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Introduction

The purpose of these lectures is to discuss the fundamental properties of a specific
class of integral variational problems in fiber bundles, which are usually called
generally invariant. Owing to their “categorical” properties and relations to the
theory of natural bundles, we call these variational problems natural Lagrangian
structures.

The lectures are concerned with the beginnings of the Lagrangian formulation
of the calculus of variations in fiber bundles. Conceptually, we follow papers [17],
[21], [24], [40] by Trautman and the author on differential geometry of the variational
theory and the lifting theory, and, to a well-known extent, the classical ideas of
Lepage (see e.g. [26]) and Noether [32] on differential forms and invariance of
variational functionals. The definitions and theorems are usually stated in full
generality, The proofs are only sketched or are omitted at all; the reader is then
referred to the above papers or to some special articles.
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We shall give a few references to the papers which complete the material of each
of the three parts of these lectures. For abstract theory of natural bundles, the
theory of lifting, associated with the r-frame lifting, and the theory of differential
invariants, we refer to [15], [18], [20], [22], [27], [31], [39]). The geometric theory
of Lagrangian structures, especially the first order ones, is developed in papers
[41-[8), [14], [40]. The general theory of higher order Lagrangian structures is treated
in [1], [2), [16], [23], [25], [34]), [38]. Various questions of this theory are discussed
in the form of “concrete” variational problems, see e.g. [10]-[13], [19], [28}-[30],
[33], [35)-[37]; many other references are listed and commented therein.

Part I
DIFFERENTIAL INVARIANTS

From now on, the category of real n-dimensional smooth manifolds and their em-
beddings is denoted by 2,. The category whose objects are smooth (right) principal
fiber bundles over the objects of 2,, and whose morphisms are homomorphisms
of principal fiber bundles over the morphisms of £,, is denoted by #4,.

The class of objects (resp. morphisms) of a category € is denoted by Ob %
(resp. Mor ¥). The projection functor from the category of fibered manifolds to
the category of manifolds is denoted by proj.

The r-jet of a mapping « at a point x is denoted by js«, and the composition
of two r-jets jia and j; 8 such that y = a(x) is denoted by j; 8 o jra or by jxfa.

L} denotes the Lie group of invertible r-jets with source and target at the origin
of the real n-dimensional Euclidean space R". When there is no need of specifying r
and n, the group L; is called simply the differential group. Recall that the group
multiplication (joa, j§ ) = jox ¢ j58 in L; is defined by the composition of jets.
The group L} is canonically identified with the general linear group GL,(R).

1. The r-frame lifting, associated liftings

A manifold endowed with a left action of a Lie group G is called a G-manifold.
Let P and Q be two G-manifolds, U a G-invariant open subset of P. A mapping
F: U-Q is called G-equivariant if F(g-p) = g+ F(p) for all ge G and pe U.

Let Y, (resp. Y,) be a principal G-bundle, P (resp. Q) a G-manifold. Denote
by Y, x P (resp. Y, x cQ) the bundle of fiber-type P (resp. Q) associated with Y,
(resp. Y,). A point of ¥, x ;P is an equivalence class z = [y, p] of a pair (y, p)
€Y, x P relative to the action ((¥,p),g)—> (y-g,87'-p) of G on Y, xP. We
introduce the following definition. A homomorphism of the bundle Y, x P into
the bundle Y, xsQ is a mapping @: Y, xcP — Y, xsQ such that there exist a
G-homomorphism ¢ of the principal G-bundle Y, into the principal G-bundle Y,
and a G-equivariant mapping F: P — Q such that for each ze Y, xgP, z = [y, p,
D(2) = [o(p), F(p)). We write oy instead of @. The representation of g¢ by the
pair (o, F) is not unique. Clearly, projor = projo. Bundles over n-dimensional
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manifolds, associated with principal G-bundles, and homomorphisms of these
bundles form a category denoted by & %,(G).

Let us consider a manifold X € Ob 2,. An r-frame at a point x € X is by defi-
nition an invertible r-jet with source at O € R" and target at x. The set #"X of r-frames
at the points of X together with the canonical projection g%: F'X — X, carries
a natural structure of a principal L;-bundle. This bundle is called the bundle of
r-frames over X. The right action (z, @) - z c a of L} on #'X is defined by compo-
sition of jets.

Let xe Mor Z2,, «: X - Y, and let o (resp. o7) be the projection of F'X
(resp. F'Y). o defines a morphism #"a of the principal Li-bundle #'X into the
principal L] bundle #'Y by the formula F'a(z) = j{oyx oj¢&, where z = j5¢.
The projection of #'a is a. The correspondence X = #'X, a« -+ F'a, denoted by
#7, is a covariant functor from the category 2, to the category #4%,(Ly), called the
r-frame lifting. We write ! = &, and call the 1-frame lifting simply the frame
lifting. For o« € Mor 2,, the morphism #"a € Mor2?%,(L}) is called the r-frame
lift (or simply the lift) of «.

Let #" be the r-frame lifting, X € Ob 2,, let P be an L;-manifold. We denote
by #pX the fiber bundle of fiber-type P, associated with the principal L}-bundle
F'X (via the action of L} on P).

Consider a morphism «eMor2,, «: X » Y. Then F'a € Mor?#,(Ly;),
Fou: F'X—-F'Y, and we have a well-defined mapping FpX2z > Fra(2)
= [F'a(y), pl € #p Y, where z = [y, p]. This mapping is a morphism of the cat-
egory F4%,(L}). The correspondence X — FpX, a - Fpa, denoted by F5, is a
covariant functor from the category 2, to the category % #,(L;). We call this functor
the P-lifting, associated with the r-frame lifting #". For r = 1 we write F3 = Fp.
The morphism Fpa € MorF%,(L;) is called the P-lift (or simply the /ift) of a.

2. Differential invariants

We state the following definition. A differential invariant is an L}-equivariant mapping
F: P - Q of an L;-manifold P into an L}-manifold Q.

Let P and Q be two L}-manifolds, F: P — Q a differential invariant. For each
X € Ob 2,, the formula Fy(z) = [y, F(p)], where z = [y, p], establishes a morphism
FxeMorF#,(Ly), Fx: FpX > F5X, whose projection is idy. This morphism
is called the realization of the differential invariant F on the manifold X.

Let ¥ and 2 be two categories, #, and #, two covariant functors from ¢
to 2. A natural transformation T of &, to & , is by definition a system of morphisms
TxeMor 2, Tx: #,X - #,X, where X runs over Ob ¥, such that for each «
EMord,a: X> Y, Foao0Ty =Ty o F, o

A natural transformation T of a P-lifting £} to a Q-lifting #§ satisfies the
condition projTy = idy for each X € Ob 2,. Obviously, for each X € Ob 2, and
each local isomorphism of X, projTy ¢ « = « o projTx; assuming that for some
x € X, projTx(x) # x and choosing « in such a way that a(x) = x and «(proj Tx(x))
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# proj Tx(x), we obtain proj Tx(x) = a(projTx(x)) # proj7x(x) which is a con-
tradiction.
The following three theorems are proved in [22].

THEOREM 1. Let X € Ob 2,, @ € MorFB,(L}), P: FL X — FoX. Then the
Sfollowing two conditions are equivalent:

(1) For each local isomorphism o of X, Fpo o D = D o Fha.

