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K becomes
K = Gt 1)(]2— 1) K= ]'1].2+(J:2._j1)"1
JiJz Ji] 2
This proves our statement.
In our case we have (see 5) and 3)):

K >K.

m+—"—;—1—<j =n+r< m+n—1

and so we find for the number e of vertices of IT®> the estimates in 6).
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Denote by S the class of functions
() f@) = coteiz4c22+ ooy
regular and univalent in the unit disc D: [z} < 1.

Let L(z,, z,) be the curve z=2(s),0 < s < 5§, z1 = 2(0), 2, = 2(3), ].zll <z,]s
for which 2’(s) and r'(s) = |2(s)|’ exist and are continuous except for a finite number
of values of 5. The parameter s denotes the length of the arc. B

By #(zy, 2., f) denote the image of L(z;, z;) by means of fx)es. I_,(zl, z3)
and 2| (21, 22, f) denote the lengths of L(z,, z,) and Z(zy, z,, ), respectively.

TaeoreM L If f(2) € S and |z;] < |22] < 1, then

2| 1=z, |22
1=z |22 < Z(21,22,f) < 1 ,
O ) (T 1721 N /S R (A (P
where the upper estimate. holds true if r'(s) > 0.
For |z| < r <1, one obtains
TueoreM I*. If f(z) € S and |z,| < |z3| <7 < 1, then
- 2 s 1+r
(1% e < Tl < s
(1+n L(zy,2,)
where the upper estimate holds true if r'(s) = 0.
As a corollary we get:
TueoreM L. If f(Z2) € S and |z,| < |z2| < r < 1, then
- 1—lz]lz.]
1—|z4] |z,] f(21)—fzz) 1
D EErarEy S| s Tm A==
where the left inequality holds if the segment joining the poin.ts f(z) .and f(zz) ;z.es
entirely in the image f(D) of the unit disc by means of. 'f(2), while the right inequality
holds if, on the segment joining z, with z,, |2| only increases or only decreases.

<
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Under the same conditions the following inequalities hold:
| fz)—fz2) L+r
*
@9 T S| ez a—
These theorems comprise (generalize) the classical Koebe theorem [1]:
TrEOREM K. If f(z) €S and |2l < r < 1, then

l—r , 147
W < |f'(2)] SW.

The bounds in (3*) are reached by the functions f(z) = z/(1—2z)2.
The inequalities (2), for z; = 0, z, = z, yield the Bieberbach theorem:
TueoreM B. If f(z) €S and |z| < r < 1, then

1—~r

<

(3%

2| |z]
4) e < If&@)] < N(=E
and

1 f(2) 1
(Cy)] [(EE < S < A

The bounds in (4) and (4*) are reached by the function f(2) = z/(1—z2)%

In the proof of Theorems I and I* the Koebe theorem and the integral
method of Bieberbach [2] are used.

Proof of Theorems I and I*. Let L(z;, z,) be a curve z = z(s), 0 < s < s, in
the unit disc D, z(0) = z;, z(§) = z,, joining the points z, and z,, lz1] < |23 1.
It can be assumed that z'(s) and |z(s)]’, 0 < s < 5, exist and are continuous except
for a finite number of values of 5. Here s is the length of the arc along the curve.

Let Z(z1, z,,f) be the image of L(z;, z,) by means of the function fz)esS.

The lengths of these curves are denoted by L(z,z,) and Pz, 2, 1),
respectively.

Since L(zy, z;) is_ rectifiable, there exists a positive integer p > 1, such that
(-1 (221~ 1z: ) < L(z1, 2) < p(12 | — |z, ).

Then

® Z@,n.0) = [ Ir@I)lds = {17614z
0 0
(A) Let ¢(2) = p(jz]) = (1+2])/(1—1z)3. In view of the Koebe theorem
{17 @zl < § gz ldz).
o 0

Let £y = 21,83, ooy Lons 23 be pr+ 1 points on L(z,, z,) dividing its arc into
pn equal parts. Then

Oty 0|

& N L
b e L(zy,2,)
UDM:I = i D 906D urs~Gal = lim ;¢(ick|) 12
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Assume that r'(s) = |z(s)' 2 0. Then the numbers || = |z,| < |5 < ...
oo K pnl € pnaal = |z,| and they are in the interval [|z;], [z;]] of length {z,|—
—|z4| > 0. )

Divide the interval [|z,], |2,]] into pn parts, all equal to (|z;{—|z,[)/pn. Since
e =Skl = L(z;,z;)/pn is p times greater than (Izo|=|z1|)pn = of at 11.1051:,
then in every interval consisting of p consecutive intervals of length «f there‘ls at
least one of the numbers |¢,|. Now divide the interval [|z], |z, [} into n equal inter-
vals. Fach of them represents a group of p intervals of length ({z,[—|z; |)/pn each.
All these n groups will be given consecutive numbers. An.long_ the numbers |Z,|
lying in the »th of the groups consisting of p con.sccutlve 11:Etervals of length
(1z2|— |21 1)/pn each, by |{¥| denote the number for which @(|{,]) is the greatest.

Then,

AN Lz _ Lewzm) o0 N A
i > (1) G2 ZOemtim 3 o) -2

n—0

< Z(zl,zz) Iiqu)(K,’fl) lzzlezx‘
"qn? v=1

EARIEA

- L>_| {p0z0dtzl,
o

[EARE
ie.
|z2]
Z L(z,,22 (1+1zhdlzl _ + _ 1—lzy]lz,] .
Fes ) < ) [Sl TEr) R (S PV R
Therefore
P(z1,22,f) < 1—[z1] |z| 1+r

Lo,z | A-EPd-lzD* = d-n*°

under the condition that r'(s) = 0 in the interval from [z | to |z;] and [z,| < r < 1.
(B) Let y(2) = v(lz) = (1-1z)/(1+|z])®. In view of the Koebe theorem
{176 1zl > (w(izD1dzl.

