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and
@ ()] >2" on B,.

- \ye af.sert that the sequence {f,(2)}, n=1,2, ..., fulfills all the conditions
(@, @, ().
(@ It follows from the construction of A, that, for every z € C, there exists an

such that ze 4, for n> n, and, consequently, | £(Z)] < 1/2" from ) for
nzn,.

i} 111 11
(i) For m <n 01331'1}’—27 < oW T Zm for m>n clearly? >+ »__2"‘1”.,

1

hence »Z—H—EA,,‘ for m # n and (i) follows from (1).

(i) 1/2" € B, for n = 1,2, ..., hence (iii) follows from 2.
2. Define

f(z,w) = Zf,.(z)w".

n=1
From (i) it follows t-hat the sequence {f,(zo)}, n = 1,2, ..., is bounded for every
zo €C. I:Ience the series f(z, w) converges for every (z, w) e C XD, and the function
ftzo, w) is holomorphic in D, for every z, € C. Therefore all conditions required
by Ptk are fulfilled for f(z, w). :

3. Now we show that for every fixed w, € D i
] 2, Wo # 0, the function f(z
is not bounded and so not holomorphic in any neighborhoo’d of z =0, ThJ;(s ,t:]):e)
su(fh a wo and denote |wo| = ry, 0 < ry < 1. Choose no S0 that 1/2" < ry and
estimate [f(1/2™s, wo)| for n = 1,2, ... From (i), (iif) it follows

©

f(ﬁ;’ w") = ‘f"ﬂa (W)Ws - Z fon (W) we
m#nng
©
> 2'"’“7"0'-— Z_l_ > (2"0,- )n_l 00 f
&~ om [) or n—= 00.
m#n

4. From the assertion in 3 it f i
) in 3 it follows that f(z, w) is not h ic i
neighborhood of the point (, 0)eD, xD,. " elomorphic i any
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THE COEFFICIENT PROBLEM FOR FUNCTIONS WITH POSITIVE REAL
PART IN A FINITELY CONNECTED DOMAIN*

HELMUT GRUNSKY
Scheffelstrafe 4, D-8700 Wiirzburg, FRG

We consider the following problem: Let D denote a domain of finite order n of con-

nectivity; set
D =YK
r=1

where the components K, are supposed to be proper continua. Without restriction

of generality we suppose that 0 € D, c© ¢ D (closure of D), and that each K, is

an analytic curve. Let P denote the following family of functions:

(1) feP if and only if (a) f is holomorphic in D; (b) Ref(z) > 0 for ze D;
© f(0) =1 '

If

) @) = 14+ ) a2
p=1

is the power series development of f € B near 0, the problem is to characterize the
set .
©)] Cu= {ar, . tnlep = C"
for any m and, in particular, the functions P € P for which
= (ay, ..., 0,) €0C,
(extremal functions).

We call §,, the mth Carathéodory-body of P, for it was Carathéodory who,
for the special case D = U, the unit disc, solved the problém in 1907, [1]. The
solution was carried on to a very elegant algebraic characterization of 0@, by Toep-
litz, Carathéodory and E. Fischer in 1911, see [8], [2], [3]. We prgsent here a sol-

* A two hours lecture with this title was given at the Banach Center by the author on April
28, 1979. This article gives a modified (§ (e), (), () and extended (§ (k)) version.
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ution of the general problem which mainly corresponds to that of Carathéodory
of 1907 (of course in a less explicit form). Considering the intimate connection
of function theoretic problems in a finitely connected domain with the theory of
algebraic functions, which rests on the idea of the Schottky double of D, it might
well be possible to find a characterization of the extremal functions corresponding
to the one given in the papers of 1911, mentioned above.

The method we use was initiated by Z. Nehari in 1948 and 1951 (see [6] and
(7D, but he did not exploit it to its full implications.

Our results may be summed up in the following

TuroreM. 1) G, is convex and compact and 0 € €,, (open core of ©,).

2) If H is a supporting hyperplane of &, in C™ then HNG,, = :II" is a convex
polyhedron of dimensionr with0 < r < m—1.

3) Any PP belonging to a point a ell" adopts each value w with Rew > 0
equally often, n+r < n+m—1 times. If s is the smallest number such that a e IT?,
where IT* is a side of dimension s of IT", 0 < s < r, then P adopts each value n+s
times; in particular (s = 0) there exist functzons PeP such that P(D) conversRew > 0
exactly n times.

