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1. Introduction

The starting point of this survey is the following classical theorem of Lindelsf ([13],
p. 69): If f+ B*> - R® is a conformal mapping or a bounded analytic fumction of the
unit disc B> having a limit o through a curve terminating at a given boundary point
b € 0B?, then f has an angular limit a at b.

Quasiregular mappings in R", n > 2, have many properties similar to those
of analytic functions in R?, and therefore one of the main themes in the study of
these mappings has been to examine which theorems concerning analytic functions
have their counterparts for quasiregular mappings. For the general theory of quasi-
regular mappings the reader is referred to [7]-[9], and [29], and to the expository
articles [15], [19]. Here we shall present some recent results proved in [23], [24],
[25], and [26], which are counterparts of Lindelsf’s theorem. More precisely, all
the results in the sequel are related to the following problem. We remark that a map-
ping is said to be quasiconformal if it is a quasiregular homeomorphism.

ProBLEM. Let f: B" — R" be a quasiconformal or quasiregular mapping of
the unit ball B", let be 88", E < B", and beE. Suppose that the limit lim f(x)

x-b, xeE
= ¢ exists. Find conditions on E and f which ensure that « is the angular limit of
f at b,

Conditions on the size of the set E will be given by means of the so-called ca-
pacity densities, defined in terms of moduli of curve families, which we shall discuss
at first. The study of the problem above is divided into three cases according as
the mapping f is (a) quasiconformal, (b) locally K-quasiconformal, or (c) bounded
and quasiregular. The main tool in the study of cases (a) and (b) is the modulus
of a curve family, whereas for the case (c) we need a recent two-constants theorem
of Rickman ([16],.4.22), based on some results of Maz’ja [11].
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The classes of quasiconformal and quasiregular mappings of B contain as
proper subclasses, when the dimension 7 = 2, the classes of conformal mappings
and analytic functions of B2, respectively (cf. [15], [19]). It seems that some of the
results, in particular those in (a) (cf. Theorem 3.1), are new even in the special
case n = 2. A unified discussion of the topic of this survey is contained in [33].

2. Preliminary results

In this section we shall introduce some notation and terminology and discuss some
properties of the modulus of a curve family, on which the results in Sections 3 and
4 are based.

n
2.1. For xe R", n > 2, we write x = (X3, ..., X) =121x,e;, where ey, ..., e,

is the standard orthonormal basis in R". For r > 0let B'(x,r) = {y e R": |p—x]
<r}, S*(x,r) = 0B*(x,r), B"(r) = B"(0,r), S""*(r) = 9B"(r), B" = B*(1), and
S"-1 = gB". I r > s > 0, then we write R(x, r,s) = B"(x,)\B"(x, 5) and R(r, 5)
= RO, r,s). '

2.2. Quasiregular mappings. Let f: B" — R" be a continuous mapping in the
Sobolev space Wi ,.(B"). Then fis said to be K-quasiregular (K-qr) if there exists
a constant K € [1, o) such that.the following two inequalities hold a.e. in B":

max | f'(x)h|" < KJy(x),
| =1

I < K min G

Here J; is the Jacobian determinant of fand f'(x): R" — R" is the linear mapping
f'(X)e; = 3f(x)/0x;, i = 1, ..., n. Note that both f* and J; exist a.e. in B, because
J€ Wi 10s(B™). The mapping f is said to be (locally) K-quasiconformal (K-qc) if it
is a K-qr (local) homeomorphism. The mapping f is quasiregular (quasiconformal)
if it is K-qr (K-qc) for some K € [1, o0). By virtue of important results of Reetnjak,
a non-constant qr mapping is| discrete, open, and sense-preserving. For terminology
and references to ReSetnjak’s work the reader is referred to [7], [29].

2.3. Remark. It follows that a mapping of B? is 1-qr if and only if it is ana-
lytic (cf. [15], [19]). Since, in addition, many properties of analytic functions
have.their analogues for qr mappings (cf. [15], [19]), one can regard the theory of
qr mappings of B” as an n-dimensional counterpart of the theory of analytic func-
tions of B2,

2.4, Modulus of a curve family. Let I" be a family of curves in R". Denote
by m the n-dimensional Lebesgue measure in R”, The modulus of I" is defined by

M) = inf | gdm,

@ Rn
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where ¢ runs through all non-negative Borel functions p: R" - R'U {0} with

sgds > 1 for all locally rectifiable y e I'.
Y

2.5. LemMa. The modulus is an outer measure in the space of all curve families
in R".

The basic properties of the modulus, like Lemma 2.5, can be found in Vaisild’s
book ([18], Ch. 1). If E, F, and G are subsets of R", we write A(E, F; G) = {y:
[0,¢) = G: y continuous, y(0) € £, y(t) - F as t — c}. The exact value of the
modulus can be calculated only for very few curve families. Therefore various esti-
mates are of importance. In the following examples we give some estimates, which
will be used in the sequel.

