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Given an arbitrary fibered manifold #: ¥ — X, a connection on Y (or a generalized
connection) means any section I': Y — J'Y (= the first jet prolongation of Y),
[3}, [5]. Analogously, a non-holonomic rth order (generalized) connection on Y
is a section Y — JY, where the rth non-holonomic prolongation J'Y of Y is defined
by the iteration J'Y = J'Y, J'Y = J*! (J'=1Y). In fact, the first order absolute differen-
tiation with respect to a generalized connection I" is of the same form as in the
classical case of a principal connection. On the other hand, the absolute differen-
tiation of higher order requires quite new procedures. We first explain how such an
operation can be defined in terms of the successive vertical prolongations of I
However, this approach has somewhat “static” character and cannot be applied
to higher order connections. That is why we develop a “kinematic” approach based
on the idea of a parametrized jet. (It seems that the latter concept can be useful
in some other higher order theories as well.) Then we deduce that the iterated ab-
solute differentiation with respect to the vertical prolongations corresponds to the
construction of the product of connections, [8]. In particular, the use of the successive
vertical prolongations of a first order connection I is equivalent to the use of the
prolongations of I" in the sense of Ehresmann, [1], [2].

1. Vertical prolongations

Consider a connection I': ¥ — J'Y. In local fiber coordinates x’, }? on Y, the
equations of I" are

(M dy? = FP(x, y)dx'

with arbitrary smooth (i.e., infinitely differentiable) functions F?. Given a vector
field £ on X, denote by I'¢ the I-lift of & Using flows, we prolong I'¢ into a vector
field V' (I'¢) on the vertical tangent bundle VY of Y, [4]. The mapping & V(I'¢)

[153]



154 I. KOLAR

determines lifting with respect to a unique connection VI' on VY — X with the
following equations

OFf (x, )
= =i
where 7? = dy? are the induced coordinates on VY. By iteration, we obtain a connec-
tion V'['=V(V""1I') on the rth vertical tangent bundle V'Y = V(¥ ~1Y).

The connection map wp: TY — VY assigns to every vector of T}, Y its projection

into ¥V, Y in the direction ['(y), y € Y. The equations of wp are

©)] n’ = dy?—F}(x, y)dx'.

Given a manifold M and a smooth map f: M — Y, the composition Vyf of the
tangent map Tf: TM — TY and wr is said to be the absolute differential of f with
respect to I', Vrf := wp o Tf: TM — VY. Denoting by

JI(M’ Y,ﬂ) = UJI(M, Yx)
xeX

) dy? = FP(x, y)de,  di? nidsd,

the space of all 1-jets of M into the individual fibers of ¥, the absolute differential
of f can also be interpreted as a mapping Vrf: M — J' (M, Y, 7).

Taking into account V1" and Vnf: TM — VY, we can construct the absolute
differential V&f := Vyn(Vrf): TTM — VVY called the second absolute differential
of f with respect to I. By iteration, we obtain the rth absolute differential of f with
respect to I"

@ v 1= Vyrar (Vi f): TOM - V'Y,
where T®M = T ... TM. We recall that every non-holonomic r-jet 4 € J,(M, N),

r-times

determines a map A4,: T°M — T{°N by the following induction, cf. [7]. In the
first step, the identification J3(M, N), = Hom(T,M, T,N) is trivial. For r > 1,
we have 4 = jlf, where fis a section M — J *=1(M, N). By the induction hypothesis,
f determines a map f,.: TC~YM — TN and we set
©) Ay = T,(fy) : TOM > TON.
Analyzing (4), we prove

PrOPOSITION 1. For every p € M, there exists a unique semiholonomic r-jet
Ae j;(M , Yy), x = nf(p), satisfying

Ay = Vif(p): TPM - Vi Y = Tfy(Y)-

(We remark that Proposition 1 follows immediately from formula (26) below.)

Hence we can also write

Vif: M > J(M, Y, n) := U J(M, Y,).
xeX

In particular, if ¢ is a section of Y with equations y* = o?(x), then we deduce by
(2-(4) that the coordinates of V7f are do?/dx'—FF(x,0) and
©) d%a? oFf  oFF o0¢? OFFf 00 OFf
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We recall that the curvature of I' is a section 2p: Y - VY ® /\ZT*X with the
following coordinate expression, [3],

) 7P = (0;FF +Fi0,F)dx' ndx’.
Applying alternation to (6), we obtain
PROPOSITION 2. For every local section o of Y, o(x) = y, we have

A(Vio(x)) = ~2r(»),
where A means the difference tensor, [2].

