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It is not difficult to observe that in many definitions and theorems concerning a
differentiable manifold M only algebraic properties of the ring of all smooth real
functions C*(M) on that manifold play an essential role. This point of view suggests
a possibility of generalization of the concept of a differentiable manifold. The notion
of a differential space was introduced, for example, by R. Sikorski [6], J. W. Smith
[8]. M. M. Postnikov [5], M. A. Mostow [4]. Their definitions differ and are not
equivalent.

We consider differential spaces in the sense of R. Sikorski. Let us recall some
definitions.

Let (M, 1) be a topological space and let P be a set of functions defined on M.
A function f defined on a subset 4 of M is said to be a local P-function if for every
p € A there exist a neighbourhood B of p in (4, 7|4) and a function g € P such that
SfIB = g|B. The set of all local P-functions defined on the set 4 = M will be denoted
by P,. Let C be a non-empty set of real functions defined on the set M. We shall
consider M as a topological space with the weakest topology 7 such that all func-
tions of C are continuous. Any pair (M, C) is called a differential space [6] if

(a) Cy = C (with respect to 7¢);
(bYif w: R" — R is a smooth function (i.e., an infinitely differentiable function)

and «,, ..., %, belong to C, then the composition w(a, (), ..., a,()) belongs to C.

It is obvious that for any 4 = M the pair (4, C,) is a differential space, namely
(4, C,) is a diflerential subspace of (M, C).
Let (M, C) be a differential space. By a vecfor tangent to (M, C) at a point
p €M we shall mean any linear mapping v: C - R such that
v(a-f) =v(0) - f(p)+a(p)-v(f) for a,feC.

The set (M, C), (or simply M,) of all tangent vectors at a point pe€ M is a linear
space in a natural way. By (M) we shall denote the set of all smooth vector fields
on (M, C), ie.,, X e I (M) if and only if X: C —» C is linear and

Xa-p=a-X(B+p-X(«) for a«,feC.

[29]
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Let ¢ be a mapping which assigns a linear space ¢(p) to any point p € M. By
a ¢-field on M we shall mean any function W which assigns an element W(p) € ¢(p)
to any p € M, There is no general definition of smooth ¢-fields in the case of an
arbitrary ¢. Such a definition is possible for many special ¢’s.

Let % be a C-module of ¢-fields on M. A sequence V,, ..., V, € ¥ is said
to be a vector basis of the C-module W if

(i) Vi, ..., Vais a C-basis of the C-module %';

(ii) for every point p € M the sequence V,(p), ..., Va(p) is a basis of the linear
space ¢(p).

Let A be a subset of a differential space (M, C). Then we say that V,, ..., ¥,
€ W 4 is a vector basis of the C-module W on A if the sequence V,, ..., V, is a vector
basis of the C-module ¥, i.e.,

(i) Vi, ..., Vpis a C,-basis of the C,~-module # ;

(ii") for every p € A the sequence V,(p), ..., V,(p) is a basis of the linear space
¢(p).

A C-module %" of ¢-fields on a differential space (M, C) is said to be a differential
module if W is closed with respect to localization (i.e., # ', = #") and % has locally
a vector basis composed of n ¢-fields {7]. The number n is called the dimension
of the differential module %".

ExaMPLEs. 1. We set
¢(p)=(M,C), for peM
and
F(M) = {X: X(p) e (M, C), for pe M and X(a) € C for a € C},
where
(X(@) (7) = X(p)(a) for peM.

_Itis obvious that Z (M) = Z(M) and, if M is a differentiable manifold, then
F(M) = I'(¢), where & = (TM, =, M) is the tangent bundle of M. Thus Z(M)
is a differential module in this case.

2._If' C is a differential structure on R generated by {sin{x/n), cos(x/m)}n=1.2....,
then Z(R) is a 1-dimensional differential module [3].

3.If M is a dense subset of a differential manifold, then q (M) = I'(§)y is
a differential module.

4. Let us consider a differential space (R, C), where C is a differential structure
on R generated by the fung_tions {fa}aers fa(x) = |x—a| for x € R. Then dim(R, C),
= 2 for every p e R and Z(R) = 0. Thus the C-module ¥ (R) is not a differential
module.
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The following theorems are true:

THEOREM [7). Let (M, C) be a differential space. Then (M) is a differential
module if and only if

(a) for every pe M and v € (M, C), there exists a smooth vector field V on M
such that V(p) = v,

or, equivalently,

(a") for every pe M and v e (M, C), there exists a neighbourhood A of p and
smooth tangent vector field V on A such that V(p) = v.

THEOREM (7). If W is a differential module of ¢-fields on a differential space

(M, C), then for every p € M and for every w € ¢(p) there exists a W € W such that
w = W(p).

Let % be an n-dimensional differential module of ¢-fields on a differential
space (M, C). We set

Q ={(p,w): peM and weg(p)}.