2.6. ExAMPLES. (1) Let b >a>0. If Ec B"() and F< R'™\B'(h), then
1~n
M(4(E, F; R)) < 0,., (log%) ,
and here w,-; is the (n—1)-dimensional measure of S"~! (cf. [18], 7.5).

(2) Suppose that b > @ > 0 and E, F < R" with " *(F)nE # @ # S™L(F
for a <r < b. By [18], 10.9, there exists a positive constant ¢, depending only
on n such that M(A(E, F; R(b, a))) > c, log(b/a).

(3) The modulus has the following symmetry property (cf. [23],4.3): If E, F < B",
then M(A(E, F; B")) > M(A(E, F; R")/2.

In addition to the lower bounds for the modulus given above, we shall apply
the following lemma, called the comparison principle for the modulus (cf. Nikki

[12], 3.3). The lemma is a modification of a result of Martio, Rickman, and Vii-
sald ([8], 3.11).

2.7. LemMA. Let b > a > 0, let Fy, F,, and F, be three sets in R" with Fy,
F,  B(a), F5s = R"™\B"(b), and let I';; = A(F;, F;; R"). Then the following esti-
mate holds:
M) = 37"min{M(I,), M(Ty3), c.log(b/a)}.
Here ¢, is the constant in 2.6 (2).
2.8. CAPACITY DENSITIES. For E = R", x € R", and r > 0 we write
M(E,r, x) = M(4(S"1(x,2r), B'(x, HNE; R).
The lower and upper capacity densities of E at x are defined by
' capdens(E, x) = liminf M(E, r, x),
s =0

capdens(E, x) = Iil:lsoupM(E, r, X).

2.9. Remark. From a result of Ziemer [27] it follows that for compact E one
can define M(E, r, x) by (cf. [10])

M(E, v, x) = inf { [Vulrdm,
u Ry
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where u runs through all C*(R") functions with sptu = B"(x, 2r) and u(x) > 1
for x € B'(x, )N E.

The modulus inequalities in the following lemma will be the main tool in Sec-
tions 3 and 4. For the inequalities in (1), (2), and (3) the reader is referred to
[18], [14], and [7], respectively.

2.10. LEMMA. Let f: B* — R" be a continuous mapping, let I" be a curve Jamily
in B", and let fI' = {foy: yel}.

Q1) If f is K-qc, then M(D)/K < M(fT) < KM(I).

) If f is K-qr, then M(fI") < KM(D]).

(3) If f is K-qr and the elements of I" are in a Borel set A in B" and N(y, f, 4)
= cardf‘l(y)mA, N(f: A) = sup{N(y,f, A) ¥y ER"}’ and lfN(f; A) < 00, then

M) < KN(f, AM(T).
The cluster set of a mapping f: B" — R" at b€ 0B" is C(f, b) = NAB'N),
u

where U runs through all neighborhoods of b. It is clear that C(F, b) is a non-empty
compact connected set. C(f, b) consists of one point if and only if f has a limit
at b.

2.11. LemMA. Let f: B~ R be qr, let (b) be a sequence in B* with
by - bedB" and flb) -0, and let C(f,b) c 8fB". Fix te(0,1) and write
E = \JB" (b, (1~ |bi[)). Then f(x) ~ O when x approaches b through the set E.
If there exists a number s & (0, 1) such that 1—|b| > s|b~b| for all k = 1,2, s
then capdens (E, b) > D(n, s, t), and here D(n, s, t) is a positive constant depending
only on n, s, and t.

