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Introduction

In [2] the maximum principle for the quotient of bicylinder norms of mappings
having common zeros has been proved. This result, obtained in C2, can relatively
easily be generalized to C" for polycylinder norms.

The object of the present paper is to prove an analogous general theorem for
a wider class of norms, not necessarily polycylinder ones. Norms in the numerator
and in the denominator may differ from each other. This is an essential generaliz-
ation of the result from [2], requiring the application of non-trivial facts from the
theory of plurisubharmonic functions.

In consequence, there have been obtained results of stability type for mappings
having the same zeros, and a lemma of Schwarz type, being in some cases a
strengthening of a result of J. Siciak [5].

1. Notation

In this paper C, C" will denote, respectively, the field of complex numbers and:
the n-dimensional complex space. For z = (zy, ..., Z,) € C" we set

2] = maxiz], llzll = (z >+ ... +|z/)

Besides, for weC"+!, we introduce the notation W = (Wy,...,Ww, and w
= (W', Wn41). Other notations will be taken analogously as in [2].

2. Fundamental notions

Let 2 be a bounded domain in C". In the further part of the paper we shall assume
that

(@) H= (hy, ..., h,) is a mapping holomorphic on £ and continuous on 2;
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this mapping has no zeros on 92, whereas in £ it has isolated zeros in the sense
of [2] (i.e., for any z° such that H(z°) = O there exists a positive integer » such
that all #; (j=1,...,n) have a zero of order » at z° and homogeneous parts of
degree v of these functions vanish simultaneously at z° only; v is called the order
of z9.

(b) F= (fis ..., Sy is a mapping holomorphic on 2 and continuous on £,
If 2° is an isolated zero of order » of H, then each fj (j=1, ..., m) has a zero
of order no less than » at 2°.

(c) L is a real non-negative continuous and absolutely homogeneous function
defined on C™, i.e.,

() L(Au) = |A|L(u), ueC", AleC,
and it is plurisubharmonic as well.

(d) M is a real non-negative continuous and absolutely homogeneous function
defined on C", satisfying the condition

2 M(iz) >0 for z#0eCn
Under the above assumptions the function @ is defined by the formula
3) &(z) = Iim LIFO)M(HE) for zef.
Loz
7e@

3. Auxiliary results

Let §' = {ze®: hy(2) = ... = hy(z) = O}
It is easily seen that the set S’ is finite and that ;
(4) D(z) = L(F(2))/M(H(z)) for zef\§"

Let z° € §” be an isolated zero of order ». Then k; expands in a series of hom-
ogeneous polynomials

© W2 = Qulz—2")
” I=»

in some neighbourhood of z° and the system Q,(£) =0, j=1,...,n, has the
trivial solution only. Let us introduce the notation Q@ = (Q1,y --- Ony)- In view of
the above and condition (2), we have M o Q°(%) # 0 for £ # 0. According to (b),
for every j, f; expands in a series of homogeneous polynomials of the form

® 2 =2P11(Z“Zo), i=1,..,m.
=

Let P* = (Py,, ..., Pp).

PRrOPERTY 1. If z° € 8" is the above-mentioned zero, then there exists a point £*
such that |£*| = 1 and

) D(z°) = L(P"(&%))/M (Q(£™)).
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Indeed, take any sequence of points zF — z° and put |zF—2°| = g, and 2*—2°
= 0. &% It can be seen that |£%| = 1. At the cost of choosing a subsequence we may
assume that £ — &. Of course, |£] = 1. After easy calculations, by the absolute

homogeneity of L, M, and (5), (6), we get
lim L(F)/M (B() = LEO)M (QE)-
On account of the arbitrariness of the sequence (z*), we obtain
D(z°) < sup L(P(&)/M(0*(®).
Let £* be a point at which L o P*/M o Q" attains its upper bound on the boundary
of the polycylinder |&| = 1. Hence
B(z°) < L(P(EM)M(Q°(6%).
For the sequence of points z** = (1/k)&*, we have
Ilcim D(z**) = L(P*(£%)/M(Q" (%) < D(z°).
Hence we get (7).
Directly from (4), (7) and the definition of @ we obtain
PROPERTY 2. The function @ is bounded.

PrOPERTY 3. If z° € §', then there exist a positive integer p, a holomorphic curve
@, and a continuous subharmonic function v, such that
® O(°+ (1) = p(1), ()] #0
Sor t] < 7.

Indeed, analogously as in [2] we prove for n > 2 that, if z° €.S” and @ = Q"(§*),
where [£*| = 1, then there exist a positive integer p and a holomorphic curve ¢(t),
|t] < 7, such that @(0) = &%, and

H(z°+12p(t)) = at™, |p(®)| #0
for [t| < T. We also show easily (cf. [2]) that, if z° is a zero of order » of the func-
tion f;, then £;(z°+ Way 1 W) = Wi, f#(w), where f} is a holomorphic function, while
|Wyp1 W' — sufficiently small. Let F* = (f%, ..., f3). We define the function y by
the formula

w(t) = (1M (Q'E))L(F*(p(t), ")) for [t <.