(2) There exists a unique differential invariant F: P — Q whose realization
on X is D, i.e., such that Fy = ®.

THEOREM 2. Let F: P — Q be a differential invariant. Then for each X, Y € Ob 2,
and each o € Mor 2, a: X = Y, the realizations Fx and Fy of F satisfy Fgoa o Fy
= Fy e Fpa. In other words, the correspondence Tg, assigning to each manifold
X € Ob 2, the morphism Fy € Mor #3,(L;), is a natural transformation of ¥4 to
Fa.

In the following theorem we use the notation of Theorem 2.

THEOREM 3. The correspondence F — Ty is a bijection between the set of differential
invariants from an Ly-manifold P to an L},-manifold Q, and the set of natural transforma-
tions of Fp to Fq.

Let G be a Lie group, e € G the identity, /; the Lie algebra of G, exp: I = G
the exponential mapping. Consider a G-manifold P (resp. @) and denote by @
(resp. ¥) the group action (g, p) —» g- p (resp. (g, q) = g q) of G on P (resp. Q).
Recall that for each g,, g, €G, pe P, ¥(g,, P(g;, p)) = P(g.82,p), Ple,p) = p,
and analogous relations hold for ¥. We define @, and @, by putting $;(p) = P,(g)
= @(g, p). Let Tf denote the tangent mapping to a mapping f. For each £ /;
the relation &p(p) = T. D, - & defines a vector field £&p on P, called the fundamental
vector field on the G-manifold P, relative to £. Analogous notations and definitions
are used for the G-manifold Q.

Let F: P — Q be a mapping. For each £ € l; and each p € P, we have a curve
t = Fi(p) in Q defined by F.(p) = exp(t&) - F(exp(—1£) - p). Let d; F(p) be the tangent
vector to this curve at ¢ = 0:

8 F(p) = {% F"”)L'

The vector field p — 0, F(p) along the mapping F is called the Lie derivative of the
mapping F relative to £.
Recall that foreach pe P, se R, and each £ €],

8 F(p) = £q(F(p))—T,F- &x(p),
d
& F(p) = TF(up(—sE)-p)lPexp(sé) . aeF(eXp(—s.f) 'P)-

These formulas immediately imply the following infinitesimal criterion for a mapping
of L;-manifolds to be a differential invariant.
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Denote by I the Lie algebra of the differential group L}, and set for each x € R",
x = (x4, x% ..., x"), v(x',x% .., x")=(—x",x% ...,x"). v is an isomorphism
of R" € Ob 9, satisfying »(0) = 0, which implies that jg» € L} ; notice that det D»(0)
= —1, where Dy is the derivative of ».

THEOREM 4. Let P and Q be two L;-manifolds, F: P - Q a mapping. The follow-
ing two conditions are equivalent:
(1) F is a differential invariant.
(2) For each £ € l}, and all p € P,

O F =0,
F(jgv- p) = jov- F(p).

Let F: P —» Q be a mapping of L,;-manifolds and assume that for some vectors
&,nell, ¢ F =0, ¢,F = 0. It is easily verified that then &, F = 0, where [&, %]
is the Lie bracket of the vectors £ and # in /. This shows that for F to be a solution
of the system of equations (1) it is enough that F be a solution of this system for
each & belonging to a vector subspace of /; generating the Lie algebra .

Let X € Ob 2,, let P be an L;-manifold. Each local isomorphism « of X defines
a local -isomorphism of the fiber bundle #3X, associated with #'X—the Fp-lift
Fpa of a. The construction of &5« is directly extended to vector fields. Let & be
a vector field on X and «, its local one-parameter group. We set for each z € #p X

(N

#180) = |4 1]

This formula defines a vector field #5& on #pX which is called the #p-lift of &.

Let P and Q be two Lj-manifolds, X€Ob 2,, ® e MorF#.(L}), ©: FprX
- FoX. Let £ be a vector field on X, «, its local one-parameter group. For each
2eFpX, t - (Foa, o P o Fpa_,)(2) is a curve in FgX passing through the point
PD(2). We define

0

d
20(z) = {E (Fou o @ o Fha ) .

The vector field z — 9 @(z) along the morphism D is called the Lie derivative of the
morphism @ relative to £. The following is an infinitesimal version of Theorem 1.

THEOREM 5. Let X € Ob 2, be a connected manifold. Then each of conditions
(1) and (2) of Theorem 1 is equivalent to the following condition:

For each vector field & defined on an open subset of X, 0 ® = 0, and there exist
a point xo € X and a local isomorphism a, of X defined on a neighborhood of x, such
that ag(xo) = Xo, Foag o @ = D o Fray, and the Jacobian of a, at x, is negative.

3. Prolongation of a lifting, associated with the r-frame lifting

Recall that a fibered manifold is a surjective submersion of differential manifolds.
Let n: ¥ — X be a fibered manifold. The set of r-jets of local sections of = endowed
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with the natural differential structure and denoted by j"Y, together with the natural
projection z,: j'Y — X, is a fibered manifold called the r-jer prolongation of the
fibered manifold =. We set j°Y = Y. For any integer s, 0 < 5 < r, the natural pro-
jection 7, 4: j*Y — j*Y is a fibered manifold.

Let #,: Y, - X,, and 7=;: Y, = X, be two fibered manifolds, «: Y, -» ¥,
an isomorphism of fibered manifolds, a, = proja. By the r-jet prolongation of «
we mean the following isomorphism of fibered manifolds:

Y2 jzy = JTa(zy) = fruwavest €Y.
The correspondence Y — j'Y, a — j'a is a covariant functor from the category
of fibered manifolds and their isomorphisms into the same category. We denote
this functor by j'.

Let P be an L;-manifold, #3 the corresponding P-lifting associated with the
s-frame lifting #°. The correspondence X — j'#3 X, a - j'# 5o may be regarded
as a covariant functor from the category 2, to the category of fibered manifolds.
We shall show that this correspondence is a Q-lifting, associated with the (r+s)-
frame lifting #+°.

Consider the set T, P of r-jets with source at 0 € R” and target in P, with its
natural differential structure. Let a e L™, p € T; P be any points, and denote by
I, the translation of R” sending a point x € R” to the origin. Choosing a representative
a of the (r+s)-jet a, we may construct the mapping x - a’(x) = j§(fzmaf_x) of a
neighborhood of 0 € R" into L;. Similarly, choosing a representative u of p, we may
construct the mapping x — ua~'(x) of a neighborhood of 0 € R" into P. Then the
mapping x — (af - pa~!)(x) is defined on a neighborhood of 0 € R", and takes
values in P. We set a-p = jj(«*- woc™1). It is readily verified that this formula
defines a left action of the group L}** on T} P.

Let X e Ob 2,. Consider the fiber bundle ;X and its r-jet prolongation
J'F 3 X which is a fibered manifold; on the other hand, consider the fiber bundle
Fo *X, where Q = T, P, associated with the bundle #"+°X of (r+s5)-frames over X.
It can be shown that there exists a canonical isomorphism of fibered manifolds
between j"#3X and F5"°X. Because of this the canonical isomorphism j"#3X
has a natural structure of a fiber bundle of fiber-type Q, associated with F'+°X,
We have the following more complete result:

THEOREM 6. The correspondence X — j"#p X, a — j"Fpa is a T, P-lifting,
associated with the (r+ s)-frame lifting F'*°.
The T P-lifting j*"#% is called the r-jet prolongation of the P-lifting Fp.