Proof. Suppose that there exists a sequence (a;) in E with a; — b, f(a) — f 5 0.
After relabeling, if necessary, we may assume that a, & B" (Br, t(1—1B ) = B, for
each k. Write I, = A(fB,, 3fB"; fB™). Let I, be the family of the maximal liftings
of the paths in I starting at B, (for terminology, cf. [9], 3.11, 3.12). By 2.6 (1)
and Lemma 2.10 (2) we get

1-n
M(IY) < M(Ty) < KM(T) < Ko,_, (log —1,—) :

Since C(f, b) = @fB" it follows from 2.6 (2) that M) - oo, which contradicts
the inequality above, For the proof of the second part of the lemma we assume
1—|bg| > slb—bel, k= 1,2, ... Then F = (U B" (b, st(1b—b; |)) = E and employing
the notation in 2.8 we obtain by Lemma 2.5 and 2.6 (2) M(E, |b,—b|, b)
Z M(F, |b,—b|, b) 2 c,log(1+st) > 0.

2.12. Remarks. The first part of Lemma 2.11 is based on some ideas of Ba-
gemihl and Seidel [1]. It is easily seen that the condition C(f, b) = 9fB" cannot
be dropped (cf.. [1]; [23], 6.4). If the condition C(f, b) = 8fB" is not assumed, then
one can prove a weaker result of this kind (cf. [11, [25], [33]).
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3. Quasiconformal mappings

A mapping f: B" — R" is said to have an angular limit « at b € 8B if for each
s€(0,1) the following holds: If (b) is a sequence in B" with b, — b and 1—|b;|
> s5|b,—b| for all k, then f(b) — a.

3.1. Tueorem. Let f: B" — R" be qc, let bedB", and Jor >0 let 6,
= capdens (f~*B"(¢), b). If lims;lp S(log(1/e))'~* = o, then f has an angular
limit 0 at b.

Proof. Suppose that this is not the case. Then there exist 2 number s & (0, 1)
and a sequence (be) in B" with by — b, 1—|by| > s|b,—bl, k=1, 2, ..., such that
Sfb) = B # 0. Since f is injective it is obvious that C(f,b) C(f, 0B™) = ofB™.
By Lemma 2.11 there is an integer k, such that if F = kL}Jk B (i, 21— 1Be])),

2]

then fF < R™\B"(f/2) and M(F, b,—b[,b) > D(n,s,)/2=D >0 for all
k> ko. Write I', = A(E,, F; B"). For each &> 0 choose &, k, with M(E,, o,, b)
> 0,/2, where g, = |b,—Dbl. Apply 2.6 (2), 3) and Lemma 2.7 with F,
= E,NB"(b, 0,), Fp = FnB"(b, o), and Fy = S"1(3, 20,) to obtain

(3.2 M(T,) = 27'3 "min {é,/2, D, c,log2}.

By 2.6 (1) we get for £e (0, |8]/2)

] —L/Sll*n
M(f['e)s Wp—y IOg 28 4

which by (3.2) and Lemma 2.10 (1) yields a contradiction unless 8, - 0 when
& — 0. Thus there is, in view of (3.2), a number r, € (0, |8/2) with M(I) > 37"~24,
for € (0, r;), and we get by Lemma 2.10 (1)

I,Bl n-1
O (log»ﬁ) < 3" %Kw,.,

for e € (0, ry). Letting ¢ — O yields a contradiction.

3.3, CorROLLARY. Let f: B" — R" be qc, let be dB", let E < B with beE,
and let lim  f(x) = 0. If capdens(E,b) = 8 > 0, then f has angular limit O at b.

x-+b, xe

Proof. The proof follows from Theorem 3.1, since here 6, > & for all & > 0.

3.4. COROLLARY. Let f: B" — R" be qc, let be OB", let E ¢ B" be a connected
set with b € E, and let f(x) — 0 as x — b and x & E. Then f has angular limit O at b.

Proof. From 2.6 (2) it follows that the condition in 3.3 is satisfied with §
= ¢,log2.

3.5. Remarks. (1) Corollary 3.4 follows also from a result of F. W. Gehring
(I3, p. 21).

(2) There are very thin sets E satisfying cap dens(E, b)) > 0. By a result of
Wallin (cf, [23], 2.5 (3)) it is possible that even the Hausdorff dimension of E
is zero,
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(3) It has been shown in [23], Section 5, that Theorem 3.1 is a qc counterpart
of a theorem of J. L. Doob ([2], Thm 4) concerning bounded analytic functions
(cf. also T. Hall [5], Thm II).

(4) One can show that in the assumptions of Corollary 3.3, the condition
capdens (E, b) > 0 cannot be replaced by capdens (E, b) > 0 (cf. [23], 6.5).