) 0
First assume that r/(s) > 0 in the interval [z;} < 5 < |z]. Repca.ting. the con-
siderations and notations from item (A), among the numbers |{i], lying in the vth
of the groups consisting of p consecutive intervals of length (lz2]|—1z:1[)/pn eac.:h,
by |£*| denote the number for which w(|z|) is the smallest. Then by analogy with

the mentioned above )
23|
7 L(z.,22) (1-lzhdlz| _ 7 1—lzy Iz, —,
#(e022,0) > |z2(f—t;| ]S T~ 2% T a+ED

EA|
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ie.
2(z1, 22, f) S 1-|zy| |z, | > 1—r
Lz,z)  A+1zD?(+[z)? = (I+r3 >
where |z, < r <1,

In this case, the condition r'(s) > 0 can be easily discharged. Namely,
= L(zy, z,) can be represented in the form L(z,, z,) = Ly(zy, 22) + Ly (2), where
L, = L((z;, z,) is a curve z = z(5) in D joining z, with z, and for which F(s) =0,
while L, = L,(z), is a sum of linear sets. ’

Then,
Iz lza| z2]
(L)ISIW(IZDdIZI - (Li)lSl'P(IZI)dIZH(Lz)Sw(!ZDdIZI > Ly § wiedlz.

lz1)
Thus, Theorems I and I* are proved.
Note that in view of (5) the inequalities (1) might be written in the form:

! 1=|z;]lz,] 1
1 I F 4 1 N 1 ,
(1) T+z DA+ |z)? < T.7) L(ZS,),f (2)||dz]
o kil
(I=lz (1= [z, [F -

If we choose the curve L(z,,z,) in such a way that its ima, ‘
, ge ¥ (24, 2, 1),
through f(z) € S, be the segment joining f(z,) with f(z,), then v )
Z(z1,25, f) _ Mz —f(z,)| < f Sfz)—f(z2)
= x

Z(Zu z,) - z(z] s22) ' 2122
and thus the left-hand side of (2) is established.

= If the curve L(z_l, z,) is the segment joining z; with z,, then under the con-
ditions of Theorem I:

§(7-1azzi_ §(21,225f) >’ fz)~f(z2)

= 22, )
Z1—2;

Z(le Z,) |21 =2,

In this way Theorem I is proved.
Let f(z) € S map the unit di . )
<r<t: p the unit disc D convexly. In this case (see [2], p. 83), if |z|

(3# L i 1

Using (5) and the approach stated in (A) and (B) we obtain:
TrroreMm I . Iff(z) € S is a convex Junction and |z, | < l23] < 1 then;
1 2
(6) < (zl 3 ZZs.f) — 1
A+lz )(A+]z) = L(z,,z,) < I=lz DTz, ]y *

1 | fz)~f(z,) 1
U ((EAPIEP ] R S SEpaSEy
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where the upper estimate in (6) holds true if r'(s) > O, while in (7) it is true provided
|z| only increases or only decreases on the segment joining |z, | with |z, .

Let the function
(8 ful@) = 2P p ey L, k=1,2,..

be k-symmetric and univalent in the disc |z] < 1.

Analogously, from (5), (A) and (B) we obtain the theorems:
THEOREM I,. If fi(2) € Sk, then under the conditions of Theorem 1, we have:

|72

1 S ( 1—r* )3 dr §(zlsz2afk)

< ==
EAEEN | T4k | (=T = Tz, 2))

|za]

< 1 S ( T4* )3 dr
|zl =z e 1—r | (1415

©)

23]

and for the conditions of Theorem I:

|22

1 11—\ ar
10 S(Hr*) a=ry"

|z1]
Silz1) —fiu(z2) < 1 ‘zSd ( 1+r* )3 dr
EAEEA | =% | "+

242y

<

TueoreMm I;. If fi(2) € S is @ convex function, then under the conditions of
Theorem 1, we have:

|22} —
1 S dr < L(z1, 22,10

11 - € —=
U0 w5 T e
1 ‘zgl dr
El=l 3, =
and
|z2|
1 dr flz) =filza) l
<
@ mEE |§| (L R
1 ‘IS]l dr
|z2]=z 1 al (l_rk)zlk ’
2

By S denote the class of functions
S) f2) = z+c 22+ e+ L,
regular and univalent in the unit disc |z| < 1.
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By Sk, k =1,2, ... (Sy = S5) denote the subset of S of functions
(89 Sul@) = 24 0o 2 ey 24 L= z4efOzF oozt

k-symmetric, univalent and regular in the disc lz] < 1.
Note that if £,(z) & Sy, then fi(2) = V1,25 € Sk.
By &' denote the class of functions

&) F@) = C4yo+p/i+ ...

univalent and holomorphic in the domain |{| > 1, except for the simple pole at
the improper point.

If f(z) € S, then F(£) = 1/f(1/0) e 2.