Pare 1
ODD BASE FORMS AND PROJECTABLE VECTOR FIELDS
ON A FIBERED MANIFOLD
In the next two sections, ;z: ¥ — X is a fibered manifold over n-dimensional base
X. We denote m = dimY—n. The standard summation convention is used unless
otherwise explicitly stated.
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1. Odd base forms on-a fibered manifold

In this section we introduce the concept of an odd base form on the total space
of a fibered manifold. Roughly speaking, an odd base form is a field of geometric
objects which has the property that its pull-back by a section of the underlying fibered
manifold is an (ordinary) odd form in the sense of Bourbaki [3].

Let R denote the real line R endowed with the left action (a, r) — signdeta - ¢
of the group GL,(R).

Consider an n-dimensional manifold X. The bundle of fiber-type R, associated
with the bundle of r-frames #X over X, is called the bundle of odd scalars over X,
and is denoted by # 3 X. The points of this bundle are called odd scalars. Obviously,
# X is a vector bundle. Let p be any non-negative integer, and let /\" T*X be the
bundle of (ordinary) p-forms over X. The tensor product of vector bundles FzX ®
® /\’ T*X is called the bundle of odd p-forms over X. A section of this bundle over
an open set U < X is called an odd p-form on U.

Consider the fibered manifold 7: Y — X. The vector bundle n*% 3 X is called
the bundle of odd base scalars over Y. Let p > 0 be an integer. The tensor product
*FX® /\p T*Y of vector bundles is called the bundle of odd base p-forms over Y.
A section of the bundle n*#F g X (resp. »*FgX ® /\” -T*Y) defined on an open set
V < Yis called a field of odd base scalars (resp. an odd base p-form) over V. Clearly,
if & = idy then the odd base p-forms coincide with (ordinary) odd p-forms on X.

We shall now discuss the chart expressions of odd forms and odd base forms.

Let X be an r-dimensional manifold, (U, ¢), ¢ = (x*), a chart on X. Let x
— Jo(@¢™t_owxy) be the field of frames, relative to (U, ), where t_,, denotes the
translation y — y+¢(x) of R*. We denote by @(x) = [jo(g™ 1-g), 1] the equiv-
alence class in #zX over x € U, defined by the pair (jo(p™'t_pxy), 1) € FXXR.
The section x — @(x) of FzX is called the field of odd scalars relative to the chart
(U,p). Letw e FzX® /\Jn T*X be an odd form over x € U. w is uniquely expressible
in the form o = @p(x) ®w,, where w, € /\" T*X. In more detail,

w = Z O iyt p(X)@dxiiadxlisn ... Adxs,
ih<..<ly

where the expressions dx' on the right-hand side are considered at the point x,
and w;,,...;, are the components of w relative to the chart (U, ¢). If (U, ?), ¢ = (x9),
is another chart on X such that x € U, we easily obtain the following transformation
Jormula for the components of w:

— . - _ ox's ox'e

wy,...5, = signdet D(pg ‘)((p(.vc))--‘,ﬁ—j1 e Dy
In this formula, D denotes the derivative operator, and the partial derivatives on
the right-hand side are considered at the point @(x). In particular, if p = » and ©
is expressed by the formulas

o= $X)Rdx A ... Adx" = f q_;(x)®d)_clz\ e AdX",
this transformation formula reads f = |det D(pg~')(@(x))| -f.
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Consider the fibered manifold #: ¥ —» X. Let w € x*F3X®/\" T*X be an
element over a point y € Y, let (V;, y;) and (V,, y,) be two fiber charts on ¥ such
that y € V,nV,, and let (U,, ¢,) and (U,, ¢;) be the corresponding charts on X.
Then w is uniquely expressible in the forms w = ¢, (X)) ®w; = ¢,(x) ®w,, where
w, and w, are two elements of the space /\" T*X over y, and x = z(y). We obtain
the following transformation formula:

W, = SigndCtD(q)z‘Pl—l)(%”()’))'0’2-
Substituting the expression of w; (resp. w,) relative to (V;, v,) (tesp. (Va2, v2))
into this relation we directly obtain the corresponding transformation formulas
for the components of the odd base p-form w at y, These formulas differ from the
usual ones for transformation of the components of (ordinary) p-forms on Y by
a constant factor signdet D(g, i (@, ().

It can be shown that all main operations of the calculus of forms (the pull-back.
the exterior multiplication, the contraction by a vector field, the exterior differential,
and the Lie derivative) are directly extended to odd base forms in such a way that
the standard rules for computation remain valid. Moreover, an odd base form
becomes an (ordinary) odd form on the base manifold when pulled back by a sec-
tion; for these pull-backs, all main theorems of the integral calculus of odd forms
remain valid. We shall discuss these questions in detail in another paper.

2. Prolongations of projectable vector fields

Let = be a n-projectable vector field on Y, £ its n-projection, and let =, be the local
one-parameter group of =. & is a family of local isomorphisms of z. Let j"Z, be
the r-jet prolongation of Z,. We set for each jly €Y

-r— . F d -r— Y 4 }
J'E(jzy) {d, J"Z(jzy) .
j'& is a vector field on j'Y called the r-jet prolongation of the m-projectable vector
field £. j'5 is m,-projectable and =z, ,-projectable for each non-negative integer
s<randTrm jE=¢om, Tn,, j'8 =5 om,,;.

THEOREM 7. Let E and @ be two vector fields on Y. If both = and © are n-pro-
jectable, then so is the Lie bracket [=, ®), and for each r, '[E, O} = [j'Z, " @]

We shall now give a coordinate formula for the vector field j'Z. Let (V, y),
p = (¥}, )°), be a fiber chart on ¥, (Vi,y), v = (', )% ), ..., 5. ;) the
natural prolongation of (V, y) to j'Y. If f: ¥, -+ R is a function, we define

_ 9 of z of o
W =g ¥ e HF o 2 gy Y

where on the right-hand side we sum over all sequences of subscripts such that
l<i, i, <...<i € n dfis afunction on V., = 77}, o(V), called the formal
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derivative of f with respect to x*. If fis defined on j'Y, then d,f - dx* is a 1-form
onj*1Y.

THEOREM 8. Let Z be a n-projectable vector field on Y, let

5=£la +EU._._3_ .

axi dy°

be its expression for a fiber chart (V,y), v = (x',)°), on Y. Then the expression
of the vector field j'Z for the natural prolongation (V,,v.) of (V, ) is given by

0 d 7
o i oa =a
E=E4E L+ E = —
] d ox} oy° oty
where, for each non-negative integer s < r—1,

= —_ A 4 (] . J
S o= AET Vi A

and the summation over all sequences of subscripts satisfying | < i, < ... €i, €<n
is assumed.
For the proof of this theorem we refer to [23].

Parr 111
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Let us briefly recall the notation introduced in Part 1 and Part II of these lectures.
The category of n-dimensional manifolds and their embeddings is denoted by 2,.
The category whose objects are fiber bundles over n-dimensional manifolds, with
structure group G, and whose morphisms are homomorphisms of these fiber bundles
over embeddings of n-dimensional manifolds, is denoted by #2,(G). The r-frame
lifting is denoted by &', and we write for convenience #! = #. If L}, is a differential
group and P an L;-manifold, the P-lifting associated with &' is denoted by #5;.
The s-jet prolongation of %5 is denoted by j*#p. If X € Ob Z,, then g% (resp.
o%.r) denotes the projection of F'X (resp. #5X). Unless otherwise stated, the stan-
dard summation convention is applied.

