

COMPLEX ANALYSIS BANACH CENTER PUBLICATIONS, VOLUME 11 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1983

A REMARK ON HARTOGS' DOUBLE SERIES

JAROSLAV FUKA

Matematický Ústav CSAV Zitna 25, CS-11567 Praha 1, Czechoslovakia

In a yet unpublished manuscript On Möbius' matrices, in connection with his investigations concerning the critical exponent, V. Pták posed the following question:

Suppose we are given a sequence f_n of functions holomorphic in the disc $D_1 = \{z \in C; |z| < 1\}$. Suppose further, that for each $z \in D_1$ and each $w \in D_2$

=
$$\{w \in C; |w| < 1\}$$
 the series $f(z, w) = \sum_{n=0}^{\infty} f_n(z) w^n$ is convergent. Does it follow

that
$$f(z, w)$$
 is holomorphic in $D_1 \times D_2$ as a function of two complex variables?

In this note we give a negative answer to this question by refining in a natural way the construction given in the example on the pages 11-12, footnote, of the classical work of F. Hartogs [1].

1. First we construct a sequence $\{f_n(z)\}$ of polynomials with the following properties:

(i)
$$f_n(z) \to 0$$
 for every $z \in C$,

(ii)
$$\left| f_m \left(\frac{1}{2^n} \right) \right| < \frac{1}{2^m} \text{ for } m \neq n; \quad m, n = 1, 2, ...,$$

(iii)
$$\left| f_n \left(\frac{1}{2^n} \right) \right| > 2^n \text{ for } n = 1, 2, ...$$

Define for n = 1, 2, ...

$$A_n = \left\{ z \in C; |z| \le n, \text{ Re} z \le \frac{1}{2^n} - \frac{1}{2^{n+2}} \text{ or } \text{Re} z \ge \frac{1}{2^n} + \frac{1}{2^{n+2}} \right\},$$

$$B_n = \left\{ z \in C; |z| \le n, \frac{1}{2^n} - \frac{1}{2^{n+3}} \le \text{Re} z \le \frac{1}{2^n} + \frac{1}{2^{n+3}} \right\}.$$

 A_n , B_n are disjoint compact sets. Let \tilde{A}_n , \tilde{B}_n be disjoint open neighborhoods of A_n , B_n , respectively. The function $\varphi_n(z)=0$ on \tilde{A}_n , $\varphi_n(z)=2_u^{u+1}$ on \tilde{B}_n is holomorphic in $\tilde{A}_n\cup\tilde{B}_n$. Since the complement of $A_n\cup B_n$ is connected, by Runge's theorem there exists a polynomial $f_n(z)$ such that

$$|f_n(z)| < \frac{1}{2^n} \quad \text{on} \quad A_n$$

J. 1964.

icm[©]

and

(2)

$$|f_n(z)| > 2^n \quad \text{on} \quad B_n.$$

We assert that the sequence $\{f_n(z)\}$, $n=1,2,\ldots$, fulfills all the conditions (i), (ii), (iii).

- (i) It follows from the construction of A_n that, for every $z \in C$, there exists a n_z such that $z \in A_n$ for $n \ge n_z$ and, consequently, $|f_n(z)| < 1/2^n$ from (1) for $n \ge n_z$.
- (ii) For m < n clearly $\frac{1}{2^n} < \frac{1}{2^m} \frac{1}{2^{m+2}}$, for m > n clearly $\frac{1}{2^n} > \frac{1}{2^m} + \frac{1}{2^{m+2}}$, hence $\frac{1}{2^n} \in A_m$ for $m \neq n$ and (ii) follows from (1).
- (iii) $1/2^n \in B_n$ for n = 1, 2, ..., hence (iii) follows from (2). 2. Define

$$f(z, w) = \sum_{n=1}^{\infty} f_n(z) w^n.$$

From (i) it follows that the sequence $\{f_n(z_0)\}$, n=1,2,..., is bounded for every $z_0 \in C$. Hence the series f(z, w) converges for every $(z, w) \in C \times D_2$ and the function $f(z_0, w)$ is holomorphic in D_2 for every $z_0 \in C$. Therefore all conditions required by Pták are fulfilled for f(z, w).

3. Now we show that for every fixed $w_0 \in D_2$, $w_0 \neq 0$, the function $f(z, w_0)$ is not bounded and so not holomorphic in any neighborhood of z = 0. Thus take such a w_0 and denote $|w_0| = r_0$, $0 < r_0 < 1$. Choose n_0 so that $1/2^{n_0} < r_0$ and estimate $|f(1/2^{n_0}, w_0)|$ for n = 1, 2, ... From (ii), (iii) it follows

$$\begin{split} \left| f \left(\frac{1}{2^{nn_0}}, w_0 \right) \right| &\geq \left| f_{nn_0} \left(\frac{1}{2^{nn_0}} \right) w_0^n \right| - \sum_{m \neq nn_0}^{\infty} \left| f_m \left(\frac{1}{2^{nn_0}} \right) w_0^m \right| \\ &\geq 2^{nn_0} r_0^n - \sum_{\substack{m=1 \\ m \neq n}}^{\infty} \frac{1}{2^m} > (2^{n_0} r_0)^n - 1 \to \infty \quad \text{for} \quad n \to \infty \,. \end{split}$$

4. From the assertion in 3 it follows that f(z, w) is not holomorphic in any neighborhood of the point $(0, 0) \in D_1 \times D_2$.

Reference

 F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, Math. Ann. 62 (1906), 1-88.

> Presented to the Semester COMPLEX ANALYSIS February 15-May 30, 1979

COMPLEX ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 11
PWN-POLISH SCIENTIFIC PUBLISHERS

THE COEFFICIENT PROBLEM FOR FUNCTIONS WITH POSITIVE REAL PART IN A FINITELY CONNECTED DOMAIN*

HELMUT GRUNSKY

Scheffelstraße 4, D-8700 Würzburg, FRG

We consider the following problem: Let D denote a domain of finite order n of connectivity: set

$$\partial D = \sum_{r=1}^{n} K_{r}$$

where the components K_r are supposed to be proper continua. Without restriction of generality we suppose that $0 \in D$, $\infty \notin \overline{D}$ (closure of D), and that each K_r is an analytic curve. Let $\mathfrak P$ denote the following family of functions:

(1) $f \in \mathfrak{P}$ if and only if (a) f is holomorphic in D; (b) $\operatorname{Re} f(z) > 0$ for $z \in D$; (c) f(0) = 1.

If

$$f(z) = 1 + \sum_{\mu=1}^{\infty} a_{\mu} z^{\mu}$$

is the power series development of $f \in \mathfrak{P}$ near 0, the problem is to characterize the set

$$\mathfrak{C}_m = \{a_1, ..., a_m\}_{f \in \mathfrak{P}} \subset C^m$$

for any m and, in particular, the functions $P \in \mathfrak{P}$ for which

$$a:=(a_1,\ldots,a_m)\in\partial\mathbb{C}_m$$

(extremal functions).

We call \mathbb{C}_m the *m*th Carathéodory-body of \mathfrak{P} , for it was Carathéodory who, for the special case D=U, the unit disc, solved the problem in 1907, [1]. The solution was carried on to a very elegant algebraic characterization of $\partial \mathbb{C}_m$ by Toeplitz, Carathéodory and E. Fischer in 1911, see [8], [2], [3]. We present here a sol-

^{*} A two hours lecture with this title was given at the Banach Center by the author on April 28, 1979. This article gives a modified (§§ (e), (f), (i)) and extended (§ (k)) version.