3.6. Remark. With minor modifications of the proof, one can extend Theorem
3.1 to cover the case of boundary-preserving qr mappings as well (cf. [20], Section
4; [22]). A qr mapping f B" — R is said to be boundary-preserving if C(f, 98"
= OfB". It is clear that qc mappings, i.e. injective qr mappings, are boundary-
preserving.

4. Locally K-quasiconformal mappings in space

Throughout the entire section we assume that f: B" — R" is locally K-qc, n > 3,
be dB", and g e (0,m/2). We shall present here a counterpart of Theorem 3.1
for these mappings. The assumption » > 3 is made because the following lemma
of Martio, Rickman, and Viisild ([9], 2.3), essential for the sequel, holds only
for dimensions n > 3 (cf. [9], 2.11).

4.1. LemMmA. There is a constant y(n, K) € (0, 1) depending only on n and K
such that f1B" (y(n, K)) is injective.

4.2. COROLLARY. For every r e (9, 1) there is a constant c¢(n, K, r) depending
only on n, K, and r such that N(f, B*(r)) < c(n, K, r).

We denote by K(b, ) the cone {zeR": (blb—z) > |b—z|cosp}. Here (u|o)

n
is the inner product Z u;v; of vectors u, v € R".
i=1

4.3. THEOREM. Suppose that E < K(b, p)B", b € E, and that lim f(x) = 0.

X—b, xeE
IfAcapg@E(E, b) =6 >0, then f has an angular limit O at b.

Idea of proof. Choose rq € (0, cosg) such that M(E,s,b) = 246/3 for all
s€(,rl. Fix 1> 1 with logd = (8/3w,-;)!/*=". For se(0,r,] let Af(s)
= K(b, ®)nR(b,s, 5/4). Then it follows from Example 2.6(1) that M (EnAf(s),s, b)
2 8/3. The proof now follows from a long calculation, where we use Lemma 2.7,
and from the fact_that there is a constant C > 0 depending only on #, K, @, and
0 such that N(f, 4%(s)) < C for all s € (0, ro} (cf. Corollary 4.2).

4.4. COROLLARY, Suppose that lim J(thy = 0. Then f has an angular limit 0

t=1,1e{0, 1)
at b.

4.5. : Remarks. (1) Theorem 4.3 and Corollary 4.4 fail to hold for n = 2.
fx counterexample is provided by the function g(z) = exp (=(1~2)~#), z € B2, which
Is a gr local homeomorphism having a radial limit O at z = 1. However, the func-
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tion g does not have an angular limit at z = 1, since lim g(z) = o0 when L
z=1,zeL
= {x+i(l-x): 0 <x <1}

(2) It seems to be an open problem whether the assumption E < (@, PNB"
in Theorem 4.3 is necessary (cf. 5.2).

We shall now show that Theorem 4.3 can be improved if the condition
C(f, b) = &fB" holds. For this purpose we shall need the following estimate of
the maximal multiplicity, which is a consequence of Corollary 4.2. This estimate
is sharp when ¢ is fixed (cf. [25], 2.15).

4.6. LemMA. For 22> 2 and se(0,c05p) let A%(s) = K(b, 9)nR(b, s, s/1).
There exists a constant d(n, K, ¢) > O depending only on n, K, and @ such that
N(f, A%)) < d(n, K, p)log L.

The next theorem is a counterpart of Theorem 3.1. Note that here &, has
a meaning slightly different from the one in 3.1.

4.7. TaeorReM. Let E, = K(b, 9)nf~*B"(¢) and 8, = capdens (E,, b) for ¢ > 0.
. n—1 R
If C(f,b) = &fB" and Jinlsglpé','/‘"“"(log—l—) = oo, then f has an angular

Iimit O at b.

Idea of proof. The proof makes use of ideas in the proofs of Lemma 2.11,
Theorem 3.1, and Theorem 4.3. More specifically, one chooses for each ¢ > 0 a num-
ber A, > 2 such that logl, = (8;/3w,~,)Y*~™ and applies the method in 3.1 to
the domains D, = Af,(s,) when s, € (0, cosp) is small. While doing so one applies
Lemma 2.10 (3) and the upper bound N(f, D,) < const: logl, = const. §2/A~™»
(cf. Lemma 4.6). Using some ideas of Gehring and Viisdld ([4], Lemma 8.2) one
can show that there exists a number X > 1 and for each & > 0 a K-qc mapping
h,: R" - R" with h}D, = B". Now one can use 2.10 (1), 2.6 (3) and proceed as
in the proof of Theorem 3.1.