4. The maximam principle
In this section we shall prove .
THEOREM 1. The function @ satisfies in Q the maximum principle in the sense
that
sup &(z) = sup D(z).
0 782
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Proof. Without loss of generality we may assume that the function @ attains
its upper bound A at a point % € 2, because otherwise there is nothing to prove.

Consider the first case when # € . Then, there exists a point z e O\ such
that @) = M. Indeed, by (8) for z° = ¥ and the assumption made above, the
function, v attains its maximum for ¢ = 0. Consequently, in virtue of the maximum
principle for subharmonic functions, it is constant in the neighbourhood |¢| < 7,
ie., p@t) = M for |t| < 7. It is sufficient to.put z = Z+1tPp(2) for some t #0.

In view of the above, we may assume that the function @ attains its maximum
at a point ¥ ¢ §'. Let H(Z) = (by, ..., bn) = b. Without loss of generality we may
assume that b, # 0. Consider in £ the analytic set S= {ze2: h(2)
= (by/b I (@), ..., hal2) = (ba/b)R (2)}. Let S; be an irreducible component of
the set S in £, containing the point %, and 8, = §,\\%. This set is closed and
connected in @\ S’ since S’ is finite. Consider on this set the function g(z)
= (]b1]/M(b))L((l/hl(z))F(z)).Notethat on §, the functions g and @ coincide.
Consequently, the function g attains at % its upper bound. On the other hand, on
this set the mapping (1/h,)F is holomorphic (/,(z) # 0 for z e§1), that is, g,
as a superposition of a plurisubharmonic function with a holomorphic mapping,
is a plurisubharmonic function on S, 1e., foreveryz € S, g is a plurisubharmonic
function in some neighbourhood (in C") of this point. Then, by the maximum prin-
ciple for plurisubharmonic functions on analytic sets (see [3], p. 272), g(2) = M
on S, locally in some neighbourhood of #. Hence, on account of the connectivity
of §, and the continuity of g, it follows that g(z) = M for z € §;. Since the set
51 is dense in S, therefore, according to the definition of @ as an upper limit,
we also have D(z) = M for z € S,. Hence, furthermore, in virtue of the Remmert
_Stein theorem (see [4], p. 81), we have that &(2) = M arbitrarily close to 0%,
and so, in view of the continuity of @ in the neighbourhood of 82, it attains
its upper bound on the boundary of £. This completes the proof.

5. Stability of mappings and Schwarz’s lemma

Let us first give a simple corollary from Theorem 1.

COROLLARY 1. If H, F, L, M satisfy the assumptions of Section 2, and
L(F@@)) < AM(H(2))

Jor z € 00, then this inequality remains true for z (.

Let us further assume that m = n and that F and H satisfy conditions (a) and
(b) simultaneously. LetS" = {zeQ: fi(z) =0, ..., f,(2) = 0}.

Under the assumptions made at present, directly from Corollary 1 we obtain

TueoreM 2. If 8' = S, F and H have isolated zeros of the same order, and
L(F(z)) = M(H(2)) for z € 38, then this equality remains true for z € Q.
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COROLLARY 2. If S’ is not empty, L=M=]|:|,and |F(2)| = |H{)| forz € 82,
then
F=a°H,

where a is an automorphism of the unit polycylinder, such that a(0) = 0,0 e C".
The proof runs analogously as in [2].

COROLLARY 3. If the mappings F and H possess at least one single zero, L
= M=l 1|, and [IF@| = IH@|| for z & 32, then
F=aoH,

where a is a linear unitary transformation.

Indeed, let z° be the above-mentioned single zero, and r >0 a number so
small that in the ball |jw]| < r there should exist mappings F~1, H~*! inverse to F
and H. Then, by Theorem 2, ||| = ||F o H-1(w)|} for [|w|| < r, besides, FoH-1
is a biholomorphic mapping satisfying the condition F o H-1(0) = F(z°) = 0. Con-
sequently, Fo H' isa linear unitary transformation of C" onto C" (sce [6}, p.
547). Denote it by a. Hence, F(z) = a o H(z) in some neighbourhood of the point
20, and thus in the entire domain Q.

(e) Assume that L and M satisfy conditions (¢) and (d) simultaneously, and
M is a plurisubharmonic function. Let H satisfy condition (a), and M o H(z) =1
for z € 3. Let F be a holomorphic mapping in £ such that the coordinates of
this mapping have at points of the set S' zeros of at least the same order as H.

Tarorem 3 (Generalized Schwarz’s lemma). If L, M, F, H satisfy assumption
(e), and there exists a positive constant A such that L o F(2) < A for ze £, tﬁen
()] L oF(z) < AM - H(z) for zef.

Proof. Note that M o H is a plurisubharmonic function in . Consequently,
we have M o H(z) <1 for ze 0. Take any point z°€Q. f M o H(Z%) =1,
inequality (9) is obvious for z = 2. So, assume that M o H(z%) = 1—¢*, where
0 < &* < 1. Take any number & satisfying the inequality 0 < & < &¥, and an open
set {ze: Mo H(z) < 1—¢}. Let 02 be the component of this set, containing z°.
Then the function @ defined by formula (3) satisfies in 29 the maximum principle,
i.e., B(z) < A/(1—¢) for z€ Q7. Honce L » F(z°) < (4/(1—8)M o H(2). Passing
with & to zero, we get L o F(z°) < AM o H(Z). For z €S, we obtain inequality
(9) directly. This conchudes the proof of the theorem.

