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(see, for instance, the paper [6] by A.D. Myshkis; non-self-adjoint differential
equations in R? are dealt with in [8]).
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Let G be a domain in the planc. Dirichlet’s boundary value problem for holo-
morphic functions is the following: to determine a holomorphic function in &
for which the real part assumes given boundary values g on the boundary 8G. The
solution is uniquely determined, if one prescribes the value of the imaginary part
at one point zy. Only in the case of simply-connected domains the solution is
necessarily single-valued. But in the case of multiply connected domains the solution
of Dirichlet’s boundary value problem possesses (purely imaginary) periods on the
boundary components ¥, in general. However a single-valued solution to Dirichlet’s
boundary value problem exists, if we replace the given boundary data g on y; by
g+c¢;, where the ¢; are suitably chosen constants.

An analogous assertion holds in the case of linear elliptic systems (see [2]).
The aim of the present paper is to prove that an analogous theorem is valid also
for general non-linear elliptic systems on the plane.

In the second part of the paper we consider systems permitting solutions with
additive periods. For such systems we prove the existence of a solution possessing
arbitrarily prescribed periods on the boundary components. -

We will be concerned with the differential equation

aw N ow
® o = F (z’ “’="a'z”)’

where the right-hand side F(z, w, 4) fulfils the following conditions (4 is a fixed
real number, 0 < A <1, W= (Wy,oeo, Wn)y A= gy ees i)y F= (Fy, ..., B2

(Fiza, w, B)=Fy(z, 0, D) < 1122z, o D bwy=Togl+ D Ihy=Fg]),
J 7

WFC:, w, ) =F (-, i, i)y < Ly llw—1l+La [Ih=Fll3.
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Here ||+ ||; denotes the norm in the space &:(G) (see [3]). Analogously, by I lly.,
we denote the norm of functions possessing Holder-continuous first order deriva-
tives in G. We will need the usual operators Ty and [T, (see IN. Vekua {1.
Denote (see [3]) by @,k the holomorphic solution of the boundary value
problem
Re®Dymy = —Re TeF(+,w,h)  on G,
Im D, mlzo] = =ImTGF(-, w, h)[zo].

The function @y, depending on the pair (w, 4) possesses purely imaginary addi-
tive periods d; on-the boundary components. As regards the dependence of the
periods d; on the pair (w, k) the following auxiliary theorem holds:

AUXILIARY THEOREM. Let d; and dj be the periods corresponding to the pairs
(w, k) and (W, ), respectively. Then there exists a constant such that

d,—dy| < const - [[(w, )y— (%, B)]];.
Proof. Since
NTGF (-, w, )= ToF (W, )llua < Tl [i(w, )= OF, )1,
one can estimate the boundary values of
TeF(+, W, h)=ToF(-, W, h)
and of the first order derivatives of the last expression by ||(w, i) — (%, /;)Ha By
virtue of Schauder’s theorem the norm {|[Re®y,, 5~ Red;, inlli,a can be also esti-

mated by |[(w, B)— (%, ;.
On the one hand, the periods of Im®,,, ,, can be represented by the integral

d, = S-—«——-——aReaq:‘wﬁ’— ds.
kel

An analogous representation holds for d and, consequeantely, for a'j—d, In view of
the estimate for ||Re®,,,,— Re@;, #yll1,2 proved above the assertion follows im-
mediately from the last representation.

On the other hand, for given d; there exists a holomorphic -function whose
real part has constant value on every boundary component ;. This function is
uniquely determined, if it is required that its imaginary part should vanish at a chosen
point z, and, moreover, if one of the constant boundary values of the real part is
zero0. Moreover, the function in question is a linear combination of a finite number
of holomorphic functions (which are connected with the harmonic measures of
the boundary components), and depends on the periods d; continuously. Subtracting

this linear combination from D, 4 one gets a function d)(w_,,, possessing the follow-
ing properties:

(@) Redi(w m. = g-+const on every y,,
(b) Imd’(w wlzol = ¢,
() The periods of Im®,,, 4; on y; are 0, and thus B, ,, is single-valued.
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It is easy to prove that the following estimate holds:
[ Dew, = Pefp 11,3 < const* [|(w, B)—(, ).