4.8, Remark. The results in this section can be proved, with minor changes,
for such qr mappings f: B" — R", n > 2, that have the following property: There
are numbers p & [1, 0) and re(0,1) such that N(f, B"(x, (1—|x))) < p for
all x e B" (cf. [25]). Locally K-qc mappings of B", n> 3, have this property by
Lemma 4.1. Note that the function g in 4.5 (1) fails to have this property.

5. Bounded quasiregular mappings

In this final section we shall present some counterparts of the results in Sections
3 and 4 for the case of bounded qr mappings of B" when the dimension 7 > 2.
No proofs will be given here, for details the reader is referred to [26]. The methods
in [26] are different from those in Sections 3 and 4 and are based on a local ver-
sion of a two-constants theorem for qr mappings, which Rickman ([16], 4.22)
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recently derived from some estimates of solutions of elliptic differential equations
due to Maz’ja [11].

Throughout this section we shall assume that f: B" — B" n > 2, is a qr map-
ping and b € B". The next result follows from a theorem of Martio and Rickman [6].

5.1. LemMA. If the radial limit  lim  f(th) = u exists,

then f has a
1, 1e(0,1) S n angular

limit o at b.

5.2. Remark. It has been an open question whether, in the assumptions of
Lemma 5.1, the limit along the radius terminating at b can be replaced by a limit
through a curve in B” terminating at . This question was recently answered in the
negative by Rickman [17], who constructed, for a given 3 3, a qr mapping g:
B" — B" such that there exist infinitely many curves Y1>¥2, ... in B" terminating
at e; € 0B" and distinct points &y, ¢,, ... in R" such that g(x) — oy as x — ¢, and
x & y; but such that g does not have an angular limit at e,. Note that gisnota lo-
cal homeomorphism in Rickman’s construction (cf. Remark 4.5 ).

The following generalization of Lemma 5.1 was proved in [26].

5.3. THEOREM. Let 9 € (0,7/2), E < K(b, ¢)nB", beE, and suppose that
lim f(x) = o. If capdens(E, b) > O, then f has an angular limit  at b.

x—b, xeE

Note that Theorem 5.3 resembles Theorem 4.3, but the assumptions on the
mapping are different in these results.

Rickman’s example, where none of the curves y; is contained in a cone K(e,, @),
shows that the non-tangentiality condition E c K(b, p) in Theorem 5.3 cannot
be dropped when the dimension 7 > 3. On the other hand, it is possible to drop
the mentioned condition for all dimensions n > 2 if the set E contains 2 piece
of an (n—1)-dimensional surface which has certain regularity properties at b (cf.
Rickman [17]). Finally, we mention the following weaker result, which can be
proved by means of Poleckii’s inequality, Lemma 2.10 (2) (cf. [21]).

5.4. THEOREM. Let G be a domain in B" with be G < B*U {b}. If the limit
Hm  f(x) = a exists, then also  lim f(x) = a.
x—+b, X230\ {5} x-b, xeG\ (b}
5.5, Remark. The boundedness condition in 5.1, 5.3, and 5.4 can be weakened
(cf. [6], [26], [21], [33)). )

5.6. Addendum, Since this paper was submitted for publication, several results
connected with this topic have been proved (cf. [31], [32], [30]). In [30] and [32]
results applicable to the coordinate functions f; of a qo or qr mapping f = (i, ..., £)
were proved. A unified treatise of these questions is given in [33]. Granlund, Lind-
quist, and Martio have proved some interesting results in [28),

5.7. Tueorem ([31}). For n> 2 and K = 1 there exists a positive number
= uln, Ky with the following property. Let St B" - B" be a bounded K-qr mapping,
bedB, let B: (0,1) — (0, 1) be a continuous increasing fimction with B(r) — 0 as
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t—0,lety: (0,1] — B"beacurve withy(t) - bast — 0 and1— YO = B@) lp(t)—

—b) for all te (0, 1}. Denote M(t) = ]f(?’(t))—“l: te 0, 1). If M(t) decreases to-
wards 0 as t — 0, and, in addition,
(5.8)

1
i d ——— =
l:lf% AtYlog M@) ®,

then f has an angular limit o at b.

This result implies, in particular, that the function g in Rickman’s example
(cf. 5.2) cannot tend to «; along y; at the rate implied by (5.8). If (5.8) is replaced
by a somewhat stronger assumption, then, as shown in [31], f will be identically
equal to .
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