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1. Introduction

The Poincaré metric

_ Adzdz
T (1-1z13)?

in the unit disk gives a model for hyperbolic geometry in which the geodesics are
the circular arcs meeting the boundary of the disk perpendicularly. In Klein’s model
of hyperbolic geometry, the distance between two points p, ¢ in the disk is given by

(1.2) d(p, q) = |log(ab; pg),

where a, b are the points where the line pg intersects the boundary of the disk and
(ab; pq) denotes the cross ratio of these four points. In this model, the geodesics
are ordinary lines. While the Poincaré metric is conformally invariant and can be
generalized to arbitrary complex analytic spaces [12], the distance (1.2) is manifestly
a projective invariant. As observed by Hilbert in his letter to Klein [10}, formula
(1.2) defines a projectively invariant distance for any convex domain in affine space.
The ordinary lines are geodesics with respect to this distance and, if the domain
is strictly convex, they are the only geodesics. Roughly speaking, the fourth problem
of Hilbert was to determine all metrics in domains in projective space whose geo-
desics are all lines, see [7], [24).

In [13) I generalized the Hilbert metric to all domains and also to affine and
projective manifolds. This was further generalized in [14] to affine connections.
The purpose of this article is to review [13], [14], [15], {17] and Wu’s recent paper
[30] by supplying more details where desirable and to relate our results with the
work of others. To make the paper accessible to topologists as well as to differential
geometers, 1 consider domains and affine or projective manifolds first. The case

(1.1) ds?
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of affine connection is discussed in the last section. For the same reason, I use the
concept of projective equivalence of affine connections instead of the less known
concept of projective connection.

Table of contents

. Introduction

. Schwarz lemma

. Domains in P"

Affine and projective structures
Infinitesimal projective metric
. dy and Fyu in the nonflat case

2. Schwarz lemma

In the construction of the intrinsic distance in the complex case, the unit disk and
the upper half-plane with Poincaré metric play the fundamental role. In the projective
case, this role is played by the “unit” interval I and the half-line R* defined as follows:

I={uelR; -1 <u<l},

R* = {xeR; x > 0}.
Both I and R* should be regarded as intervals in the real projective line. As such,
they are projectively equivalent just as the unit disk and the upper half-plane are
conformally equivalent. In fact, the linear fractional transformation
2.n x={0+w)/(l-w) (or u=(x=-1D/(x+1))
establishes a one-to-one correspondence between 7 and R*, in which the origin
0 eI corresponds to 1 € R*. The corresponding Poincaré metrics are given by
2.2 dsy = 2du[(1 —u?), dsg. = dx/x.
By integrating these metrics, we obtain the corresponding distance functions:

o1(uy, 1) = |log(—1 15 uyu3)|,

where
2.3 (=1L uuy) = (L4u) (1 —uy)/ (L—uy) (1 +uy);

or+(x1, X,) = [logx, —logx,|.

A linear fractional transformation

(2.4) x - (ax+b)/(cx+d), a,b,c,deR, ad—bc+#0

sends R* into itself if and only if a, b, ¢, d are all nonnegative or all nonpositive.
It induces an automorphism of R* if and only if 6 = ¢ =0 or a = d = 0. Let
End(R*) denote the semigroup of linear fractional transformations (2.4) sending
R* into itself. We shall include in End(R*) those linear fractional transformations
with ad—bc = 0, i.e., the constant maps sending R* into itself. The group of auto-
morphisms of R*, i.e., linear fractional transformations mapping R* one-to-one
onto itself, will be denoted by Aut(R*). This group is transitive on R* and leaves
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the metric dsg. and the distance gg. invariant. The following is a projective analogue
of the Schwarz lemma.
(2.5) LemMaA. We have
|f*(dsg+)| < |dSgs| for feEnd(R"),
9R+(f(x!)’f(x2)) < op(xy, x3)  for x,x,€R*, feEnd(R"),
and the inequalities are strict unless f is an automorphism of R*.

