. For given coefficients a;), b, there exists a generalized analytic function

J
(u, w,) such that

(a) the “real part” u assumes the value g+c; on the boundary component S;,
i=1l..q¢

(b) the “imaginary part” ,.possesses the period d; on the boundary componen;
S],j—“‘- 1, s g

The constants are subject to choice. They are uniquely determined if we pre-
scribe one of them.

Now let

. ? 0 Z Kl
L..—..' iz‘,:ax‘~ (au-“é-;;)-}“ ’ bl axl

be a given linear differential operator of second order. Using the coefficients b
of L we define the following differential form (of degree n—1):

Wy, = Z(»])‘(" DhidXipy A o AdX—q.

Then for the differential operator «L the correspondmg differential form' @,y is
given by

Wy, = Z(___]).(n 1)(0,},‘-.‘1“»«6»——) A%y g A o AdXjg .

hi
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We say that L possesses globally Bianchi’s canonical form, it L can be written
as

a d
™ e D (455
s

in the whole closure G. On the other hand, it was proved in [10] that L possesses
globally Bianchi’s canonical form whenever the corresponding differential form
wy, is exact. Consequently, the product «L possesses Bianchi’s canonical form,
if @, is exact. By virtue of the second de Rham'’s theorem a differential form is
exact, if its periods are equal to zero. This means that aL possesses Bianchi’s canoni-
cal form, if (&, w,y) is a generalized analytic function the periods of its imaginary
part are equal to zero, Using the theorems proved above we obtain the following

THEOREM 3. Let G be a given bounded domain in R" belonging to Al. Let,
moreover, L be a given linear, uniformly elliptic differential operator of second order

o ( 8 Z d o

- L i by e,

L Z 0x, (a” 0x; )+ - ! 0x,
L i

where a;; € ¥2(G), by € L(G). Denote by S, k = 1, ..., q, the boundary components

of the given domain G. Then there exists a function o with constant values each bound-

ary component Sy, such that oL can be written globally as Bianchi’s canonical form.

5. Concluding remarks

Remark 1. If the differential equation contains the function u itself, then it
is not always' possible to write the differential equation in Bianchi’s- canonical
form (7).

To see-this, consider the differential equation
® Auty-u=0.

If it were possible to write this equation in the form (7), the adjoint equation
L*[w] = 0 would be a differential equation without v. For L*[¢] = 0 the maximum-
minimum-principle ought to hold. Hence it would follow that the Dirichlet’s bound-
ary value problem for L*[v] = 0 and, consequently, also for the differential equa-
tion (8) itself, is uniquely solvable. This contradicts the well-known_properties
of the differential equation (8). ’ '

Remark 2. For the construction of the canonical representation of generalized
analytic function in R" we need an auxiliary function o fulfilling the partial differ-
ential equation (3). In order to prove the existence of a canonical representation
we must know the following property of the differential equation (3): if a SOIE-
tion ¢ has positive boundary values, then it is different from zero everywhere in G.
The proof of this property is trivial if we know that (3) possesses any positive
solution. Indeed: let u, be a given positive solution of (3). Then 1 = u,u, is a sol-
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ution of (3) iff u, is a solution of a differential equation not containing u, itself,
Therefore the maximum-minimum-principle holds for u, and every Dirichlet’s
boundary value problem is uniquely solvable. In particular, there exists a solution
uy such that u = u, u, has boundary values 1. Since u, # 0 it is » % 0 everywhere
in G, too.

Remarik 3. In the theory of dual differential forms (theory of Hodge, see [4])
the associated partial differential: equations are self-adjoint. But the - concept of
generalized analytic functions defined above includes the ease of non-self-adjoint
partial differential equations too.

Remark 4. The proof of Theorem 1 given above is a modification and simpli-
fication of the proof given in [9]. The special case of two real variables (n = 2)
has been first considered in [7]. A detailed proof for this case is'given also in the
book [11].

Remark 5. Let w, be the inhomogeneous differential form (1). The ‘corre-
sponding homogeneous differential form will be denoted by @,,

I \ i(n=i Ou .
Wy = (—1) a,,mé)-c; +bhuldxi A L oAdx_,.

il

Then
Oy, = Wyt 0y, )
If uy is a specific solution of the inhomogeneous partial differential equation
dw,, =0 '
and if u is a solution of the homogeneous equation
dé, = 0,
then u+u, is a solution of the dfﬁ‘erentia.l equation
dw, = 0.

Using, for instance, fundamental solutions one can construct a specific solution of
the inhomogeneous differential equation. The solution # of the homogeneous
equation can be chosen so as to have

u+tig = g+e¢; on §j,
AWy n,) = dj,
where g and d) are prescribed, Z d; = 0. Therefore Theorem 2 is also valid for in-
homogeneous differential form;.

Remark 6. Instead of domains in R" we may consider domains contained
In a manifold of dimension n.

Remark 7. The problem regarded in Theorem 2 (Dirichlet’s boundary. value
problem with side-conditions) is a so-called free Dirichlet’s boundary value problem


GUEST


icm°®

346 W. TUTSCHKE

(see, for instance, the paper [6] by A.D. Myshkis; non-self-adjoint differential
equations in R? are dealt with in [8]).
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Let G be a domain in the planc. Dirichlet’s boundary value problem for holo-
morphic functions is the following: to determine a holomorphic function in &
for which the real part assumes given boundary values g on the boundary 8G. The
solution is uniquely determined, if one prescribes the value of the imaginary part
at one point zy. Only in the case of simply-connected domains the solution is
necessarily single-valued. But in the case of multiply connected domains the solution
of Dirichlet’s boundary value problem possesses (purely imaginary) periods on the
boundary components ¥, in general. However a single-valued solution to Dirichlet’s
boundary value problem exists, if we replace the given boundary data g on y; by
g+c¢;, where the ¢; are suitably chosen constants.

An analogous assertion holds in the case of linear elliptic systems (see [2]).
The aim of the present paper is to prove that an analogous theorem is valid also
for general non-linear elliptic systems on the plane.

In the second part of the paper we consider systems permitting solutions with
additive periods. For such systems we prove the existence of a solution possessing
arbitrarily prescribed periods on the boundary components. -

We will be concerned with the differential equation

aw N ow
® o = F (z’ “’="a'z”)’

where the right-hand side F(z, w, 4) fulfils the following conditions (4 is a fixed
real number, 0 < A <1, W= (Wy,oeo, Wn)y A= gy ees i)y F= (Fy, ..., B2

(Fiza, w, B)=Fy(z, 0, D) < 1122z, o D bwy=Togl+ D Ihy=Fg]),
J 7

WFC:, w, ) =F (-, i, i)y < Ly llw—1l+La [Ih=Fll3.
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