The classical theorem of Koebe [1] states:

TreOREM K (Verzerrungssatz). If f(2) € S and |z] < r < 1, then

1+r

The bounds in (1) are reached by the function @) = z/(1-2)2
From this theorem Bieberbach [2] obtained:

THEOREM B. If f(z) € S and |2| < r < 1, then

© s <@l <

2| lz2l .
()] -’(m—ZD—ZS [f(2)1 S—(T_—‘Z‘F:
@) eSm, k=1,2,..,lz2l<r <1, then
|z] |z]
© TR S RS g

The bounds in (2) and (3) are reached by the functions f(z) = z/(1—z%)2k,
From (1) and (3) follows: If f(2) € S, k = 1,2,.., 12 < r <1, then

’ 11— \° 1 , 147%1\3 1
) (T:,T) o < AG) <(T_r—k) T

The bounds in (1) are reached by the functions J(@) = z/(1—-z%)2/*,
G. M. Goluzin [3] found:

TrHEOREM G. If {1, 0o, ..., by (02 1) belong to the domain &l > 1 and F()

€ Z, then for |{] > 1
. 1 T FE)-F() I
1- o < 2y ¥’
Hl( LT >'< I == <

where in the product in the middle, in the case of ¥ =¥, the corresponding factor
should be interpreted as F'(L).
The estimates (4) are exact for {, = fe2m™itn 4, 1,2,..,n ¢ >1
€ . 22551, .
The left estimate is exact always when n = 2

@

z 1
[——
11z

v'=1

icm°®
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1. In [4] Iliev, using Theorem G, established:
TueoreM L If fi(Z) € Sy and |2l < r < 1, |2,| < 1, |z2] < 1, 21 # 25, then

.1 1""24 < Sulz1) —fi(z2) < 1 : .
(1rky* Z,—2, (1 =r?) (1 —ry*
The left inequality is exact for k = 1 and k = 2.
The above theorem generalizes the Koebe theorem.
Proof. As Goluzin [3] remarked, if F({) €2 and |¢,| > 1, then

a2 60 = — SR _ g B,

1+£,¢ ¢

F(‘T‘——‘ —~F((y)

Li+e

belongs to the class X, so that (4), n = 1, in |{| > 1 yields
1
(13) 1-1/EP <G < eSSV
Following Goluzin’s considerations, after setting { = IC— sz , 1Cal>1, (1.3)
2751
yields
(1= P (A=181% (ENF ( $—8y )2

9 e <rerelwSe

S 3
EACEIADN

Besides, from (4) for n = 2, we obtain

1 1 1
a9 (1-p ) (1‘ AL ), "G

<

2 | . F({)-F() \?
< ‘F C)F (ZZ)(W)

1

1 1
(1 w)(‘“ m) '
From (1.4) and (1.5) we find

1\ 1 \"* | F(¢)-F()
19 (“w) {I“lm) S{ =G

| EE
A

1

<
s T\ 1 \iz
(1‘ Jcllz) (1' 15212)

Let f(z) € §. Then f(O) = LfU/O) € Z. If |z1] <1, |z5] <1 and &g = 1z,
{2 = 1/z,, (1.6) yields

an | T g e, e < | SRISED
< fz)f(zz) 1 )
Tun | TR
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If fz) = fi(z) € Si from (1.7) and (3), for |z| = ry, |z;| =r,, follow the
inequalities
(L=ryP—ray2
A +r52 (1 k)2 =

Je(z:)—fi(z2)

212

(1.8)

1
(I=rD* A =rfy* 1 =) PA =132
whence, for ry < r, r, < r, follows (1.1).

<

2. In [5] G. Szegd found a method with the help of which one might study
the partial sums of univalent functions. He stated the following

THEOREM S 1. If the function

2.1 ' fz) = z4+c, 2%+ ...
belongs to the class S, then its partial sums
2.2) 0(2) = 24 €22+ . 42", n=1,2,..

are univalent in the disc |z| < 1/4. The constant 1/4 cannot be substituted by a greater
one.

In the proof Szegd applies his following theorem:
Tueorem S IL If f(2) €8, 12,1 < 1, |z,| <1, z; # z,, then
23 ( 1-|z)| ‘) 11-Z,z| < | fE)~f)

14z, (zy—z5| +[1-Z22, ) ~ Z2—2;

<( L]z, ) [1-Z,2,|
1=z, (Izl“zzl“““zz% N

The inequalities (2.3) are not. exact. Applying Theorem I Iliev proves, using
the Szegd method, the theorems that follow in this point and simplifies the proof
of Theorem S II, given by Szegs.

THEOREM 1. Let the function

249 f2(2) = z+e523+ ...
belong to the class S,. Then its partial sums
2.5) 0$(2) = z4¢323+ ... +Cong1 2", n=1,2, ...

are univalent in the disc |z| < 1/}/3. The constant 1 /]/ 3 cannot be substituted by a
greater one.

8. Takahachi [6] established the above theorem in the following particular
cases: 1. if the domain, where the variable o = f2(2), |zl < 1 is defined, is convex
and 2. if this domain is starlike with respect to o = 0. K. Joh [7] gave one proof
for the general case which turned out to be wrong (see [8], p. 1154 and %], pp-
980-981). However, his direct proof for n = 1 and 5 = 2, i.e. for 6§?(z) and 0§ (2)
is true, so that the theorem can be considered as established in these cases. He

icm°®
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later proved [L0] the theorem for the case when all the coefficients ¢,,, in (2.4)
are real. In one of his next papers [11], he achieved new results in the general
case without being able to prove completely the theorem. In [4] and [12] the the-
orem was established completely and was proved for every integer n > 3.