2. Parametrized jets

Let M, N, P be manifolds and C*(N, P) the space of all smooth maps of N into P.
(Hence C*(N, P) is not a manifold in the classical sense.) A map f: M - C*(N, P)
will be called smooth if the induced map

f: MxN—> P, f(p,9)=f(p)(@), peM,qeN,

is smooth; the set of all such maps will be denoted by C*(M, C*(N, P)). We shall
say that two smooth maps f, g: M — C®(N, P) are r-equivalent at p e M, if
(8) Jpf(—=,q) = jpg(—, @) e J;(M, P) for all geN..

The equivalence class 4 = j, f will be called r-jet of M into C*(N, P), p = x4 or
f = BA is the source or target of A, respectively. Similarly to the classical case,
we write J'(M, C*(N, P)), J5(M, C*(N, P));, etc.

Every jyfeJy(M,C®(N,P)) determines a map Jif(—=,q): N— Js(M, P).
Conversely, given F: N — Ji(M, P), one can prove that there is a neighbourhood
pelUc M and f: U— C®(N, P) such that F(q) = j.f(—, q). Thus, we have an
identification

©) Ji(M, C*(N, P)) = C*(N, (M, P)).

That is why the jets of this type will be said to be parametrized jets. Obviously, any
element of J;(M, C*(N, P)); is a mapping F: N — J,(M, P) satisfying pF = f.

EXAMPLE 1. The tangent space T, M of a manifold M can be defined as T,(M)
= J§(R, M),. If we introduce similarly T;C*(N, P) = Jo(R, C*(N, P))y, we
obtain the standard interpretation of the elements of T;C*(N, P) as mappings
F: N — TP over f, which are called vector fields along f. In this case, identification
(9) gives T(C*(N, P)) = C*(N, TP).

If Q is another manifold and B = jfg € J{(Q, M), an ordinary jet, we have the
composition

(10) Ao B:=ji(f8) €T (Q, C°(N, P)),

A = jife Ji(M, C*(N, P)). Further, any smooth map F: P — Q transforms jzf
into

(11) Fo(j3f@) = ji(F o fw) e J (M, C*(N,Q)), ueM.
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On the other hand, any Fe C*(Q,N) transforms j,f into
(12) (s f@) o F = j; (f(w) o F) e (M, C*(Q, P)).

Consider a fibered manifold #: ¥ — X and the space
C*(N, Y, n) := U C°(N, ¥,) =« C*(N, Y)
xeX

of all smooth maps of N into the individual fibers of Y. We have an induced map
b: C*(N, Y, n) > X. Obviously, we have
(13) J(M, C*(N, P)) = C*(N, J'(M, P), ),
a: J'(M, P) - M. A mapping f: Q - J(M, C*(N, P)) will be called smooth
if it is smooth under identification (13). :

The non-holonomic parametrized jets can be introduced by the following
induction. For r = 1, we have the above holonomic case. Given a smooth section

f: M= J=1(M, C*(N, P)),

Jafwill be called a non-holonomic r-jet of M into C®(N, P). Analogously to (13),
we have .
(14 J(M, C*(N, P)) = C*(N, J'(M, P), «).
Formulae (10)—(12) are naturally extended to non-holonomic jets. The semi-holo-
nomic parametrized jets are introduced in standard way.

If AcJy(M, C*(N, Y, 7)), then b4 € J;(M, X) is an ordinary r-jet. Denoting
by

e J(M, Y) > J(M, X)
the map derived from s, we easily find an identification
(15) Ji(M, C*(N, Y, n)) = C*(N, J3(M, Y), ).
In other words, the elements of j;(M , C*(N, Y, m)) are maps of N into J(M,Y)
over the same element of J;(M,X). We shall use the symbol
J(M, C*(N, Y, )5 < JY(M, C°(N, ¥, @)y, BelJyM,X),

for the subspace of all jets over B.

EXAMPLE 2. Take N =Y, f= e, =idy,, M =R, p =0 and put
(16) LY = J§(R, C*(Yy, Y, @)).,.
Every element of L,Y is a vector field along Y, over the same vector of T, X, i.e.,
a projectable vector field along ¥,.

3. Fiber jets

We shall say that two maps f, g: Y — N have r-th order fiber contact at x € X if
Jyf =j;g for all y e Y,. Such an equivalence class jif will be called a fiber r-jet
of Y into N. Using local coordinates, we easily find that any two of the following
three conditions are equivalent:
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@ jzf = Jjzg,
(i) ji(f © 6) = ji(g ° 0) € JL(X, N) for all local sections o of Y,
(iii) for any local trivialization of Y, jif(-,y) = jig(-, y) € JI(X, N) for all
yevY;.

If o* are some local coordinates on N, then a fiber jet of ¥ into N is determined
by smooth functions f*(3), fA(»), ..., f#..i (y) defined on the corresponding fiber
of Y and symmetric in all subscripts.