4) To each a = (ay, ..., am) € 8C,, there exists exactly one P € P whose power

series at 0 is P(z) = 1+ Y, @,2"+ ...
o . a=1

5): Each point a.€ 0G,, is a point of some IT" (cf. 3)) with r > m—(n+1)/2.

6) For the number e of vertices of II" we have the estimates max(l , m—(n—1)/2)
< e < (g+1)""%g+2), where q and ¢ are defined by m—1 = gn+0,0< ¢ < n.

In Nehari [6] one finds the last statement of 3), in [7] a result corresponding
to the first statement of 3). A complete proof of our theorem, except for 6), has
been given in [5], Chapt. 4, § 5. On the following pages the basic lines of the
proof with some alterations are represented in detail. Other parts are omitted and
the reader is referred to [5]. (Added i ‘proof: see also [9])

Proof. (a) The two properties of €, stated in 1) are immediate consequence
of the same properties of P, 0 e_(i_,,, follows from the facts that the constant 1

m
is in P as well as f(z) = 1+ Z a,2* if the coefficients a, arerestricted to a certain
AL

neighbourhood of 0.

(b) Any hyperplane in C™ (with the complex coordinates ¢, ..., t,) may be
represented as

. H: ReZy,‘t -—c-cstwﬁhzml =1,¢20,

and 1f ¢ > 0, this reprosentatmn is Umque ‘¢ is the distance of H from 0,
¥ := (y)i =1 characterizes, for variable ¢, a set of parallel hyperplanes, covering
a halfspace in C™. For simplicity we suppose y,, # 0; otherwise the results of our
theorem hold with m, instead of mwhere m is the largest number such that Vmg # 0-
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For fixed y there is exactly one ¢ =: ¢, such that H =: H, is a supporting hyper-
plane for €,, and it is easy to see that

4 ¢, = maxRe a
@ o ;7’11 e
So to find the supporting hyperplane corresponding to y, we have to solve the
extremal problem (4), and we want to characterize the corresponding functions

in 9. Instead of (4) we may write
for feP,

® Re(cy— Z W““) i - for some fe& P.

(c) Consider at first the subclass B’ < P with f holomorphic on D. Then the
expression under Re in (5), with any ¢ instead of ¢, may be represented by a residue
integral:

m
© =) yuan =
p=1

where

Q) R() = cfz— Y vul2* +5()
pw=1

o | JORG:
éD

with S holomorphic on D.

We can find the lower bound O for the real part of the right hand side of ©),
using Ref(z) > 0 and 8D if for the differential R'(z)dz
® ) i"R(z)dz >0 on D
holds. To construct such a differential we introduce the following (multivalued)
functions in D:

G: ReG = g, where g is Green’s function with singularity 0.

0: ReQ = g, where g—Re 2 u~1y,z7# is harmonic on D, and ¢(z) = 0 for

z € 8D. Existence and uniqueness of q are proved along the same pattem as for g.
H,: ReH, = h,, b, the harmonic measure of K,,v=1,
Set

n—-1
® Ri= —cG+Q+ ) A H
r=1

with arbitrary constants B, € R. Then
(10) i~1dReR on D.

As i-1dG < 0 on 8D, we may choose c, for a fixed system (B,)i=1, such that (8)
holds. As :

1 s
c= %i— S dR(Z)
aD

6 Banach Center t. 11
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we infer for this case: ¢ > 0. From (6), (3), (1) (b) it follows:

m
Re (c— ) y,Aa,,) = 0.

=1
This remains true for ¢ = ¢, with
¢, 1= infc,

where inf refers to the set of ¢ for which a differential dR with (8) exists; on account

of ¢ >0, the inf exists. So we have for fe ' and, as P’ is dense in P, also for

feP:

an Re }:y,,a,, < .
n=1 .

(d) If there is a function fe P such that equality in (11) holds, our extremal
problem (5) with ¢, = c; has been solved. For the discussion of equality (11) we
note first that our reasoning, starting with. (6), holds also for functions fe P for
which poles (necessarily of first order) on 4D are admitted (regularity everywhere
else on oD supposfd) if each pole coincides with a zero of R’(z)ﬁ. So we consider
the class 3, P’ = P < B, consisting of functions holomorphic on D, a finite number
of poles (depending on the function) admitted on 9D. We denote these poles

for a particular function, by Z,, ..., {x- By an easy application of the residue the-
orem we find, instead of (11):

m k
(12) Re) < cj=1 > bl lo
u=1

x=1

where b, = R'({,) and ¢, = resf({.). Denoting by ‘130 the class of functions in ‘-ﬁ
with Ref(z) = 0 for z € ODN\{L,}e., we see: If

(@) dR, is a differential (7) with ¢ = ¢, and (8), and

() PeP, is a function whose poles are zeros of dR,,
then we have equality in (11). Vice versa, if a differential dR, exists, then (B) is
necessary fo~r equality in (11), if we consider only functions in ‘:I}

If P ey, then P(D) covers each point in the right halfplane the same number
k of times if k is the number of poles on #D. So the general characterization
of these extremal functionsﬂgiven in 3) is proved.