Let #: Y — X be a fibered manifold, n = dimX, m = dimY—n. Recall that
a fiber chart on Y is a chart (V, ) with the property that there exists a chart (U, ¢),
@ = (x'), on X such that U= a(V) and py = (X' en,)°), 1 <i<n, 1< o< m
we write simply v = (x', °). The natural prolongation of such a fiber chart (V, v),
p = (x', »), to the r-jet prolongation ;'Y of the fibered manifold 7, is denoted by
(V,., wr)a ¥r = (xla ya’ yt}n “'!yj'li;---j,)’ l<ign l<sosm, \ s.’l SJz <.
... <j, < n. We denote by 2°(j°Y) (resp. é;(j’Y), resp. .éf,(j’Y)) the space of odd
base p-forms (resp. odd base a,-horizontal p-forms, resp. odd base z,, o-horizontal
p-forms) on Y. If ge.@’(j’Y) and s <r, the odd base p-form =% 0 e!.?"(j'Y) is
also denoted by .

13 Banach Center t. 12
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1. Lagrangian structures

Let #: Y - X be a fibered manifold, n = dimX. A Lagrangian of order r for n
is an odd base x,-horizontal n-form defined on an open subset of the r-jet pro-
longation j'Y of n. A Lagrangian structure of order r is a pair (%, 1), where n is a
fibered manifold and A is a Lagrangian of order r for x.

Let (7, 2) be a Lagrangian structure of order r, where #: Y — X is a fibered
manifold with n-dimensional base X. We write m = dimY—n, Let Q be a piece
of X, i.e., a compact n-dimensional submanifold of X with boundary 622, let CZ(Y)
be the set of smooth sections of = defined on £, and let j'y € C§(n,) denote the
r-jet prolongation of a section y € CF(Y), defined by j"y(x) = jzy. The main problem
of the theory of Lagrangian structures is to investigate the family of functions

CEm) 3y = Aoy = \j'y*ie R

o

labelled by . The function A, is called the action of the Lagrangian structure
(, A) over Q.

For a general fibered manifold z: ¥ — X there is no natural algebraic and
differential structure on the sets C£(Y). To study the action A, one therefore applies
specific methods which could be called variational. These methods consist in the
use of one-parameter deformations, or variations, of each element y € CF(x) separ-
ately, and in investigating the induced deformations, or induced variations, of the
value A,(y) € R of A at y. We shall be concerned with the problem of determining
those sections y € C3 (x) for which the value A,(y) is, roughly speaking, non-sensitive
to a wide class of such one-parameter deformations of y.

Let #: Y - X be a fibered manifold, 5 a n-projectable vector field on Y, &
its -projection, £, (resp. §,) the local one-parameter group of = (resp. £). To each
section y of 7 one can assign a one-parameter family y, of (local) sections of = by
putting y, = E,y€_;. We call y, the variation of v induced by =. Given = we obtain,
for each piece 2 c X, the following real-valued function of one real variable, defined
for some e5 > 0:

(-0, 6251 = Meyr(EvE_) = | j/EvE ¥ 1eRr.
&,

Differentiating this function at ¢ = 0 and using the standard rules of differential
and integral calculus of odd base forms, we obtain

d - .
{"Tt‘ Ao (E )’E-:)}O = SJ y*Orsl,

Q

where dpg A is the Lie derivative of the odd base form 1 relative to the vector field
J'E. The arising function

@ CE@) oy~ (IrsNa() = {/7*dpsieR

Q
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is called the (first) variation of the action A, induced by the m-projectable vector
field =.

In what follows, supp = denotes the support of a vector field =, i.e., the closure
of the set where £ is different from zero.

Using our standard notation, consider a section y e C3(n). y is called Z-sta-
tionary, or EZ-stable if the first variation (d,rs ), vanishes at y, i.e.,

(Or=zMaly) = 0.

y is called critical (over £2) if it is E-stationary for each n-vertical vector field &
on Y such that supp £ = n~1(£2). A section y of z is said to be a critical section
of the Lagrangian structure (=, 4) if the restriction of y to each piece £ = X from
the domain of definition of ¢ is critical over (.

Usually, the Lagrangian of order r for a fibered manifold n: ¥ — X with
n-dimensional base X is defined as an (ordinary) =.-horizontal n-form on an open
subset of j'Y. Replacing the n-forms by odd base n-forms, we extend the notion
of a Lagrangian structure to fibered manifolds with arbitrary, not necessarily orien-
table, base manifolds, that is, to the category of fibered manifolds over the objects
of the category %,. As for our assumption of z,-horizontality of the Lagrangian,
it is easily seen that omitting it, we do not obtain more actions. To show it consider

an element o eQ"( j'Y). There exists a unigque element h(g)e!j}( j**1Y) such that
for each section y of =,

3) Jv*e = j"1y*h(o).
This relation shows that extending the notion of Lagrangian to arbitrary (not necess-

arily n,-horizontal) odd base forms, we do not obtain new actions of Lagrangian
structures.

Nevertheless it is reasonable to take into account some odd base forms which
are, in a sense, equivalent to the Lagrangians, and are not m,-horizontal. Intro-
ducing these equivalents, we obtain a possibility of the free use of such invariant
differential-geometrical operations as, for instance, the Lie derivative, and exterior
differential, which does not preserve the z,-horizontality of odd base forms.

Let iro denote the contraction of an odd base form ¢ by a vector field &, do
the exterior differential of o.

THEOREM 9. Let n: Y — X be a fibered manifold, n = dimX, let A be an odd
base m,-horizontal n-form defined on an open subset V, of j'Y. Then there exist an
integer s > r and an odd base n-form 0, defined on n;\(V,) c j°Y such that:

(1) For each n.-vertical vector field £ on j°Y, the odd base (n—1)-form ig0,
is mg-horizontal.

() h(G) = A.

(3) For each =, o-projectable, m.-vertical vector field E on j°Y, the odd base
n-form h(isd0,) depends on the ms, o-projection of E only.

13
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The proof of Theorem 9 is based on the following three remarks. Firstly, define
a mapping h: £°(j°Y) — QE(j* 1Y) as follows, & is a unique R-linear, exterior-
product-preserving mapping such that for each fiber chart (V,v), v = (¥, %),
on Y, and each function fon V,,

h(f) = f nr+1,.r1 h(dxl) = dx‘:
h(dy%) = yidxl, ..., h(dyi,.x) = VE,..kdx .