Given another fibered manifold o: W — Z, we denote by J(Y, W) the set
of all fiber r-jets of fibered manifold morphisms of ¥ into W. If U — Vis a third
fibered manifold and f: Y- W or g: W — U a morphism over fo: X - Z or
go: Z — V, respectively, then we define

an (:8) ° Uif) = Jji(g o f),  z = fo(x).
Hence the fiber r-jets of fibered manifold morphisms form a category J" with a
canonical functor into the category J* of ordinary r-jets.

Let C®(xn, Y, N) := ) C*(¥Yy, N) be the space of all smooth maps of the
xeX

individual fibers of ¥ into N and a: C®(x, ¥, N) - X the natural projection. A map
i M- C®(x,Y,N) will be called smooth if

(a) af: M — X is smooth,

(b) the derived map f: (af)~*Y — N, f(p, q) = f(p)(g) is smooth, provided
(af)~'Y means the induced fibered manifold over M. In particular, a section o: X
— C*®(m, Y, N) is smooth if the derived map 6: ¥ — N, 6(») = o(wy)(y) is smooth.

ExAMPLE 3. Set LY = | JL,Y. A smooth section o¢: X — LY corresponds
xeX

to a projectable vector field on Y. The bracket of such fields defines a bracket oper-
ation on the sections of LY, what endows LY with a Lie algebroid structure in the
sense of [6]. We remark that LY is the Lie algebroid of the groupoid GY defined
in § 4 below.

Let u: S — X be a fibered manifold and F: S — Y a base-preserving morphism.
Then we have an induced map

F*: C(M, C*(z, Y, N)) > C*(M, C*(u, S, N)),  (F*f)(p) = f(p) o (FIS;e)-
In particular, any section ¢: X — Y determines a map o*f: M — N.

Two smooth maps f, g: M — C®(xw, Y, N) will be called r-equivalent at pe M
if jp(o*f) = ji(o*g) € J5(M, N) for every local section ¢ of Y. If af = ag =:4h,
this condition is equivalent to the fact that the derived maps f, g: A~'Y — N have
rth order fiber contact at p. In this situation, we shall also use the classical notation
Jnhs Jy(M, C*(zm, Y, N)), etc. In local coordinates #* on M, an element of
J'(M, C*(w, Y, N)) is determined by smooth functions fX(»), f2(2), ..., for..e, (D))
on the corresponding fiber of Y.

To introduce non-holonomic fiber jets, we first present the construction of
ordinary non-holonomic jets in a convenient form. First of all, any 4 6.7,,2(M ,N)
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is of the form A —ij where F is a section M — J' (M, N). Every F(p,), p, € M,
is defined by F(p,) = ],,2 f(~, p,). Hence we have a smooth mapping f: MxM —» N
and we can write 4 -],,f = j3(js. S, P2)) eJZ(M N). For arbitrary r, we take

similarly a map f: >< M — N and construct j,,'f=j,,jp2 wJp, f€ J;(M, N).
The space J'(M, C®(w, Y, N)) is defined by the following induction. For
r = 1, we have the above holonomic case. Assume by induction that we have defined

f;“fe j’“l(M, C*(w, Y, N)) for any smooth map f r_><1 M- C*@m,Y,N). A
section
p: M- j"l(M, C*(%, Y,N))
will be called smooth if there is a smooth map
fi Mx r><1M—> C®(@x, Y, N)
such that
o) = Jifu, =)
for all u e M. Let
p: M~ J-Y(M, C*(x, Y,N)), y=7ji"gu, —)
be another smooth section. Then we define
jre = by e (M, C(n, Y, N))
by requiring
Jyo¥f = Jrorg e (M, N)
for every local section ¢ of Y.
If : W — Z is another fibered manifold, then
Co@, Y, W,p) c C°(n,Y, W)

means the subspace of all smooth maps of one fiber of Y into one fiber of W. Any
CeJ,’,‘(M C®(n, Y, W, 9)) determines aCeJ'(M X) and bCeJ'(M Z). Given
AEJ’(M X) and BeJy(M,Z), we denote by J;(M,C*(x,Y,W,0))s
c J;(M C*(w, Y, W, 0)); the subspace of all jets over 4 and B. Any element
Aeld '(X C*(x, Y, W, 0) satlsfymg ad = jiidy =: E] will be called non-holonomic
ﬁber r-jet of Y into W and J’(Y W) will denote the space of all such jets. If B
EJQ(W, U), z = bfA, we define B o 4 e[(Y, U) by iterating (17). Thus we obtain
a category J J* of non-holonomic fiber r-jets.