In [13] and [14] the following theorem is established:

THEOREM 2. Let the function

(2.6) f3(2) = z+ Dzt 427+ L.
belong to the class Ss. Then its partial sums )
@ oP(z) = z+ Pzt + .. eV n=1,2, ...

are univalent in the disc |z} < i/§/2. The constant i/§/2 cannot be replaced by a
greater one. ' )

Proof of Theorem 1. Let f5(z)e S,. Forr = 1/]/?7, if |z,] < 1/|/37, lz2] < 1/;/3,
7 # z; (L.1) yields ([12]; [4]):

fa(z0)=f(z5) > 3/8.
@) Tatm
Therefore (see [5]) the partial sum of2(2) is a univalent function in |z| < 1[}/3,
if
> 2v+1 2041
Bt S M 3.
2.9 Z Cavt1 7—7, <3/
v=n+1
The above inequality is fulfilled if
o0
(2.10) D7 feamen @+ 1 < 38,
r=n+1 ‘

where r = 1/1/5. According to V. Levin [15], [c5,41] < 3.4 for e-very » and, es-
pecially |co| < 1.4, [¢;1] < 1.7, so that (2.10) is fulfilled for n > 3, if

o0
@11 9. 14- 154 11- 17-719434 > Qv+ 1)r? < 38,
ic, if
—r?)+2r?
@12 91418411 1.7'r‘°+3.4—13(lT:;)7)-1Lr” <38,
or, if

9-1.4/3*411- 1.7/3°+3.4-7/3° < 3/8.
Since the above inequality is true, in view of the remarks after the formulation

of the theorem, its first part is already proved. The fact that the constant 1 V3
is the best one is known from the papers mentioned.

7 Banach Center t. 11
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Proof of Theorem 2. Let fy(z) € S;. Using the method of V. Levin [1 5], we

obtain the inequality

(2.13) lc(3)]2<z sl A )
v—1

where ¢{¥ = 1.
As is well known [16]:

2 WL S |
2.14 N 2 o “kF1 .~
(2.149) [ERBS e ++k'
so that
2
<—-——+—1-<0.579.

3e 3
Since [¢f®] < 2/3, (2.13) and (2.15) yield
. lc‘”[ <0579, |59 <0.618, [c§] < 0.636,
(2.16) ] < 0.658, [cP] <0.683, [c§] <0711,
Ic D < 0741, |5 < 0.774.
In view of the inequality of Buniakovski for 0 < r < 1, we obtain

(2.15) ]

(-]
3v

@1 Z r 2 3y 1)1/23 1

S TGyrDiB T 4 n+l( P Grrie+is”

BESTE S
< v+ 1)ré” Z __..__.____.}
Wovrs! et (Br+ 1123 .
Since
o0
1
(2.18) e
52 Br+1)1*2R
0 ntk+1 P
< dv - S dy _ 1 1
pan it Br+1)1+23 GrrD)iveR _7__"—(%4-1)2/3
and
(2.19) Z Br+ 1)1 = pon+s LN (3n+4)(1 r8)+3r6
v=n+1 (l_rﬁ)z ’
then
00
r3 3n+3
.20 Z LN S {Bn+4)(1—r%) + 363112
) o2, GADE 2T Gy l—rs) ad
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The Holder inequality yields analogously:

o0 o

@21 D Gl = Z Gyt 1703729y

v=ntl
<[ 3 meoeo( Y P

y=n+1
_ Lanes @G48 (1=1%)+3° 23 pames 13
(1—-r3)? 1-7r3
s (G113}
a- —r3s -

From (1.1), by the Szegs method, we obtain that the partial sum o&¥(z) for
n > 2 is univalent in the disc 2| <7/3/2 if

\ 4(4-=15)
2.22 Z 1By + D13 < ——52——, where r3 = 3/8.
(222 2 I( /1T /
As was shown by K. Joh [10], for an arbitrary » the inequality exists: (*)
(2.23) @r+1D)Y3eg,,] < 7.96.

From (2.16), (2.21) and (2.23) it follows that (2.22) will hold true if

(2.24)  0.636- 13- (3/8)*+0.658 - 16 - (3/8)*+0.683 - 19 - (3/8)°+
+0.711- 22 (3/8)7 +0.741 - 25 - (3/8)%+0.774 - 28 - (3/8)° +
8 [164 ”3( )“’
+17.96 5 ( 3 ) 5 < 0.312.
Since the inequality (2.24) holds and the partial sum ¢{*(z) is univalent in the
disc |z} < |/ 3/2, then Theorem 2 has been proved for n # 2. ’
The proof of the theorem for n = 2 with the help of the method of K. Lowner
is given by L. Iliev in [14].
According to the method of Lwner [17), in order to establish that the par-
tial sum
2. 0$(2) = z+ Pzt + P77
of the function f3(2) € Ss is univalent in the disc |z] < ?/5/2, it is sufficient to
find that concerning the functions for which
¢ = —; S #(1)e dr,
0

@y

o0

#(7) e"dt)z -2 S #*(7) e,
°

=38

:(3) 8
2 9 (

(*) This inequality has been later improved.

7


GUEST


100 L. ILIRY

where #(7) denotes an arbitrary continuous function whose absolute value equals
1 for any = > 0.