(f) Assume that M satisfies the assumptions of the generalized Schwarz's lemma:.
Let us define the set @y = {z€C": M (2) < 1}. This set, as it can easily be veri-
fied, is a bounded domain. Let L satisfy assumptions (d)-

Under the above assumptions there takes place

CorOLLARY 4. If F is a holomorphic mapping in Qu, F(O) =0, and there exists
a constant A such that L « F(2) < A for z € Q, then

10) . LoF(z) < AM(z) for zef.
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Indeed, put in Theorem 3 H(z) = (23, ..., 2,). Then, by the continuity of M,
we have M o H(z) = 1 for z € 02y. From this and Theorem 3 we obtain (10).

This result is some analogue to the lemma of {5] for » = 1.

Assume that L satisfies the same assumptions as M in (f). Then 2, = {ze C":
L(z) < 1} is a bounded domain. Let m = n.

Directly from Corollary 4 we obtain

CorOLLARY 5 (cf. [S]). If F is a biholomorphic mapping of @y onto 2, and
F(0) = 0, then

LoF(z) = M(z) for zef,.

6. Concluding remarks

The results obtained in the preceding section are connected with those of J. Siciak.
In some cases Theorem 3 is a generalization of the lemma of [5]. For example,
when the functions T and § of [5] satisfy, respectively, such conditions as I and
M do, Theorem 3 is stronger than the lemma of [5]. Namely, 2 may be any do-
main, not necessarily circular, the function M o H may possess more than one
zero, in contradistinction to the function S* of {5].
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HEKOTOPBIE MHTEIPAJIBHBIE ®OPMVJIbI B MHOTOMEPHOM
KOMILJIEKCHOM AHAJIHM3E H HUX INPAJOXXEHHA

m. A JAVTOB

it wym Dusuxu Cubup Omd a AH CCCP
Arademzopodox, SU-660036 Kpacnoapex 36, CCCP

B 2T0ii CTaThe MPHBOIHICS 0630D HEKOTOPBIX PafoT KPacHOAPCKEX MATEMATHKOB
© po Teopme (QYHKIME MHOTEX KOMIUIEKCHBIX IIEDEMEHHBIX. B,uecz. paccmMaTpusa-
sorcst 1) nprmoxerre $HOPMAIBHONO DeEIeHHT ypaBHEHAS Ou = f, TIPHTOTHOrO
JUIS IPABBIX HacTeil f, MMEIOMMX POCT KOHEYHOTO TIOPATKA OKOJIO [PAFHIBL 06-
JIACTH, K OIFCAHMIO MHOXKECTBA Hy el Gymrapmit 13 Xnacca Hepawmans-Hxpoant-
sHA; 2) PasuMUHble NPHJIOKEHUS MHOTOMEDHBEIX 2HAJNOrOB sorapudMIrgecKoro
BEIuETa; 3) YTBEDIKIEHME O TOM, UTO TOJBKO rojomopdmbe QyHKNmH mpencra-
BuMbI HHTerpasiom Maprumesm-Boxaepa.
OTMeTHM, YTO B CTAThe HE IPUBOMATCA BCE CCHUIKM Ha IpPEJUICCTBYOMIHME
u 6am3kue paboThl, a TAKOKE IMOJHbIE JOKa3aTeIbCTBA. Bcé 310 MOYKHO HaHTH B OpH~
IHHATGHBIX paGorax, a Taroxe B xmmrax [3] m [5].

1. Hymn romomopdumix ¢dynxnmil xoHednoro mopafxa

Specs Gymyr manokemsl pesyiprater crarsu [12]. Ilycrs D — orpaEWYeHHas
obmacts B C" ¢ TBMKABL IHajKoi rpammmet, T.e. D = {z € C*: g(z) < 0}, rne
o — bynkmas xacca G2 B C", mpraén gradelsp # 0. Hepes Ny(D) (« > 0)
0603HEAUIM KIace rosoMopdHbIx B ofnacti D QyHKimi, AT KOTOPLIX

(1. S[Q(z)l“‘lln‘* [F(2)|doan < .

3necs do, — oyemenT k-MepHoro o6séma JleGera.

B xmnaccruecko#t pabore M. M. Ilxpbamsma [13], [14] fipuseier cne;xy}omui&
pesyneTaT: eciuy D — eMEMYHBLi KpYyr Ha KOMIUIEKCHOH IUIOCKOCTH, TO FIDH
7E0GoM ¢ > 0 JIHCKDEeTHAS TIOCTIE/IOBATEBHOCTs {a;} ToueK HS D ABIACTCH MHO-
>KecTBOM HyJlel dysxmpy B3 N,(D) T0rAa 1 TONBKO TOTAa, KOz

D (-l < oo
i
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