Proof. The second inequality is the integrated form of the first. So it suffices
to prove the first. We express f by

y = (ax+b)/(cx+d).
Then
f*(dsg.)| = |dyl[y = |ad—bc]||dx|/(ax+Db)(cx+d).
Hence the proof is reduced to showing that
lad—bclx < (ax+b)(cx+d) for xeR*,

and the equality holds for some x if and only if @ = d = 0 or b = ¢ = 0. But this
can be easily verified by considering the two separate cases, ad—bc > 0 and ad—
—bc<0. =

Although we can describe End(/) and Aut(/) in a similar fashion, their descrip-
tions are not as simple as in the case of R*. From (2.5) we obtain also the Schwarz
lemma for ds; and o,.

3. Domains in P"

In this section we shall generalize the Hilbert distance for a convex domain given

by (1.2) to an arbitrary domain in R". Actually it is more natural to consider a domain
in the real projective space P".

Let x° x!, ..., x" be a homogeneous coordinate system for P". Let I be the
“unit” interval as in § 1, i.e.,

I={ueR; -l <u<i}.
It is more natural to consider I as an interval in the projective line P!. A projective
map f: I — P" is given by equations of the following form:
(3.1) x' =adu+bi, i=0,1,..,n.

This concept is invariant under projective transformations in 7 (i.e., linear fractiona
transformations in 7) as well as under projective transformations in P". For instance,

if
u = (at+b)/(ct+d),
then
x' = d'(at+b)+ b (ct+d) = (@a+b'c)t+(a'b+b'd)

9 Banach Center t. 12
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since x°, x!, ..., x" are homogeneous coordinates. Since the positive half-line R*
is projective-equivalent to I by (2.1), we can also speak of projective maps from
R* into P" as well as projective maps from [ into P".

Let D be a domain in the projective space P". We shall define a pseudo-distance
dp on D. Given two points p, ¢ of D, we consider a chain of line segments from p

to g, i.e., a chain of points p = po, p;, ..., Px = ¢, pairs of points a,, b,, ..., a;, b
of the interval I, and projective maps f,, ..., fi from 7 into the domain D such that
(3.2) fila) =pi-; and fi(b)=p for i=1,.. k.

We denote this chain by « = (py, a;, by, f;)- The length of this chain is defined to
be

3.3) L(a) = pi(a;, b)+ ... +o.(ay, by,

where p; is the Poincaré distance in the interval I defined by (2.3). The pseudo-
distance dp(p, q) between the points p and ¢ is now defined by

(3'4) dD(ps q) = infL(a),
where the infimum is taken over all chains « from p to gq.

It is a simple matter to verify that dj satisfies the usual axioms of a pseudo-
distance, i.e., the symmetricity and the triangular inequality. However, we can only
claim dp(p, q) = O in general even for two distinct points p, q. From the construc-
tion of dp which made use of only projective concepts of the Poincaré distance and
projective map it is clear that the pseudo-distance dj is projectively invariant, i.e.,
invariant under the projective automorphisms of the domain D. This pseudo-distance
is a real projective analogue of the intrinsic pseudo-distance introduced for complex
analytic spaces in [12].

In order to study properties of dp,, it is convenient to consider the real projective
analogue of the Carathéodory pseudo-distance at the same time. To define the
Carathéodory pseudo-distance c¢p for D, we need projective maps from D into I
In general, a projective map from a domain D in P" into another projective space
P™ is given in terms of homogeneous coordinate systems x°, x!, ..., x" of P" and
¥o, ¥, ..., »™ of P™ as follows:

n

(3.5) y‘=Za}x1 for i=0,1,..,m.
J=0

In particular, a projective map from a domain D in P” into P! with the inhomo-
geneous coordinate ¥ = p!/y° is given by

(3.6) u= (2; a,)/ (,Z; b,xl).