Following well known methods (see, for instance [10], p. 10, 11) it can be
easily shown that the proposition will be established in case we prove that

2.y) Re(l+4c{¥z3 +7c¢526) > 0

for {z| < 1/3/2, where ¢ and ¢ are determined by ©.p).
For that purpose, it is sufficient to prove that the minimum on the left-hand side
of (2.«{2 on the circle |z] = i/3/2 is positive. Let this minimum be obtained for

3
3 ..
z= ]/ e, ie. let

2
m]is;l_/ Re(1+4¢{¥23 4-7¢$326) = Re(l+3cedie 4 BoDesiv)
[21=Y3/2
where
00 o0
LePedtr = —-S (1)’ Pe~"dy = S % (T)e~"dr = x, +iy,,
0 ]
oo o
. . 2
(2.3) 83 c(Mebt? = %(S n(r)ea”’e"dr) -4 S %2(7) 8% 27y
0 0
o0 o0
2
= %(So x,(t)e"dr) —g—zl-s #} (D) e~ ¥dr = x,+iy,
0
and
(2¢) % (1) = x(D+ip(z), x*@D+y*(7) = 1.

The proposition will be proved provided we prove that
1+x+x, > 0.
The equalities (2.3) and (2.¢) yield:
0 o

T4+x; 4%, = i-l-xﬁ-%Re(S %l(r)e”dr)z-—%ReS % (t)e” > dr
o 0 :

o0
T4x, +3(x3—y? —:—; S [x3(2)—y*(1)]e~*dx
0

I

oo 0

Vb 3= (1m § g ()emar)” =28 { 11— 2p2 ()] e
0 0

ol oo

=8+x +%x§-§(s }’(r)e"dr)2+-f—6‘- S yi(r)e~d
0 0
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> 0.38~2 { y2(derar+2L | y2(m) e
0 [}

8

= 038-{ Qe —2Le-])%(x) dr
o
=
>038— | @e"—2e~)dr > 0.38—5 > 0,
In3/2
which had namely to be proved.

Remark. After this proof [14] was sent to Dokl. Acad. Nauk of the USSR, 1
(1954) Acta Mathematica Sinica was received at the Institute of Mathematics at
the Bulgarian Academy of Sciences, where there is an analogous proof of the prop-
osition for (2.0) given by Kung Sun [18].

On the proof of Theorem SI. In paper [5], G. Szegd established Theorem
S I using the method exposed as well as the inequalities (2.3). As he said, “The proof
of this theorem is easy for n = 2 and n > 5, but is not so simple for n = 3 and
n =4

Actually, with the help of his method and using the inequality [c,| < en of
J. E. Littlewood [19] for the functions from the class S, the fact that the theorem
holds follows easily for n > 6, dnd using the inequality |¢,| < n"/(n—1)""1 (cf. [5])
the same is true for n = 5. The proof of Szegd for n = 2,3 and 4 is direct. Be-
sides, for the last two cases it is rather complicated. With the help of the ine-
qualities (1.1) and one result of Goluzin, the proof of the theorem can be con-
siderably simplified.

For |z,| < 1/4, |z,| < 1/4, z; # z, for the functions of the class S the left
inequality (1.1) yields, namely:
Je)—fz2)

zZ,—2Z,

5 48
125

Therefore, the statement of the theorem for the nth partial sum of the function
(2.1) from the class S holds true if the following inequality is fulfilled:

0

(2.25)

: vle,| 48
(2.26) D, <

v=n+1
As was shown by Goluzin [20], for the functions of the class S the inequality
[eal < 2en is fulfilled so that (2.26) is fulfilled, if
0
3 »? 48
@.27) _4.5;:1 <
ie., if
3 9n%424n+20 48

2 [ S N
(2.28) T T
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For n = 4 the inequality (2.28) holds true and thus the theorem is established
for n > 4. In this way, the rather complicated direct proof of Szegs for n = 4 is
needless. We will also note that with the method of Szeg® cannot be achieved further
simplification of the proof. Indeed, starting from the inequality (2.25), with the
method of Szegd, the theorem cannot be established for # = 3 even if the Bieberbach
conjecture is proved that for the functions of the class S the inequality c,} < n
holds. On the other hand, the left inequality in (1.1) for k =1 is exact, so that
(2.25) cannot be improved.

3. Using the Szegd method, V. Levin [21] proved the following
THEOREM L. Let the function

3.0 f@) = z4+c,2%+ ...

belong to the class S. The partial sum

(3.2 ou(2) = z+ 2%+ ... ezt

, , R . I
Jor n = 17, is univalent at least in the disc lzZl< 1—-6 _an
n

With the help of the inequalities (1.1), following the considerations of V. Levin
in [22], [14] the following theorems have been established:

TaroreM 3. The partial sum (3.2) of the function (3.1) is univalent forn>=15
Inn

at least in the disc |z} < 1—4

THEOREM 4. Let the function

(3.3) f2(2) = z+e3234+ ...
belong to the class S,. The partial sum
(3.4 0P(2) = 246323+ ... +Cppiq 2L

1/2
Sor n > 12 is univalent at least in the disc |z| < (1-—-3 in;n_) .

THEOREM 5. If the function

3.5) fa@) = z+ P24+
belongs to the class S, the partial sum
(3.6) of2) = z+ePzb+ L 4P, =12, ..
13
is univalent at least in the disc |z| < {1 —% lr—lf(_’:—l)-} , 0 =7.96%8.31/4.97/8
n

Proof of Theorem 3. For k=1, if |z;| <1, |z2| < 7, r <1, zy % z,, for the
functions of the class S the left inequality (1.1) yields:

fz)—1(z,)

21—2;

. 1-r

(37 >~

icm°®
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Therefore, if for |z,| < ry, 22| < 1y, 20 # 25,1, < 1, we have

©

z—z < 1-r,
ER) ' Zy—2, (1+r)?
v=n+1
or
N 1
(3.9 2 le, vt < ——r,._3_’
= (I4ry)

then (3.2) is univalent.
Taking into account the inequality of J. E. Littlewood: |¢,| < ey, we see that
(3.9) is fulfilled, if