As each function Pe B, necessarily has at least one pole on each K, v
=1, ..., n, consistency of («) and (B) requires that dR, has at least one zero on
each K,.

(¢) The proof that dR, exists and, further, is unique, and that it fulfils the
requirement just stated rests on the following

LemMMA. Forany real c, there exists exactly one differential (7) for whichi~*dR > 0
onK,,v =1, ..,n—1 with equality in at least one point on each of these K,.

icm°®
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Proof. Let i~'dR be any differential as defined by (7) with (10). Then, with
z = z(s), s arc length on 0D:

OR
i1p e
iR (2)dz = i 5 ds

and (see (9)):

n—1
._; OR
13 it = —cu(s)+’v(s)+Zﬁ,u,(s)
with
& . ._ o
=TT YT @ BT T e

where 8/dn means differentiation with respect to the interior normal. We consider
the restriction of the function (13) on any of the boundary components K,, x4
=1,..,n—1, and we set, with § = (B, ..., fu-1)

n—1
(14) 053 ) 1= —eu()+o()+ Y fu(s) for  z() €K,
v=1

We write also u,(z) with z € 0D instead of u,(s), wa(z; f) (with z € K,) instead of
w,(s; f). Further we put
(15) T.(f) 1= mii(nw,l(z; A, wu=1,..,n-1

ZE,

With this notation, the assertion to be proved is: There exists exactly one f© ¢ R"~*
such that

(=0, pw=1,..,n-1
With 7 := (74, ..., To—1) (15) defines a mapping

T=0F), D:R'—RL
We claim that @ is one-to-one. If this has been proved, there is, in particular,
exactly one B with () =0. m

First we show that @ is locally one-to-one, i.e. that its Jacobian detJ 9é.0. Let

s = y,(f) be the parameter of a point z, € K, where w,(s; f) adopts its minimum:

o (vuB); ) = T, w=1,...,n-1
Then the generic element of J is:
) = L (s ) GO+ ).
Here, on account of the minimum property of 7, the first term on the right is 0,
and so
0w,

® = —B'E('I)u(ﬂ); B) = “u(%(ﬂ_)) = u,(z,)

01,
B,

6*
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with some z, € K. But

17
uv(zﬂ) = - a’:: (ZI‘) <0 for y Y23

and

n—1

Zu,(z,,) = —t,(z,) > 0.

v=1
These properties imply, according to a theorem of Furthwingler, [4] (see also [5],
p. 136): detJ > 0.

Further we show that @ is surjective. Suppose the contrary and consider some

7 ¢ 3G(R*1). On account of the property of @ just proved ? ¢ G(R"~1). So
there exists a sequence (72, T — 7 with v = G(fD) such that (5“’)1 :
is not bounded. But as the matrix (u,(z,))2. is not singular for any system (z,);=
we realize by (14) that

= (0’1(21; By ovs Onm1(Zn—13 ﬁ))

is, for any such system, unbounded for unbounded f, and so, also 7 is not bounded.
This contradiction completes the proof that @ is surjective.

Further we show that @ is injective. Assumption of the contrary means: there
is an open arc C in R"~1, connecting two points, say > and @, g % @,
such that ®(C) is closed. @(C) is homotopic to DP(BFW) = P(®) =: ™,
A deformation of @(C) to ™ may be carried through in small steps, each in a domain
which is a one-to-one image under @ of some domain in the space (f). Each step
furnishes a curve C®, C® = C, C® = 7D, if k is the number of steps, and each
C® has a well-defined preimage. This contradicts fU # §,