Considering I as an interval in the projective line P!, we can speak of projective
maps from D into I. Now, the Carathéodory pseudo-distance cp is defined by

(3.7 co(p, q) = sgpex(f(p).f(q)) for p,qeD,

where the supremum is taken over all projective maps f from D into 1.
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These pseudo-distances ¢, and dp, possess properties similar to those in the
complex case. The proofs of the following propositions are straightforward from
the definitions of ¢p and dp and from the Schwarz lemma (2.5). (They are identical
to the proofs of the corresponding propositions in the complex case, see [12].)

(3.8) PROPOSITION. Let D and D' be domains in P" and P™, respectively. Then
o (f(0), D) < colp-q)  and  dp (f(p), f(9)) < dp(p-q)
Jor all projective maps f. D - D',
(3.9) PROPOSITION. For the interval I, we have
¢y =dr = or.
(3.10) ProposiTiON. (1) If 8 is a pseudo-distance on D such that

e:(f(p), f(P) < 8(p,q), p,qeD
for all projective maps - D — I, then
cp < 0;

(2) If b is a pseudo-distance on D such that

8(f(a), /b)) < 01(a,b), a,bel
for all projective maps . I — D, then
d < dp.
In particular, we obtain
(3.11) ProPpOsITION. We have always
cp < dp.

We shall consider several simple examples and show, in particular, that both
¢p and d; agree with the Hilbert distance when D is a convex domain.

(3.12) ExampLE. For the real line R, we have cg = dg = 0.

It is easy to verify that, given any two points p, g of R and any positive ¢, we
can find two points g, & in the interval I with d;(a, b)) < ¢ and a projective map
(in fact, even an affine map) /> I - R such that f(ad) = p and f(b) = ¢q. Hence,
dr(p, q) < e. Since ¢ is arbitrary, we have dr(p, q) = 0. By (3.11), cr(p,q) = 0.

From (3.8) and (3.12) we obtain the following trivial but useful '

(3.13) LeMMA. If a domain D contains affine lines L,, ..., Ly such that L,nL;,, # @,
then cp(p, q) = dp(p, q) = 0 for any points pe L, and q € L.
The following two assertions follow from (3.13).

(3.14) ExampLE. If D is an affine space R” or a projective space P", then ¢p = dp
= 0.

(3.15) ExampLE. If D is the complement of a finite number of points in R" or P"
for n > 2, then ¢p = dp = 0. More generally, if D is the complement of a finite
number of compact convex sets in R" or P" for n > 2, then ¢p = dp = 0.

ge
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For the complement of a closed unbounded convex set in R", (3.15) is no longer
true. For example,

(3.16) ExampeLE. If D is the upper half-plane Rx R* = {(x, y) € R?; y > 0},
then

CD((xs y), (x" y')) = dD((xs y)’ (x" y,)) = 9R+(y) y,)
To prove this assertion, consider an affine map f: R* — D such that f(y)
= (x, y) and f()) = (x', y'). Then, by (3.8),

eo((x, ), (x', ¥)) < er(y, ¥)-
Applying (3.8) to the projection Rx R* - R*, we obtain

9R+(ys yl) < CD((x’ y)’ (x” y'))-
The proof for dp is exactly the same.

(3.17) ExamerLE. If D is a convex domain in P", then both ¢, and dj, coincide with
the Hilbert pseudo-distance.

We shall prove this assertion by induction on the dimension n. Although we
can start the induction with the trivial case of n = 1, we consider first the case
n = 2 in order to give the general idea of the proof. Let p and ¢ be points of D
in P2, Let I be the line through p and ¢. Let @ and b be the points where the line /
meets the boundary of D. We shall show that

(3.18) co(p, q) = dp(p, 9) = |log(ab; pg)l,

where (ab; pq) is the cross ratio of the four points a, b, p, q.