1—-r,
2,0 —1 n
(3.10) e Z VIt <
" v=n+l
But
N r"
(3.11) Z vyl = —(f:!r;F [2(1=-r)?—@2n—Dr,+2n+1],
r=n+1
L]
since, if we set Z »2r*~1 = S(r), then
v=n+1
frle = Feas)
(3.12) S{—;Sso)d;} dx = Z =T
0 1] r=n+1
Thus, the inequality (3.10) assumes the form
4 1
(3.13) U__—"rm [P*(1—r)?—@n—Dr,+2n+1] < A
The above inequality holds if
(.14 J—"m[nz(l—r,,)z—ﬂn—1)r,,+2n+1] < 1fde.
-,
Let r, = 1—afn, 0 < a < n, so that
(3.15) rh=(l—(@m) < e™
and
(3.16) n2(1—r)?—2n—Dr,+2n+1 < o*+2042.
From (3.15) and (3.16) it follows that the inequality (3.14) is true if
o2 +2a+2 1
@B.17 n*e™® — <%
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If « = 4lnn, the inequality (3.17) is fulfilled for n > 3. For the theorem to
be valuable, however, r, > 1/4 must be fulfilled. The last condition is satisfied fo
n > 15, and thus the theorem is established. '

Proof of Theorem 4. For k=2, |z,| < r lz,]

i ! s s 122 <ty Zy F 2y, F <1
function f,(z) the inequalities (1.1) yield: ' ’ or the

fa(z)—falz2) > 1—r?
Zy—2, Z 1+
_ Taking into account that for the functions of the class 8§, according to V. Le-
vin, as we already noted, |c,,+;] < 3.4, then, as in the case of the proof of The-
orem 3, wefind that the partial sum (3.4) is a univalent function in the disc lz| <n
if the following inequality is fulfilled: "

(3.18)

> 12
(3.19) 3.4 L @+ <~
v=n+1 (1 +73)2
Since
=
2n+2
(3.20) Z Qv+ 1)r2” = -(—1’_-77)7 [@n+3)(1—12) +2:2],
v=n+1 "
the inequality (3.19) assumes the form ¢
(321) W fn3)(—r2) 2 !
A=y G =r b2 < g
The above inequality holds if
(3.22) —12%2_ [Cn+3)(1—rd)+22] < — L
1= Tl 434 -
Let rj = 1—a/n, 0 < o < n, so that
n+l
(3.23) it = (1- E) < (1—L)n+x <e
n n+1
and
(3.24) @n+3)(1=r)+2r2 = 20424 a/n < 2443,
The inequality (3.22) assumes the form
(3.25) n?e™*(2u+3)/0® < 1/43.4.

If « = 31Inn, this inequality holds for n > 8, so that the function (3.4) for

n > 8 is univalent i i = 3lnn | ing in mi
alent in the disc |z| < r, = (1— ” . Having in mind Theorem

1, the last result is valuable only in the case when r, = {1— 3l \ 12 1
n 7 > —1/—§.The

last inequality holds for n > 12, and thus the theorem is proved.
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Proof of Theorem 5. By the method of Levin the proposition of the theorem
is established in an analogous way with the help of the inequalities (1.1) for k = 3

and (2.21).

4. The application of Theorem I allows to find, keeping the notations intro-
duced, the following results [23]:

TuroreM 6. If the function fi(z) € S, the polynomial
4.1 oP(2)fz = 1+caz+ ... +epzt ™t

In3n , andfor n > 55 it doesnot van-

for n> 1 does not vanish in the dics |z] <1-2

ish in the disc |z} < 1-2 En— In general, for every & > 0, anumber N exists such
n

lnnan for n= N.

that (4.1) does not vanish in the disc |z < 1-2

TreoreM 7. If the function fy(2) €S2, the polynomial

" (4.2) 0Pz = 14+c2+ oo +Coni1 2

. For every ¢ > 0anum-

172
lnen) !

’ o In4.3n \'*
for n = 1 does not vanish in the disc |z| < 1-———n———

ber N exists such that (4.2) for n > N does not vanish in the disclz] < (1—
TugoreM 8. If the function fy(z) € Ss, the polynomial
4.3) o)z = 1+eP23+ ... +c02%, n=1, 2,..

; L X 4 Ina(n+1) e = 7.96%/2.33/4.91/2.
does not vanish in the disc |z| < 1—? Tl | where a ="1. . .

Proof. Let us set

4.4 f1(@) = P (@ +p50(2).
In view of the Bieberbach theorem, if ]z < r < 1, then
f(z) 1
(4.5) |z
If, therefore, for |z} < r, < 1 the following inequality is fulfilled:
1 1)
() 1
6) 1 z (1+r)*°
ie.
o0
y—1 1
4.7 Zl ¢,z < m s
v=n+

then o{"(z)/z does not vanish in'the disc |z} < ry.
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The inequality (4.7) is fulfilled if

o0
438) Z et < —1
N (N
According to the result of Goluzin [c,| < 3e/d, » = 2, 3 i
e , /4, »3, ..., so that (4.8) is

3 3 1
“9 3. Z 1 <
4 v=n+41 " (1+7’,,)2 ’
or, if
(.10 3e Z Tt < 1L
vanil
0
From the 1den1:1ty”=%rl r=rt(1—r) whete 0 <r <1 we get:
00
@.11) Dt (DA 41
e CA=nr

According to (4.11) the inequality (4.10) assumes the form:
(4.12) 3¢ MEDA 1) +r,
E gy

If ry = 1—a/n, 0 <a <n then rn = (1—a/n)" —c
, : 3 w=(l-om)" <e* and (n+1) (1—r,)+
+ v = a+1. Then the inequality (4.12) is fulfilled if (=

<1.