This definition of 4 coincides with definition (3). Secondly, consider an odd base
form p e "(j*Y), where s = 2r—1, and assume that g has properties (1)-(3) of
Theorem 9. By (1), the expression of p for the fiber chart (V, y) is of the form

n s—1
e=9Q® [fowo'l' (Z Z Z 'fo‘j‘“'j‘ 'w‘}[...J,,) A mt],

i=1k=0)<..<j,
where f;, Y1/« are functions, and

wo = dx'A dxiA ... AdX", ;= (=1'"1dx'A ... Adxin ... Adx",

@)

o

W’ = dy"—yfdx", ey W g, = dyﬂl...k,—yi’,...t,fdx"-

In the formula for w;, the symbol dx' denotes that the factor dx' is missing. Thirdly,
apply requirements (2) and (3). Since 4 is mr.-horizontal, it has an expression 1
= pQ® ¥ wy, where £ is a function on V,. Since h(w’) =0, ..., H(w], .;)=0,
condition (2) gives f, = £. To apply condition (3), consider any x, ,-projectable,
mg-vertical vector field £ on j°Y. In terms of the fiber chart (V,, ¢,), £ has an ex-

pression
n
5:2 Z =2 _3 .
Jp--odi ay;r”“

k=1j,< . <h

After some calculation one obtains

. - 0¥ )
h(izdo) = ¢® [( 3 —deé) "E%+
Y
s=1
A .
¥ (-5’5-- —d,ffh i f*) ot
k=1J,5...<J; Viv-dy
oL :
( s ) = ”] e
Jyg Fl
Hence condition (3) shows that we can take
. 0¥ C
&'l...j‘ = 0’ gl"‘jl —_ - - _dfél....’k
% f it

for all k, 1 < k < s— 1. This proves the existence of a form ¢ satisfying requirements
(1)-(3). Putting 8, = ¢ we obtain Theorem 9.
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If 4 is a Lagrangian for =, the odd base n-form 6, is called the generalized Poin-
caré-Cartan form, associated with A, or the generalized Poincaré-Cartan equivalent
of 1. If 1e23(j'Y), then, in general, 6; € Q"(j°Y), where s = 2r—1.

Consider a Lagrangian structure (7, 1), where 7: ¥ — X is a fibered manifold
with n-dimensional base X, and 2 € 24(j"Y). The first variation (2) of the action
of (7, A) over a piece £2 c X is easily expressed by means of the generalized Poin-
caré-Cartan equivalent of 4. Using the commutativity of the mapping /# and the
Lie derivative operator, property (2) of Theorem 9, and writing in accordance
with our general convention 4 instead of n*.4, we obtain for each n-projectable
vector field Zon ¥V

(%) Oz i = hliy=d6y)+h(diy=0,).
This is the (infinitesimal) first variation formula. Let ¥ € CF(Y). By the Stokes the-
orem, for sufficiently small 2,

©) (8r= o) = {jy*ipzdtit § jy*ipsi.
2 a0

This is the well-known (integral) first variation formula.
Let (x, 1) be as above. There exists a unique (global) odd base (n+ 1)-form &,
on j2'Y such that, for each m-vertical vector field = on Y,

ij".':'g/l = h(i_,""gdo;_).

We call &, the Euler—Lagrange form of the Lagrangian structure (z, 4). By Theorem
9,(3), S, G IF(V, ),y = (X', y°), is a fiber chart on ¥, (U, ¢), ¢ = (x}),
the corresponding chart on X, then &; has an expression

61 = ¢®E(Z) - dy” Awo,

where w, is defined by (4), £ by the representation 1 = p® £ - we, and &,(¥F)
are the Euler-Lagrange expressions, relative to (V, y),

N\, u Z s
6D = o +;( 1) R

. , fy-.. 0
s . iy 1f2 k

THEOREM 0. Let (7, A) be a Lagrangian structure of order r, y a section of n.
The following conditions are equivalent:

(1) y is a critical section of (x, 4).

(2) The equality j*y*ij»=dB, = 0 holds on the domain of definition of y.

(3) The Euler-Lagrange form &, vanishes along j*'v, i.e., &;<j*y = 0.

(4) For each fiber chart (V, w), p = (x', y°), on Y, y satisfies the system (L) o
o j¥y =0, where &,(&) are the Euler-Lagrange expressions relative to (V, ).

Theorem 10 is an immediate consequence of the integral first variation formula

(6).
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We state the following definition. Let n,: Y, - X and xn,: ¥, - X be two
fibered manifolds over the same base, let C*(Y;) be the set of (local) sections of
n;, i =1,2. A mapping D: C*(Y,) » C®(Y,) is said to be a differential operator
of order r if there exists a morphism D": jY, — Y, of fibered manifolds over id,
such that for each section y € C®(%y), D(y) = D" o j'y.

Let (n, A) be a Lagrangian structure of order r, where m: Y — X is a fibered
manifold with n-dimensional base. Let &; be the Euler-Lagrange form of (n, 4).
&, is an odd base (n+1)-form on j*'Y, that is, a section of the vector bundle
n3 FiX® /\"HT“'jz’Y. In fact, &, is a m,,, o-horizontal odd base form such that
for each m,,-vertical vector field £ on j2'Y, iz &; is a m,.-horizontal odd base n-form.
These properties imply that &; is a section of a subbundle of =}, # z X ® /\"+l T%*Y
which may be characterized as follows. Since 7, o is a submersion, we have an
exact sequence 0 — 13, o T*Y — T*j?"Y, where the second arrow denotes the mapping
2y, w) = @ o Tny. o, wWhere Tn,, o is considered on the tangent space to j*'Y
at j2'y. This gives rise to the exact sequence

0 - %, o (" F X (T*YAn* /\"T*X)) » a3, F X /\"" ' T*?Y,
in which the second arrow is the canonical inclusion. The image of the vector bundle

Ao (PF X (T*Y Am* /\" T*X))

in
23 F i X® \" T4y
is the desired subbundle. An element
QentFzXxo/\"" 'Y

at a point j2y €;2°Y belongs to this subbundle if and only if there exists a fiber
chart (V, ), w = (x, %), on Y such that y(x) € ¥ and 2 is expressible in the form

2 =92, - dy’Adx' Adx®A ... AdX",

where 2, € R, and the form on the right-hand side is considered at the point j"y;
here as usual, (n(V), ¢), ¢ = (x%), is the chart on X defined by (V, ). This discussion
can be summarized in the following diagram:

Tl FRX @ UTY A 2 NT*X)) ————= 2" FgX @ [TV A =" N T'X]

e R
1 _

EA
I
|

j?l'y el

/’/‘
- ﬂ?r.u

T
- Y - X

This diagram shows that the Euler-Lagrange form &; may be canonically identified
with a morphism of fibered manifolds

JY > a*F gX@(T*Y An* /\"T*X)
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over 7,,.o. Considering the last bundle as a fiber bundle with base X, we immediately
see that the mapping

Co(Y) 3 y = 8,0y € C*(a*F i X® (T*Y An* /\"T*X))
is a differential operator of order 2r.

Recall that a form p on an open subset of ;Y is said to be contact if j'y*o = 0
for all sections y of . This definition applies directly to odd base forms.

The differential operator ¥ — &, < j2'y may be simplified when we choose an
everywhere non-zero odd n-form o on X; such an odd n-form always exists, and
may be constructed by means of a partition of unity. There exists a unique contact
1-form E, on j2'Y such that

(7) éez = Eaf\w.
If in the fibered chart (¥, p), ® = ¢ ® F* w,, then

Ey = £/(2) o

where w, and w’ are defined by (4), and &,(¥) are the Euler-Lagrange expressions
relative to (V, ¢). We have the following diagram:

=3, 7Y - T"Y
T /
|Ea
! /
i
(Pl 2,0
j¥y 4 ) ¢

E; is canonically identified with a morphism j2'Y —+ T*Y of fibered manifolds
OVer M, 0, and the corresponding differential operator is the mapping

C=(Y)2 y — Eyoj'y € C=(T*Y),

where T*Y is considered as a fibered manifold over X.