Let /; and /, be the supporting lines of D at a and b, respectively. Let o be
the intersection point of /; and /,. Let f be the perspectivity from o to the line /
It maps D onto the open interval J = (a, b) of the line e. By (3.8), we have

¢s(p, 9) = ¢, (f(p), f(@)) < cn(p, 9).
The opposite inequality follows also from (3.8) applied to the natural injection
J = D. Hence,

CJ(p’ q) = cD(P! q)
Similarly,

dJ(P: q) = dD(p; Q)-
On the other hand, by identifying the interval J = (a,b) with the interval

I= (-1, 1), we see that

cs(p, ) = di(p, g) = |log(ab; pq)|.
This completes the proof for n = 2.
Let n > 2. Given two points p and g of D, we define the line / and the points
a and b as above. Let H, and H, be the supporting hyperplanes of D at a and b,
respectively. Let H be a hyperplane containing /. We take a point 0 in H,nH, but
outside the hyperplane H. Let f be the perspectivity from o to the hyperplane H.
Let D’ be the image f(D) = H. Then, by (3.8) we have

co(p, 9) = o (f(P), /@) < co(p, 9).
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By the induction hypothesis, we have

co(p, q) = ¢s(p, 9).
Hence,
cs(p,q) < cp(p, 9).

The opposite inequality follows also from (3.8) applied to the injection J — D.
Hence,

CD(p: Q) = cJ(p5 q)
Similarly for dp. This completes the proof of (3.17).

(3.19) DeFiNITION. A domain D in P" is said to be projective-hyperbolic or, simply,
hyperbalic if the pseudo-distance dp, is a distance, i.e., if do(p, g) > O for any p # q.
A hyperbolic domain D is said to be complere if it is Cauchy-complete with respect
to the distance dp. We say that D is finitely compact if every closed balt of finite
radius with respect to dp is compact. For a general metric space, the finite compact-
ness is a stronger condition than the completeness. But it turns out that for the
distance function dj, these two conditions are equivalent to each other. The proof
is exactly the same as in the complex hyperbolic case (see [12]).

(3.20) PROPOSITION. A convex domain D in P" is hyperbolic if and only if it contains
no affine line R (i.e., there is no non-constant projective map of R into D). A hyperbolic
convex domain is always complete.

Proof. This is immediate from (3.18). Given two distinct points p, g in D, we
consider the line / through p, g. If the portion of / contained in D is neither / nor
a complete affine line, then {log(ab; pg)| in (3.18) is positive. On the other hand,
it is zero if the portion of the projective line / contained in D is either / or an affine
line (i.e., / minus one point).

If D is hyperbolic and convex, then from formula (3.18) it is clear that the
closed ball of finite radius about p does not touch the boundary of D and hence
is compact. m

(3.21) ExampLE. A bounded domain D in R" is hyperbolic. In fact, even the Carath-
éodory pseudo-distance cp is a distance. A bounded convex domain D in R" is
complete hyperbolic.

To see this, we consider a cubical domain E = I, x ... xI, in R" (where each
I, is a finite interval in R) containing D. Then cg is a distance. By (3.8) ¢, is also
a distance.

(3.22) ExaMPLE. A sharp convex affine cone is complete hyperbolic. We recall
that a domain D in R" is called an affine cone if, whenever D contains a point p,
it contains also the half-line {tp; ¢ > 0}. It is said to be sharp if it contains no com-
plete affine lines. So the assertion above is immediate from (3.20).

If a domain D in R" is not convex, we consider the smallest convex domain E
containing D, the open convex hull of D. (The domain E exists since the interior
of a convex set is convex.)
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(3.23) PROPOSITION. Let D be a domain in P" and E the open convex hull of D. Then

cE(psq)=cD(Pa q) for p,qeD.
In particular, a non-convex domain D cannot be complete with respect to cp.

Proof. By (3.8) we have

ce(ps @) < eo(p, 9)-
Let f/ be a projective map of D into the half-line R*. Since fis the restriction of a
projective map f of P" into P! (see Definition (3.6)), we can consider the half-space

f ~Y(R*) which contains obviously D. The open convex hull E is then nothing but
the intersection of all these half-spaces:

(3.24) E=Nf"'RY.