Analogously we proceed with the holomorphic function ¥ (see [3]), such that
ReW assumes the prescribed boundary values g on dG. The function 14 possesses
purely imaginary periods on the boundary components. Repeating the construc-
tion (given above) of a holomorphic function with prescribed purely imaginary
periods one gets, finally, a holomorphic function ' fulfilling the following con-
ditions:

(a) Re‘I’ g--const on every y;,

®) IEn'lf [z0] = O,

©) ¥is singleAvaIued

The function ¥ is uniquely determined, if one of the constants is prescribed.
Replacmg ¥ and @, in the definition of the operator T given in [3] by ¥ and
tD(W 1> Tespectively, we define an operator 1 having the following properties:

If (w, k) is a fixed element of T, then w is a solution of the differential equation
(*) and satisfies the conditions:

(a) Rew = g+¢; on vy,

(b) Imwlz,] = ¢,

(c) w is single-valued.

The proof of this assertion is analogous to the considerations in [3], Chapter
11.3. In this way we get the following

TueoreMm 1. Let the constants L, L, be small enough. Then there exists a single-
valued solution w of the equation (x), which is a solution to the following boundary
value problem:

(a) Rew = g+¢; on yy,

(b) Imw[zo] = ¢,
where g and ¢ are given data. The solution is uniquely determined, if one of the constants
¢; is prescribed.

Remark. The limitation of L, can be replaced by a limitation of the diameter
diam(G) of the domain considered (see [3], p. 232).

Now we assume, additionally that the right-hand side F(z, w,h) of the
equation (x) fulfils the condition
(x%) F(z, w-ia, b) = F(z, w, )
for every real «. This means that w-ix is a solution whenever w is a solution. $up-
posing (#+), one can construct solutions of (x) possessing arbitrarily prescribed
purely imaginary additive periods on the boundary components y;. In order to
construct such a solution, the function ¥ constructed above is to be replaced by
a holomorphic multiply-valued function with prescribed purely imaginary additive
periods on the boundary components.

The space in which we look for a solution of (¥) is the space of all functions
w=Py W, where w, is a single-valued function belonging to %3(G). Instead of

23 Banach Center t, 11
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the operator T of [3] we use the operator constructed above. This operator maps
the space under consideration into itself. Hence follows

THEOREM 2. Assume that the right-hand side of the partial differential equation
(%) fulfils condition (xx). Then for given data g, ¢ and d; (where Z d; = 0) there exists
J

a solution w satisfying the following conditions:
(@) Rew = g-+¢; on y;,
(b) Imw[zo] = ¢,
(¢) the period of Im w on y; is equal to d;.
The solution is uniquely determined, if one of the constants c; is prescribed.

It is clear that we need a limitation of L, and L, as an assumption for the
validity of Theorem 2. Again one can replace limitation of L, by limitation of
diam(G).

Denote ||F(+,0,0)||, by M. Using the triangle inequality, we infer from the
second assumption about the right-hand side F(z, w, k) that

HFC- s w, B)lla < M+Ly |Wllz+ Ly |[R][;.
This means that the norm of F(-, w, &) is bounded in a certain polycylinder

—{(W B wlla < Ry, Al < Rz}

Therefore the norms H@(W,,,)H 1,1, and consequently the functions (5(“,,,,,, are
bounded. On the other hand, to the functions ¥ defined above one can add an
arbitrary constant. Choosing this constant sufficiently large we make the constructed
solution w possess a positive real part. This proves (1) the following

THEOREM 3. There exists a solution w of the problem defined in Theorem 2 such
that Rew is positive in G.

Remark. Since w is multiply-valued, the imaginary part is unbounded, in
general,
As a special case of Theorem 3 we get

CoRrOLLARY. There exist single-valued solutions w (i.e. with all periods d; van-
ishing) with a positive real part and constant boundary values on every boundary
component.

For the linear system

._a.?_—-a _g‘i. Ou b
ay =% +a12_§;+ U,

v ou ou
T = Gt “a“y*'l‘bzu

the following stronger result was proved in [2], p. 188:
Let w = u+iv be a solution such that u has constant boundary values on every
boundary component ;. Then u is either positive or negative or vanishes identically.

(Y Here we omit the discussion of the dependence of Ly, L, and M on R, and R;.
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