(4.13) 3enze-¢_¢1:T1 <1

_ . In3n

If a=21n3n, ie. r,=1-2 - then (4.13) is fulfilled for n> 1; if o

= 2Inn it is fulfilled for n> 55. In i
= 35. In general, for every ¢ > 0 there is

such that (4.13) is satisfied if « = 2Inen and n > N. o mumber
. Theorem 7 is proved with the help of the same method, having in mind that
if £3(2) €83, then |f,(2)/2] > 1/(1+r%) and that in view of the result of V. Levin:
lezniil <345n=1,2, ... .

Analogously, when f;(z) €83, f3(2) = o i
) y 2 [3(2) = 0N 2)+p$(2), if for |2 < r, <1 the
inequality [p$(2)/z| < 1/(1+r2)%® holds, then the ol; i D

uality [py s omial ¢f»
vanish in the disc |z| < r,. PEmaIAl o) doss not

This inequality is fulfilled if

oo
@19 D < 1/,

r=n+l
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Since, according to the result of K. Joh for any integer » > 1 the inequality

Gr+ D3 el < 7.96 holds, then (4.14) is fulfilled if

oo
rey
4.15) 7.96 E G < 1223,
p=n+tl

Taking into account (2.20), the above inequality will hold when n > 1, if
pan+s [Gn+4)(1—rS)+3r]? < 1

(4.16) Gnt D e 756 206

Let us set 7§ = 1—a/(n+1), 0 <& <n+l, so that

o (n+1)/2
4.17) pantd = (1— n+l) < o2
and
4.18) Gn+4)(1—18)+3r3 < 3a+3.
The inequality (4.16) is fulfilled if for nz 1:
Ya+l s 116
(4.19) e~u/? ~—;——(n+1) 13 IR

4 .91/3
The above inequality is fulfilledif « = §lna(z+1), where a = 7.96%2.3%%.215,

5. Let the function

3.1 ful2) = 2+ P+ L

belong to the class Si, k =1,2, ... In this case, the function

(5.2) FO) = Fi) = [ = @+eP 1+ S
= it kePzF 4 .= (HkeP+

belongs to the class S;. But then the function
k
63 F() = (@7 = G PP

is univalent and holomorphic in [{] < 1, while the function

5.4 O(8) = 1/F(1/5)

is univalent and holomorphic in the domain |{] > 1 except fof the simple pole at
the improper point. The latter has a Laurent expansion beginning as follows:

K
_k c®

(5.5) t—g

Taking into consideration the area theorem (Flichensatz) (see [2], pp- 72, 73)

we find that
(5.6 [P < 2/k.


GUEST


108 L. ILIEV

The inequality (5.6) is exact for any k. Indeed, for the class S the sign of equal-
ity is reached by the function

()] zJ(1—2)2*,
Now we will establish that the partial sum o$(z), k = 1, 2, ... is univalent
in the domain |z < gy, k = 1,2, ..., where
PR TV
(5.8) O = [m] .

The constant g, is exact and is reached by the partial sum of the function
(5.7 again.

Indeed, if for |z,| < g, and |z,| < gy, z; # 2z,, we have the equality
(5.9) Zy+cZEH = 7, 4 cEH

then, taking into consideration (5.6) we obtain the absurd inequality

2(k+1) 5
% Ok =

1
le<+1_2§+1

(5.10) 1= (e

< (k+1)]ePlok <

1,

—z,
and thus the proposition is established.

Remark. In view of Theorem SI, Theorem 1 and Theorem 2, the constants g, ,
> and g5 -are the greatest values of the radii of the circular domains around the
origin, where all partial sums of the functions of the classes Sy, S, and S5, respect-
ively, are univalent. It is quite natural to ask the question whether the constant g,
for an arbitrary value of &, possesses the same property? Taking into consider-
ation that an assumption of Szegd for a certain restriction of the coefficients of
the functions of the class Sy (see the following item) turned to be untrue in the
general case when & > 3, it is improbable for the assumption that the partial sums
of the functions of the class S, are univalent in the disc |z| < g; to turn out to
be true when k > 3.

6. G. Szegd assumed that for the functions

(6.1) ful@) =z
of the class S, k = 1,2, ..., the following relation holds:
6.2) |eP] = O(n—1+2k),
The fact that, for k = 1, we have the inequality of Littlewood
(6.3) 524 ] = leu| < en,

gave grounds to make this assumption, while for k =.2, I.E. Littlewood and
R.E. A. C. Paley were the first to establish ([24], see also E. Landau [25]) that
649 [e®] = 0Q1).

V. Levin [26] verified the assumption for k = 3 as well. On the contrary, as

was shown by J.E. Littlewood [27], the assumption is not true for k > 3, even
if fi(z) is bounded in the unit disc.

* ©
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Therefore, we can assume that there exist three positive constants 4, 4,, 45
not depending on n, for which, for any n, the following inequality holds:

2
(6.5) @) < A", k=1,2,3.

By A, A;, A5 denote the smallest of these constants.

The inequality of Littlewood yields that 4; < e; in view of the already used
inequality of G. M. Goluzin: 4, <—i~e. The assumption of L. Bieberbach is
that 4, = 1.

V. Levin [15] established the inequality that we have already used:

(6.6) A, < 214:312. 632 £ 339 < 34,
K. XK. Chen [28] first showed that

6.7 A; < 12.1e'* = 16.89 ...,

and K. Joh found that

(6.8) Ay < 7.96.