(f) Consider the differential dR, which we find according to our lemma on
p. 82, if ¢ = ¢;. We claim:

dRy = 0 also for zeK,
with equality in at least one point. For the proof suppose first the existence of a point
{, € K, such that dR,({,) < 0, and choose one zero ¢, of dR, on K, forv =1, ...
.., n—1. Then there exists a function P e §3° exactly with the poles £,, » =1, ..., n
(see e.g. [5], p. 133), and analogously to (12) we find:

m
Re) ya, = cjtbille;| > ¢
p#=1
contradicting (11).
Suppose on the other hand dR,(z) > 0 all over K,. Then, if in (13) §,, »
n—1
=1,...,n—1, is replaced by §,+6, d > 0, we add aterm & Z 1u,(5) = — Ou,(s),
v=1

whif:h is < OonK,, but >0on K,,» = 1,...,n—1. If & is small enough, the re-
sulting differential is still > 0 on K, and itis also > Oon each X,,» = 1, ..., n—1,
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and that means that it is possible to lessen the coefficient ¢ = ¢, of u in (13),
keeping dR, > 0 all over 8D, and this contradicts the definition of ¢,.
So we have proved:

LEMMA. Among the differentials i=* dR, defined by (9) with (8), there is exactly
one, i~tdRy with minimal ¢ = c,, and dRy has at least one zero on each K,, v
=1,.,m

(g) In (d) we have found a characterization of the extremal functions for (4)
as far as they are contained in 513 There remains the problem whether there are
other extremal functions in P (for which our reasoning based on a boundary integral
cannot be applied).

The proof that there are no such functions rests on an approximation lemma,
stating that o is dense in 9. For the details see [3], p. 165-168.

(h) We further have to exploit the characterization of the extremal functions
given in (d). Let j denote the number of different zeros of dR, on &D. By (f) we
know: j = n. An extremal function P has at most j poles, and so P(D) covers the
right halfplane at most j times. We set j = n+r. So, the zeros of dR, supposed
to be known, we know the positions of the possible poles of P and ReP(z) = 0
on oD, the poles excepted. The argument of the residue in a pole is fixed by the
latter requirement (it is the argument of the interior normal on 4D in the pole),
but the modulus is free. So we have j nonnegative constants at our disposal, but
there are n side conditions, n—1 for the singlevaluedness of the resulting function,

" one for the normalization at 0. So the manifold of these functions is of dimension

j—n = r. For the details of this proof, as well as for the proofs of 4) and 5) the
reader is referred to [5].

(i) To prove the statement in 3): r < m—1 note that the zeros of dR, on oD
are of even order, so at least of order 2, whereas each pole of an extremal function
P is of order 1. So, if P® and P® are two extremal functions belonging to
different points of II*, the integrand in ‘

(16) I:= 2111 a& PO (2) PAY2)dRo(2)

is holomorphic on 4D, and as P® and P™ are imaginary (except the poles), i~'dR,
is real on 8D, we find that I is real. To evaluate (16) by the residue theorem we
write:

0

PO(z) = Za}})z“, =1,2; a¥ =1,

#=0

Ri(z) = —}: r4S@, o= e 0.

r=0
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So we find:

m
(17) Im Z V;t+ﬂal(tl)a52) = 0.

2+v=0
We introduce the matrix:

(18) o v2 om0

Yu O ... 0 0
with detl' = £ym+l £ 0. With the notation

*® 1= (a9, a0, ...,aP) = (1,a®)
(17) may be written as:
(19) Im*aMO*q@T = 0,

Let a) vary through r+1 independent points of II™, a®, a®, ... 4™, and set
*a@® = (1,a®), 0 =0, ...,r. We denote the matrix of type (r+1,m+1) with
the lines *a®, ¢ = 0, ..., r by 4. Instead of the right hand factor *a® in (19) we
write '

(20) = (to, t1, -i5 tw) = (fos )
and we set
Al =: B.
Then we have for # II™ the equations
(21 ImB7T = 0,
(22) to=1.
Set B= B'+iB", v = v'+iv", B, B”, 7, ©" real, then (21) is
(23) B'7"T4+B"7'T = 0.

Introducing the (r+1, 2m-+2)-matrix and (2m-2)-vector resp.:

B:= (B,B", %:=("71)
we may write (23) as
4 B =0.
The real rank of 4 is r+1, and the same is true for B and B. So the dimension of
the set of solutions of (24) is 2(m+1)—(r+1) = 2m—r+1. Linear indepen-
dence of vectors 7 and of the corresponding vectors = with respect to the field
of reals are equivalent, and so the dimension of the set of solutions of (21) is
= 2:m-—r+1. (22), ie. 1 =0, tg=1(t =t'+it", t, = 13+ it}) reduces the di-
mension by 2. Consider first the equation 7§’ = 0. It must be proved that it is inde-
pendent from the equations (23). Write these in the form

Bty , 'Y +B"(t5, )F = 0
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and i’ = 0 as
e(ty , ") +n(to, )" = 0
with e = (1,0, ...,0), n = (0, ..., 0). The contrary of our assertion would mean

that the vector (e, n) is linearly dependent on the lines of (B’, B”). But the first
column of B’ is

Re(@@y; + ... +a®y,) = ¢,, =0,..,r

and the last column is Re(a{y,) = Rey,, and the last column of B” is Imy,
in each line. These facts, together with y,, # 0 preclude the above assumption.