From now on we assume without loss of generality that each of the odd base
forms i (the Lagrangian), 6; (the generalized Poincaré-Cartan equivalent of 1),
and &; (the Euler-Lagrange form) of a Lagrangian structure (=, 1) of order r are
defined on the same space of jets, j'Y. If a Lagrangian structure of order r does
not satisfy this assumption, we simply replace the Lagrangian by its canonical lift
to the 2r-jet prolongation of the underlying fibered manifold which does not alter
the generalized Poincaré-Cartan equivalent and the Euler-Lagrange form.

Consider the Lagrangian structure (w, A) and denote by C.3 () the set of its
critical sections (with various domains of definition). A local isomorphism « of =
with projection a, is called a symmetry of (=, 2) if, for each y € C3,(Y), the section
ayag! (over its domain of definition) belongs to CZ.(Y).

There are important special cases of symmetries of (7, ) which we shall now
describe. A local isomorphism « of x is called an invariant transformation of (z, 2)
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if its r-jet prolongation preserves the Lagrangian 4, i.e., if j'a*4 = 1. « is called
a generalized invariant transformation of (m, 2) if its r-jet prolongation preserves
the Euler-Lagrange form &,, i.e., il j'a*&; = &;.

THEOREM 11. For each n-projectable vector field = on Y,
(®) Ops€i = 6apca-

This assertion follows from the equality &%, = j"«*&; holding for each
local isomorphism « of 7.

We say that a m-projectable vector field = on Y generates invariant transform-
ations (resp. generalized invariant transformations) of (z, A) if its local one-parameter

group consists of invariant transformations (resp. generalized invariant transform-
ations) of (xz, 4).

THEOREM 12. Let = be a n-projectable vector field on Y.
(1) £ generates invariant transformations of (x, A) if and only if

(9) 3_,r3/'. = 0.
(2) £ generates generalized invariant transformations of (n, A) if and only if
(10) Boper = 0.

Equation (9) (resp. (10)) is called the generalized Noether equation (resp. the
generalized Noether—Bessel-Hagen equation).

The vector fields = which are solutions of the Noether-Bessel-Hagen equation
form a Lie algebra with respect to the bracket operation; the solutions of the Noether
equation form a Lie subalgebra of this Lie algebra.

THEOREM 13. A necessary and sufficient condition for the Euler-Lagrange form
&, to vanish is that to each point jly €j'Y there exist a neighborhood V < j'Y of jrv
and a contact odd base n-form ¥ on V such that d(6,+¥) = 0.

Obviously, only necessity of this condition needs proof. Writing df, = &+ %,
we obtain a uniquely determined contact odd base (n+1)-form & ;. By assumption
&; = 0, hence d#; = 0. To prove Theorem 13 we now apply an appropriate version
of the Poincaré lemma.

Let 7 be an odd base (11— 1)-form defined on an open subset ¥ of j'Y. We say

that 7 is a first integral of (r, 1) if there exists a n-projectable vector field = on =z, (V)
c— Y and a contact odd base n-form » on ¥ such that

i_,rgdﬂ,‘ = —d’)'] +7.

Clearly, 7 is the first integral if and only if there exists a ni-projectable vector field £
on 7w, o(V) = Y such that h(iysdf,+dn) = 0. If such a vector field = exists, it is
said to be related to the first integral 7. In general, there may exist more vector
fields related to a first integral, and vice versa.

The following is a modification of the well-known first theorem aof E. Noether.
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THEOREM 14. Each m-projectable vector field on an open subset of Y, generating
generalized invariant transformations of (%, A), is related to a first integral of (r, 1).
Conversely, each m-projectable vector field related to a first integral of (x, 1), generates
generalized invariant transformations of (rz, 2).

The proof of Theorem 14 is based on (8), Theorem 13, and the standard formula
for computation the Lie derivative of an odd base form relative to a vector field.

2. Natural Lagrangian structures

We shall now consider a class of Lagrangian structures whose underlying fibered
manifolds are fiber bundles with structure group a differential group.

Let n, r, s be positive integers, P an L;-manifold, &} the P-lifting associated
with the s-frame lifting #°, X e Ob 2, o%.p: F+X — X the projection. Consider
a Lagrangian structure (g%, p, A) of order r, and denote by W the domain of defi-
nition of A. We say that (gk,p, 4) is a natural Lagrangian structure of order r if for
each local isomorphism a of X, the P-lift #5a of « leaves W invariant, and is an
invariant transformation of (¢%.p, 4), i.e., (7 Fsa)*A = A

We note that a more general notion of a natural Lagrangian structure is obtained
when we require that for each o, #pa is a generalized invariant transformation
of (¢x.r, 4).

From now on we use the following convention. If X € Ob 2, and ¢ is a vector
field on X, then the Lie derivative of an odd base form g on j*#3X relative to j'"#3¢&
(resp. the contraction of p by j"#3£&) is denoted by dep (resp. iz0).

Let R be the L,-manifold defined by the action (a,t) — |deta|™t-t of L;
~ GL,(R) on the real line R. Notice that, for each X e Ob 2,, FzX =~ FgXA®

®/\"T*x.
THEOREM 15. Let (g%.p, A) be a Lagrangian structure of order r. The following
three conditions are equivalent:
(D) (ox.r, A) is a natural Lagrangian structure.
(2) For each vector field & on X,
osh =0,

and there exist a point x, € X and a local isomorphism aq of X such that oy is defined
at xo, ao(Xo) = Xo, T, « changes orientation of the tangent space T. X, and ¥ 3%
is an invariant transformation of (0%.p, A).

(3) There exists a unique differential invariant L from an open L}**-invariant
subset of Ty P to R whose realization on X is equal to A,

Ly = 1.

Theorem 15 is an immediate consequence of Theorem 1 and Theorem 5.
Let X € Ob 2,. Theorem 15 and Theorem 3 imply that there exists a one-to-one
correspondence between the set of Lagrangians A of natural Lagrangian structures
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(ob.x, A), the set of differential invariants L from open, L_*‘-invariant subsets
of T} P into R, and the set of natural transformations of the lifting j"#3 to the lifting
F z. Accordingly, a natural Lagrangian structure of order r may be looked upon
in three equivalent ways: (1) as a Lagrangian structure of certain invariant proper-
ties as defined above, (2) as a differential invariant between appropriate L;**-mani-
folds, and (3) as a natural transformation of a certain 77 P-lifting to the R-lifting
Fxr.

In particular, given a natural Lagrangian structure (o%,p, 4} and the correspond-
ing differential invariant L from T3 P to R, this correspondence allows us to assign
to each X € Ob 2, a natural Lagrangian structure (o%,p, Lx). In this sense we say
that a natural Lagrangian structure is canonically extended to the whole category
Dy .

Let (o%.p, 4) be a Lagrangian structure whose underlying manifold is a fiber
bundle g% p: F3X - X. Then the r-jet prolongation j"#3X of FpX is a fiber
bundle of fiber-type T P associated with #7**X. Denote by £}, 5} ;., ..., &} ;. .. j...
the fundamental vector fields on T} P relative to the elements of the canonical basis
of the Lie algebra I;*° of Lp**.