Consider further A eJi(M,Y) and BEJ;(M C*(n,Y,N)) satisfying 74
= aBeJ'(M X) We may write 74 = aB = ];h A= pr B = jig, where for g

is a map of ><M into Y or C®(%, Y, N) over the same map A: >r<M—+ X. Then
(gf)(p1: ---apr) = g(pls "'9pr) (f(Pu ---,Pr))

is a mapping of X M into N and we define
(18) B-A = ji(g- /) e j(M, N).
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Assume that Y and W have diffeomorphic fibers and denote by
I°(z,Y, W,p) c C*(%, Y, W, )
the subspace of all smooth diffeomorphisms. For every
A=jfely(M,I°(n, Y, W,0)),
we introduce its inverse
(19) A = () ey (M, I°(0, W,Y, 7)),

where f~1 is the inverse diffeomorphism of f. For non-holonomic r-jets of M into
I°(z, Y, W, p), such an inversion is defined by standard induction based on (19).

4, Elements of connection

Consider the groupoid GY := I*(%,Y, Y, n) of all diffecomorphisms between the
individual fibers of Y. Using an idea by Ehresmann, [1], we define the space of all
non-holonomic rth order elements of connection on Y at x by

(20) Q;Y = J;:,O'; (Xa GY)ex,E;;
where 0% means the r-jet at x of the constant map ¢+ x, ¢ € X. Since any 4 € Q; Y
satisfies a4 = 0%, we can also express Q% Y as

1) OLY = Ji(X, C*(Y,, ¥, @),

By (15), every C e Q; Y is identified with a section I": Y, — J'Y. Hence any smooth
section
C:X-»0v:=UQoLY
xeX
is identified with a section I": ¥ — J'Y, i.e., C is a non-holonomic rth order connec-
tion on Y.

The absolute differential V,B of Be f;(M , Y) with respect to an element
of connection A4 e 0.Y, x=mpfB, is defined as follows. We have A~!
€ Jx er (X, GY),_or and 7B € J'(M X)., so that we can construct (4~ o (nB)) B
€ J’(M Y) by (10) and (18). Since b4~ = 0f, the latter jet belongs to J’(M Yo).
Then we set

(22) V4B := (4! o (nB))-BeJy(M, Y,).

In particular, if B ej’Y, then (22) is simplified to V,B = 4~1- B. Given a map
fif M- I: and a connection I: Y —» J'Y, we use the corresponding section
C: X » QY to define

(23) Vif () = Vewit /€Ty (M, Y), x = af(p).

The map Vrf: M — J*(M, Y, ) is called the absolute differential of f with respect
to I '
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5. Product of connections

Consider an rth order connection C: X — Q’Y and a first order connection
D: X - QY. Let
D(x) = jxpt), @(t): Y- Y,.
Since B
C(t) e J{(X, Cc*(Y,, Y, ”))et.Eb
we have B
C(t) o p(1) e J}(X, C*(Ys, ¥, m))
by (12). Then
24 JA(C) o p(1) € T (X, C2(Ys, ¥, 1)), o+t = O5F1Y.

Hence we obtain a non-holonomic (r+1)st order connection Cx D: X - O'+1Y.
(For principal connection, this operation was introduced by Virsik, [8].) Taking
into account the corresponding sections I': ¥ — J'Y and 4: Y — J'Y, we deduce
by (24)

PROPOSITION 3. The section I'« A: Y — Jreiy corresponding to Cx D: X — Q' *1Y
is I's A = J' o A, where J'I': J'Y — J''Y is the jet prolongation of I': Y — J'Y.

In particular, if I" is a first order connection on Y, then I'*~V = I"s« s ... 1"
T times
is the (#r— 1)st prolongation of /" in the sense of Ehresmann, [1]. The values of "¢~
lie in the rth semi-holonomic prolongation of Y, [2].

Given B e f;“(M , Y), we determine a construction of the absoNIute differential
Vesney B, x = affB. We have B = j; F, where F is a section M — J"(M, Y). Using
I': Y - J'Y, we construct VyF: M — J'(M, Y, 7). By (8), VF can be interpreted
as a map TWM — VY. Taking into account the rth vertical prolongation V*4
of A, we get

Vira(VrF) (p): T§HOM — VrH1y,
which corresponds to an element of f;“(M , Y). By the definition of V"4, we deduce

PROPOSITION 4. We have

Ve B = Vyrr(VrF) (p).
In particular, if we have r first order connections I';, I',, ..., I', and consider
their product I', = I, % ... x I, Proposition 4 implies

PROPOSITION 5. For any f: M — Y, we have

(25) Vrsrgs.orf = Vyr=ip, ... VVPZVplf-

If 'y =TI, =..=1I,=1T, then the right-hand side of (25) is V3.f in the
sense of § 1. Hence we have
(26) Vif = Vre-uf.

This formula shows that the rth order absolute differentiation with respect to a first
order connection I" on Y in the sense of Section 1 coincides with the absolute
differentiation with respect to I'¢"~1,
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