The indicated upper bounds for A;, 4, and A; are determined but the values
Ay, Ay, and A4; are not found. . ,

Thus, the problem (conjecture) of Bieberbach concerning the coefficients of
univalent functions is extended as follows: Which are the values of A,, 4,, 43?

At the same time, the problem of Szegd still remains open: To determine the
order of [efP] for k > 3.

References

[1] P. K oebe, Nachr. Akad. Wiss. Gétingen Math. Phys. K1. II, 1907, 197-200.
[21 L. Bieberbach, Lehrbuch der Funktionentheorie, Bd. I, zweite Auflage, Leipzig und
Berlin 1931.
[B1T.M. Tonysmn, Marem. c6. 19 (61) (1946), 183~201.
[4]1 JI. U nmes, Ioxm. AH CCCP 69 (4) (1949), 491-494.
[5]1 G. Szegd, Math. Ann. 100 (1928), 188-201.
[6] S. Takahachi, Proc. Phys. Math, Soc. Japan, 3 Series, 16 (1934), 7-15.
[71 K. Joh, Proc. Imperial Acad., Tokyo, 11 (1935), 407-409.
[8] Jahrbuch iiber die Fortschritte der Mathematik 61 (II) (1935), 1154,
[9] Jahrbuch iiber die Fortschritte der Mathematik 63 (IT) (1937), 980-981.
[10] K. Joh, Proc. Phys. Math. Soc. Japan, 3 Series, 19 (1937), 1-12:
[11] —, ibid., 21 (1939), 191-208.
[12] L. Iliev, C.R. Acad. Bulg. Sci. 2 (1) (1949), 21-24.
[13] JI. Knues, Joxa. AH CCCP 84 (1) (1952), 9-12.
[14] —, ibid., 100 (4) (1955), 621622,
[15] V. Levin, Proc. London Math. Soc. 39 (1935), 467-480.
[16] M. Fekete and G. Szegd, Journ. London Math. Soc. 8 (1933), 85-89.
[1771 XK. Léwner, Math. Ann. 89 (1923), 103-121.
[18] K. Sun, Acta Math. Sinica 4(1954), 105-112.
[19] J.E. Littlewood, Proc. London Math. Soc. 23 (1925), 481-519.



GUEST


e ©
110 L. ILIEV Im COMPLEX ANALYSIS

BANACH CENTER PUBLICATIONS, VOLUME 11
PWN-POLISH SCIENTIFIC PUBLISHERS
[201T. M. Tonysun, Marem. c6. 22 (64) (1949), 373-379. WARSAW 1983

[21] V. Levin, Jber. Deutsch. Math.-Verein. 42 (1939), 68~70.

[22] X. ¥ xues, Joxn. AH CCCP 70 (1) (1950), 9-11.

[23) L. Iliev, Acta Math. Acad. Sci. Hungar. 2 (1-2) (1951), 109-111.

[24 I.E. Littlewood and R.E.A.C. Paley, Journ. London Math. Soc. 7 (1932), 167-
169.

[251 E. Landau, Math. Zeitschr. 37 (1933), 33-35.

[26] V. Levin, ibid.,, 38 (1933), 306-311.

271 J.E. Littlewood, Quart. J. Math., Oxford Ser., 9 (1938), 14-20. AND THE ENE. RALL AMP
[28 K.K. Chen, Tdhoku Math. Journ. 40 (1935), 160-174. FOLIATIONS ¢ ZED COMPLEX MONGE- ERE

EQUATIONS

Presented to the Semester
COMPLEX ANALYSIS
February 15-May 30, 1979

JERZY KALINA AND JULTIAN LAWRYNOWICZ
Institute of Mathematics of the Polish Academy of Sciences
£od% Branch, Kilinskiego 86, PL-90-012 £6d:, Poland

Introduction

The generalized complex Monge-Ampére equations arise when looking for a complex
analogue of the principles of Dirichlet and Thomson, including the inhomogeneity
(weight) functions on the space (complex manifold) and the hermitian structure.
These equations were introduced by the second named author in 1975 [10] and
then studied by him, partially together with A. Andreotti [2], [3]. A considerable
part of the results included in this paper is due to the first named author. His The-
orem 3 ensures the existence of a foliation corresponding to a generalized complex
Monge-Ampére equation, and even to a more general equation. This enables him
to obtain a weak maximum principle and some corollaries.

We begin with the formulation of well known Dirichlet’s and Thomson’s prin-
ciples. Then we introduce on hermitian manifolds the capacities due to the second
named author [10], [11], [12], give their basic properties and explain their con-
nection with the generalized complex Monge-Ampére equations. Before formula-
ting Theorems 3 and 4 we give some preliminaries on foliations.

1. The principles of Dirichlet and Thomson (the case of R?)

We begin with the formulation of Dirichlet’s and Thomson’s principles (cf. [16]
and [14]).

DIRICHLET’S PRINCIPLE. The energy of a constant electric field in a smooth con-
denser (D, ¥o,y,) has the minimal value among the energies of all ir{ote}_tional
fields £ € &, & being the class of all functions of the form E = —gradV, Ve ¥,
and ¥ consisting of all ¥ e C3(cID), such that Vlvo = Vo, Ply, = Vy, and the
normal derivative of ¥ along D\y,\\; vanishes. In other words, we have

W = inf SS &0 eE2dxdy,
Eed D
where £2 = E- E and ¢ = o denotes the electric permeability.

{111}
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