THEOREM 16. Let U be an Li,**-invariant open subset in TP, L: U — R a mapping.
L is a differential invariant if and only if the following two conditions hold:
(1) FO" each irj’jla “-’jr+s’ 1 S i’ jg n, 1 Sjl g_]'z g s sjr-}-s $ n,

EiL)+8-L =0,
(1
E}LJ](L) = 0, ceey ‘:;:IJJ "‘jH-.l(L) = O.

(2) There exists an element a, € Lyt°, ay, = jgt*o,, such that det Day(0) < 0,
and for each p € U,

(12) L(ao - p) = |det Doy(0)|~* - L(p).

Theorem 16 is a modification of Theorem 4. Let aj be the canonical coordinates
on the Lie group L}, and write, for each a € L}, bi(a) = aj(a™"). Then a;b} = ¢;.
Since d(deta)/da) = b} - deta, we have d|deta|~'/da} = —b]- |deta]~ . The funda-
mental vector field (&)x on R, defined by the vector £ = (8}) € /i, is of the form

B _ 0 -1y d__l.f,i_
(Ej)ﬂ —{ aa} Ideta] }z tE— ajt dt.

To derive (11) from Theorem 4, we apply this vector field.

Theorem 16 implies that the problem of existence of a nontrivial natural La-
grangian structure (o}, p, 4) is equivalent to the problem of existence of a nontrivial
solution of the system (11) of partial differential equations, satisfying the additional
condition (12).
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3. The Euler—Lagrange form of a natural Lagrangian structure

Let P and Q be two L;-manifolds, X € Ob 2,, and let 3 X (resp. #3X) be the
corresponding fiber bundle of fiber-type P (resp. Q) associated with the bundle
of s-frames #°X. Let D: C°(FpX) - C*(F,X) be a differential operator of order
r. We say that D is a natural differential operator of order r, if for each local iso-
morphism ¢ of X, D(Fpa oy ca™ ') = Fga o D(y) o a™'. A necessary and sufficient
condition for D to be a natural differential operator of order r is that there exist
a morphism D": j*FiX - F,X over idy, and a differential invariant A: T;P - Q
whose realization on X is D", i.e.,, Ay = D".

Let F4: 9, - F&,(L}) be a lifting such that 0 = /\MR” is a vector space
of exterior forms on R". Recall that if « € Mor 2,, a: X, - X,, then for each
w e FoX, overapoint xeX,, Foa(w) = w* (T« )™, where the tangent mapping
Te~ ! is considered at the point «(x) € X,.

THEOREM 17. The Euler-Lagrange form of a natural Lagrangian structure is
a natural differential operator.

Theorem 17 is a reformulation of the well-known transformation properties
of the Euler-Lagrange expressions. Let (0%, p, 4) be a natural Lagrangian structure
of order r, X € Ob 9,, let &, denote the Euler-Lagrange form of (o%,», 4). Since
for each local isomorphism « of X,

EGrFpana = (j"Fra)*&;,
and the Lagrangian structure (o%, p, A) is natural, we have (jJ'Fpa)*&, = &, or,
which is the same,
Eroj Fra =& (T7Fpa ).
The right-hand side expression is equal to Fgya o §,, where Q denotes the fiber
of the bundle

ox. p FRXQ(T*F3 X nok.»/\"T*X)
in accordance with the first diagram of Section 1. This shows that &; defines a natural
differential operator. We note that in general, this differential operator is of order
2r (compare with the convention introduced in Section 1).
Our last remark in this section is concerned with an important class of natural
Lagrangian structures appearing frequently in practice.

THEOREM 18. Let (o%.p, A) be a natural Lagrangian structure of order r,
X € Ob 2,. Assume that the following two conditions hold:

(1) P is a vector space endowed with a linear representation of the group L;.

(2) The base manifold X is endowed with an everywhere non-zero odd n-form

Define a contact 1-form E, on j"#3 X by the formula &, = Eyrw. Then E,;
defines a natural differential operator from C*(F3X) to C*(F3+X), where FpeX
is the dual bundle of the vector bundle #3 X.
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To show it we may proceed as follows. Assume that we have a Lagrangian
structure (7, A) of order r such that #: E — X is a vector bundle, and there exists
a o,-horizontal odd base n-form @ on j E such that for each section y € C*(Y),
J™y*e is an everywhere non-zero odd form on X. Roughly speaking, j"y*w is a “volume
element” on X. Since E is a vector bundle, we have the following exact sequence
of vector bundles over E: 0 - n*E — TE — n*TX — 0. The kernel of the morphism
TE — a*TX is the bundle V'TE of n-vertical vectors over E; that is, a*E is isomorphic
with VTE. Define E; as above (see also (7)). Then the forms &, and E; may be
interpreted as the following morphisms of vector bundles:

‘1 n EA
¥ VTE - FzX® /\'T*X =¥ ,VTE > XxR
l u ] Voo,
JE ——— X JE— X
Since 7)o VTE = n¥,n*E ~ n*E, E, is a linear form on #*E, i.e., a section of
7} E, and we have the following diagram:

alE — E*
= |
1 Ea
L
JJE— X

This shows that E, defines a differential operator from C*(E) to C®(E*). Now
we take E = #3 X, Then it is easily seen that under the assumptions of Theorem 18
E; is a natural differential operator.

4. Induced variations

Let P be an L;-manifold, X € Ob 2,, and consider a (not necessarily natural) Lagran-
gian structure (gx,p, 4) of order r. Each vector field & on X defines its #5-lift F3&
which is a %, p-projectable vector field on F3X whose projection is & Let
y € C*(FpX). The variation of y generated by #3£ is called the variation induced
by & (via the lifting #3). The variation of the action of (p%.p, 4) induced by £ is the
variation of the action generated by #3£. In this section we discuss the infinitesimal
first variation formula (5) for the induced variations of (o%.p, A).

Let (U, ¢), ¢ = (x"), be a chart on X, (¥, ), a chart on #3X such that V
= n~}(U) and y = (x!, p°). We shall express the first variation formula in terms
of these charts and their natural prolongations to j*#}X.

Let £ be a vector field on X, let

0
13 = g, _Z_
(13) -
be its expression for the chart (U, ). We shall determine the expression of Fpé
for the fiber chart (V, y). Denote by (a, p) = ¥(a, p) the action of L] on P. Let
zeV, x = z=(z), let ¢, be the translation of R" sending y € R” to the origin. Write -
in the form z = [j3(¢~"1_,)), p). Then for all sufficiently small r,
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Fro(z) = [J'S(tp'lf—m,(x)), yl(jg(tw,(x)‘}?at(}’_lt—wu)), P)]
Hence

xt o Fro(z) = x' o ay(x),
Fra(2) = p° o V(o (tpn,m P2 @™ _pe0)s P).
This implies

{% (x' o F3 a,)}o= {gt (' o a,)}o= &,

and it remains to compute the coefficients at d/dp? in the expression of %3¢ for the
fiber chart (V,y). Denote by gj,, ..., q},, ;, the canonical coordinates on the
group L; and by e the identity of L}. Denoting by t;,,'(,) the ith component of the
mapping f,q (x) We obtain immediately

d 5 _
_dqu ° 'P(Jo(’w.(x)?’“:?’ lt—w(x))’P)}
o

p° w Cal d )
Z k' ‘ 3aj e oxir .. ax.’k_ =?{ (t’:’“l(l‘)¢a!¢ 1t—tp(x))}o-

Differentiating the mapping (¢, ¥) > (fga,ce) P% @~ *1_(x)(¥) We obtain the expression
(6*EH/(0x)1 ... 8x'x). Consequently,

9 S~ e g
14 sE =g Z——— P LN —
( ) ?PE E axi + “— k! F‘ ax-’x ] axh‘ apa »

where F:/« are functions on V, uniquely determined by the lifting #§ and the
charts considered.