By the projection of Q onto M we shall mean the mapping n: Q —+ M defined by
(1) n(p,w)=p for (p,w)eQ.

If 4 is an open subset of M and W, ..., W, is a vector basis of #~ on the set 4, then
the mapping f: A x R*® - Q defined by

flp, &4 ... x) =(p,x'Wi(p)) for peAdand (x',..,x")eR"

is said to be fundamental with respect to the vector basis W,, ..., W,. Let F be the
set of all functions a: @ — R such that

aoft AXR" + R
is smooth for every fundamental mapping f: 4x R” - Q. We have the following
proposition:

ProrosiTION [7]. (Q, F) is a differential space.
The differential space (Q, F) is said to be the differential space of the differential
module %" If for every W € %~ we set
W(p) = (p, W(p)) for peM,
then we get the following theorem:

__ THeorem (7). Let W be a differential module. Then W e %" if and only if
W: M — Q is smooth.

I (M) is a differential module, then the differential space of T (M) will be
denoted by (TM, TC). The following theorem is true:

THEOREM [2). If W is a differential module of the dimension n on a differential
space (M, C) of dimension m, then the dimension of (Q, F) equals m+n.
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COROLLARY. If (M, C) is of dimension m, then (TM, TC) is of dimension 2m.

Assume that (M, C) is a differential space of dimension m and # is a differential
module of ¢-fields on M, dim¥" = n. By a covariant derivative in the C-module %~
we shall mean a bilinear function V: F(M)x¥# — # such that

VaxW =aVy W and VyaW = X(@W+a- -V, W
for a€eC, XeZ (M), Wew.
We can define V, W for v € (M, C), and W € #” by the formula

) V.W = (Vv W)(p),

where ¥ € £(M) is a smooth vector field such that v = V(p). It is easy to see that
the right side of (2) does not depend on the choice of V.,
We denote by h,: Q@ - Q the mapping given by the formula

hip,w) = (p,aw) for (p,w)eQ (aeR).

Vipowy = Kertyp.wy for (p,w)eQ.

The following theorem is true:

THEOREM ([1]. Let V be a covariant derivative in W'. Then there is exactly one

smooth mapping K: (TQ, TF) - (@, F), K((p,w),z) = (p, K(2)) for (p,w) € Q
and z € (@, F)p.wy, such that

() K(Wypv) =V, W for WeW,ve(M,C),, pe M,

(i) K@, F)p,w: (2, F)p,w) > #(p) is a linear mapping for (p, w) € Q;

(i) (@, F)g.wy = Vip.my®@Hp.wy for (p,w)eQ and the distribution
H: - U (Q,F)p,w given by H(p,w) = Hy,w, for (p,w)€Q is smooth,

(rweQ

where I:I(p.w) = ker(K[(Q, F)(p.w));
(iv) (ha)*(p.W)H(p-W) = Hp,awy Jor a€ R— {0} and (p, w)€ Q.

The unique K satisfying the condition of the above theorem will be called the
mapping of the covariant derivative V and the vectors belonging to the distribution
H will be called horizontal with respect to the covariant derivative V.

Also the following theorem holds:

THEOREM [1). Let {HQ . w) }p.wye@ be @ smooth distribution on the differential
space (Q, F) such that

(@ (Q, F)p,wy = V(p.w)®HQ(p-W) Jor (p,w) eQ;
®) (). HQ(p,wy = HQ(p,awy for (p, w)eQ and ac R—{0}.

Then there is exactly one covariant derivative V in the differential module W
such that the horizontal vectors with respect to V belong to {HQ (. w)}p.wrca-
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Let (M, C) be a differential space of dimension m. Let V be a covariant deriva-
tive on the the differential space (M, C). It follows from the above theorem that
if X € (M) then there exist unique vector fields X*, X* e Z(TM) such that

Tutp.m X (P, w) =X(p) and K(p,w) (x*(p, w)) =0 for (p,weTM;
T, X"=0 and K(p,w)(X'(p,w))=X(p) for (p,w)eTM.
The vector fields X* and X will be called the horizontal and vertical lifts of the vector

field X, respectively. Next, it follows from the above theorem that there is exactly
one C-linear mapping J: (TM) - Z(TM) such that

ﬂ*0J=—K al'ld K0J=7t....

The tensor field J is an almost complex structure of (TM, TC). The following theorem
is true:

THEOREM [1]. Let T and R be the torsion and the curvature tensors of the covariant
derivative V on (M, C), respectively. Let J be the almost complex structure of (TM , TC)
defined above and let N be the torsion of J. Then

Tair. s (N(X*, Y)) (p, 2) = T(X, Y)(p) for X,YeX(M), (p,2)e TM,
K(P,Z) (N(X"’ Yu)) (ps Z) = -RX(D).Y(.IJ)Z fOI‘ X: YEQ‘(M), (P’ Z)ETM-
As a corollary to this theorem we obtain:

COROLLARY. N = Q0 ifand only if T = 0 and R = 0.
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