That also 7§ = 1 means a reduction of dimension by 1 is trivial. So /-2
= 2m—r—1 is the dimension of the linear manifold represented by the vectors
t satisfying (21), (22) with (20). It contains JJ®™ and therefore: r < 2m—r—1, ie.
r<m—1.m :

(k) For the proof of 6) note that a vertex e of JI™ corresponds to a function
with just one pole on each K, » =1, ...,n. Each pole must be a zero of dR,
on 0D; the system of these zeros is fixed and their number is j = n-+r; suppose

n
Jj, of them are on KX,, v =1, ...,n Then there are 11 j, different extremal func-
r=1

tions with just one pole on each K,, and this is the number of vertices of II™. So
we have the combinatorial problem: to partition a number j > n into n terms:

n

n
j= 2Jjsj,=1forv=1,..,n such that X = [] j; is minimal or maximal res-
y=1 -

v=1

pectively. We claim: the minimum is attained if the partition is as unbalanced as
possible, i.e. for a partition &, with j, = j—n+1 for one index ¢, j, = 1 for » # 1.
The maximum is attained if the partition is as well balanced as possible, i.e. if, with
j=gn+o,qeN,0< p <n,j, = qfor n—pgindices, j, = g+1 for ¢ indices . We
denote such a partition by #,. To prove the first statement consider a partition
not a ¢, and assume (without restriction) that j, is its maximal term:

J=iit+ oy 2<J2 <1
replace it by

J =01+ D+0—Dji+G—D+ ..
Then K becomes
K = i +DG—D K= JiJ2a—(1—j2)—1 K <K.

Jaja Jij2 )
So, if the partition is not #,, it is possible to lessen K. To prove the second
statement, consider a partition not a £, and assume (without restriction) that j,
is its smallest term and that j, > j, +2:

J=Jitis+ ..
If we replace it by
Ji=0+D+ =D+ ...
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K becomes
K = Gt 1)(]2— 1) K= ]'1].2+(J:2._j1)"1
JiJz Ji] 2
This proves our statement.
In our case we have (see 5) and 3)):

K >K.

m+—"—;—1—<j =n+r< m+n—1

and so we find for the number e of vertices of IT®> the estimates in 6).
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Denote by S the class of functions
() f@) = coteiz4c22+ ooy
regular and univalent in the unit disc D: [z} < 1.

Let L(z,, z,) be the curve z=2(s),0 < s < 5§, z1 = 2(0), 2, = 2(3), ].zll <z,]s
for which 2’(s) and r'(s) = |2(s)|’ exist and are continuous except for a finite number
of values of 5. The parameter s denotes the length of the arc. B

By #(zy, 2., f) denote the image of L(z;, z;) by means of fx)es. I_,(zl, z3)
and 2| (21, 22, f) denote the lengths of L(z,, z,) and Z(zy, z,, ), respectively.

TaeoreM L If f(2) € S and |z;] < |22] < 1, then

2| 1=z, |22
1=z |22 < Z(21,22,f) < 1 ,
O ) (T 1721 N /S R (A (P
where the upper estimate. holds true if r'(s) > 0.
For |z| < r <1, one obtains
TueoreM I*. If f(z) € S and |z,| < |z3| <7 < 1, then
- 2 s 1+r
(1% e < Tl < s
(1+n L(zy,2,)
where the upper estimate holds true if r'(s) = 0.
As a corollary we get:
TueoreM L. If f(Z2) € S and |z,| < |z2| < r < 1, then
- 1—lz]lz.]
1—|z4] |z,] f(21)—fzz) 1
D EErarEy S| s Tm A==
where the left inequality holds if the segment joining the poin.ts f(z) .and f(zz) ;z.es
entirely in the image f(D) of the unit disc by means of. 'f(2), while the right inequality
holds if, on the segment joining z, with z,, |2| only increases or only decreases.

<
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