Consider, for example, a vector space P endowed with a linear representation
of the group L,. Let p° be the global coordinates on P defined by a basis of the
vector space P. Let the linear representation of L! on P be expressed by the formulas
p'(a-p) = ¥i(a)- p°(p). Then F{° = C{°-p’, where Cjc = {0¥?/0aj}. are some
constants satisfying Ci3 - Cpt, = 85+ G

We are now in a position to express the infinitesimal first variation formula
of the Lagrangian structure (g%, r, 4) in terms of the fiber chart (¥, ») and its natural
prolongation (¥, y,) to j"#3 X. Asusual, A = § ® Lw,, wherewy = dx' A ... Adx"
and #: V, = R is a function. Similarly, &; = ¢ ® &,(L) - dp° Aw,, where &,(F)
are the Euler-Lagrange expressions relative to (¥, y). Let 6; be the generalized
Poincaré-Cartan equivalent of A. Recall that in our coordinates,

n r—1

0= 3O (Lwot Y > D fihehat ),

i=1 k=04 <),
where forall k, 1 < k < r—1,

w; = (=D"dxt A o add T Ad T A LA dX,
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a

Wy, 5 = dpj"l _.._;,—P}', ...J.ldxis
. 0¥
qy o d, = =0, f;,...i, =

f ? 31?71 e fi

Let ¢ be a vector field on X. Using (13) and (14) we obtain after some calculation

—d fiise

5

- 3]: i
k=
But
(L) F"'—gi— d(8,(L) - Fj* - E)—d(6,(L) - Fi)- &,
e 98 oL J 35‘)
) B s d’(g () B 5

— d,,(dh (J,(_Cf’) . F{J f")&‘) +d;,d;, (é’o(g) . F{J’”)f‘,
so we have

h(i¢d6;) = ¢®[(—r5’a(3’) - pi—d, (8,(F)- FI<)+

+d;,d;, (8,(L) - F)— ) ¥ +d;, (6,(L) - FI"E)+

i
+djl(£a($) * F{:J;U aE ) d.l:(d.h(£ (g) tho E )+ )] "o
Similarly
n r-1 i
h(dleal) = w@dl(-?&"*_zds Z f:j.'”jt.d.’l i d (Ei aagm meM))
i=1l k=0/,< ../,

Summarizing these calculations, we obtain the following chart expression for the
Lie derivative of the Lagrangian A relative to the vector field j"#3¢:

(15) &A= ¢®[(—f3’a(3’) - pi —d;, (8(Z) - Fl)+dydy, (L) - F{¥—~ ..) - &'+

+d,($a(.':?) . F;6£m+(ga(_g7) . F"’.Iha__gﬂ__) dj; (Ja(g) Ful".f"')+ +g£l+

X0 S i e

i=1 k=0},<..<J

0.

Notice that this representation of the Lie derivative of A contains two terms, the
first one depending linearly on £, and the second one of the form of exterior derivative
of an odd base (n—1)-form.

In the following theorem the chart expressions of &, #3£, 4, and &, are assigned
to a fiber chart (V, y), v = (¥, p°), on #3X in the same manner as above.
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THEOREM 19. The following four conditions are equivalent:
(1) For each vector field £ on X, d; 4 = 0.
(2) For each vector field £ on X,

h(i:d6;)+ h(di.0,) = 0.
(3) For each fiber chart (V,v), v = (x', p°) on FiX,
(16) —E(L) pi—d;, (L) F°)+d,dj(6,(%) Fi*)— ... = 0.

(4) For each vector field & on X and each fiber chart (V, ), v = (x, p°) on
FiX,

n r

Y ma an o Em
an afzes DY Z sty .. dy (B 2 pre) 4
i=1 k =0},<..<j;
+E(L) FRE"+8,(L) il Zi? ~d) (8o( L) - Fil ™)+ ) =0.

The equivalence of (1) and (2) follows from the first variation formula. To
prove the equivalence of (1) and (3), notice that for each piece {2 — X such that
£2 < U, each section y of F$X over £, and each vector field & on U such that all
the partial derivatives of its components & relative to (U, ¢), of order < r, vanish
along the boundary 0R of Q,

Vivaer = (jryea,- 6 @,
fo] 2

where A; is the expression on the left-hand side of (16). This relation is a direct
consequence of the chart expression of d; A and the Stokes theorem. Now if (1)
holds, then obviously (3) must hold in the interior of each £, and hence everywhere.
Conversely, assume that (3) holds and there exist a vector field £ and a point of
J*F X at which d;1 # 0. Then there exists a piece 2 = X containing the projection
of this point, and a section ¥ of #3X over £ such that

Viy*aer # 0
o)

which is a contradiction. Hence (3) implies (1). The equivalence of (4) and (1) follows
from the chart expression of 2; 1 (15).

A natural Lagrangian structure satisfies each of the four equivalent conditions
of Theorem 19.

Let us assume that we have a natural Lagrangian structure (gx,p, 4). With the
notation of Theorem 19, put for each vector field & on X, locally,

Ne = ig0;.
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Then, by condition (2),
igdﬂl = —d?']e-}-vg,

where »; is a contact form. That is, 7; is a first integral of (gk.r, 4) and the vector
field F3¢& is related to this first integral. This assertion is in fact the first theorem
of E. Noether applied to the transformations induced by the lifting.

We may easily obtain a chart expression for 7 over a point x € X, where £(x)
# 0. About such a point there exists a chart (U, ¢), ¢ = (x*), such that & = 9/dx!,
and we have

n r-1
0, = p® (-?wo— Z Z Z fJ"""t(p‘L gl O W, ...J,'\i(a/axl)wt))-
T=1k=0/1s .. sJ,

Let £ be a vector field on X. Then for each y € C3,(FrX), dj'y*y, = 0. This
relation is called the weak conservation law associated with £,

Consider conditions (3) and (4) of Theorem 19. Relations (16) are called general-
ized Bianchi identities of the patural Lagrangian structure (ox, s, 4). Since the
expressions on the left-hand side of (17) are of “divergence type”, that is, are of the
form h(dy) for some odd base (n—1)-form j, relations (17) may also be regarded
as some “conservation laws”. In accordance with standard terminology, we call
them strong conservation laws of (pk.p, A). Each strong conservation law may be
rewritten in the form h(d®;) = 0, where @, is an odd base (n—1)-form on j"#} X.
By an appropriate Poincaré lemma, this is equivalent to saying that there exists
an odd base (n—2)-form vy, such that @; = dy;+ x:, where y: is a contact form.
Each such a form v, is called a superpotential of the natural Lagrangian structure
(ox.», ).

Note that both systems of identities (16) and (17) hold universally in the con-
sidered category 2, of differential manifolds.

The assertion that if (¢%,p, 4) is natural then the generalized Bianchi identities,
or equivalently, the strong conservation laws hold, is the second theorem of E. Noether
for natural Lagrangian structures,
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