Hence, every f: D — R* extends to f: E - R*. Now, from the definition of the
Carathéodory pseudo-distance (3.7), it is clear that

ce(p, 9) = co(p, 9).
(In Definition (3.7), we used the interval 7 instead of R*. But they are projectively
equivalent, see (2.1).) m
Although the relationship between dp and dr seems to be more complicated

(except for the obvious inequality dg(p, 9) < dp(p, g)), we can at least claim the
following:

(3.25) PROPOSITION. Let D be a domain in P". If it is not convex, then it cannot be
complete with respect to dp.

Proof. The proof can be best described by the following figure (see Figure 1).
The distance from p to r, is bounded by a fixed constant M independent of k. Hence,
the limit point r on the boundary is at a finite distance from p.

Fig. |

(3.26) ExampLE. In P" with homogeneous coordinates &°, &%, ..., &", we take a
domain D defined by

EOLO LI — L £ > 0.
The group of projective automorphisms of P” is given by PGL(n+1; R) = GL(n+
+1; R)/R*, where R* denotes the center {al,,,; ac R,a # 0} of GL(n+1; R).
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Its subgroup G = O(1,n)/{+ I,,,} acts transitively on the domain D. Hence, dj
is invariant by G. In terms of the inhomogeneous coordinates x' = &'/£°, ..., x"
= £"/£°, the domain D can be identified with the unit ball B, = {x = (x!, ..., x")
€ R"; (x,x) < 1} in R". Let o denote the origin of B, and the corresponding point
of D given by &' = ... = £ = 0. The isotropy subgroup of G at o is naturally
isomorphic to O(n), and B, may be represented as a symmetric space G/O(n) of
rank 1. Later in Example (5.9) we shall describe dp in terms of its infinitesimal
form and show that dp comes from the Riemannian metric of constant curvature
—4.

4. Affine and projective structures

Let M be an n-dimensional manifold. An affine structure on M is given by coordinate
charts {(U,, ¢,)} such that

(a) {U,}is an open cover of M, ie, M = | U,;

(b) each ¢,: U, - R" is a diffeomorphism onto the open set ¢.(U,);

(c) each coordinate change ¢, ° ¢5 ' is (the restriction of) an affine transform-
ation.-

Similarly, a projective structure can be defined by replacing R” by P" and as-
suming that ¢, o ¢7 ' is a projective transformation.

Let M and N be manifolds (not necessarily of the same dimension) with affine
structures defined by coordinate charts {(U,, ¢,)} and {(V,, y1)}, respectively.
Then a mapping F: M — N is said to be affine if it is affine with respect to coordinate
charts, i.e., if 9, o f o ¢z ! is (the restriction of) an affine map. Similarly, a mapping
between two manifolds with projective structures is projective if it is projective with
respect to coordinate charts,

Clearly, every affine structure can be considered as a projective structure, and
every affine map as a projective map.

Having defined the concept of projective map, we can extend the definitions of
the pseudo-distances dp and cp (see (3.4) and (3.7)) from a domain D in P" to a
manifold M with a projective structure. Definition (3.19) of (complete) hyperbolicity
is valid for a manifold with a projective structure. Propositions (3.8) through (3.11)
and Lemma (3.13) are all valid for manifolds with projective structures.

(4.1) PROPOSITION. Let M be a manifold with a projective structure. Let M be a
covering manifold with the induced projective structure. Let m: M — M be the projec-
tion. Then

du(p,q) = inf diz(p,q) for p,qeM,
q
where !3 is any point of M such that n(p) = p and the infimum is taken over all points
q of M such that n(q) = q.

Since the proof is identical to that of the corresponding result in the complex
analytic case (see [12]; p. 48), we shall omit it.
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The following resuit follows from (4.1) also in the same way as in the complex
case.

(4.2) PROPOSITION. Let M and M be as in (4.1). Then M is (complete) hyperbolic
if and only if M is.

One of the basic concepts in the study of affine and projective structures is
that of development. We shall explain it in the case of affine structure. Let M be
a manifold with an affine structure given by coordinate charts {(U,, ¢.)}. We
choose one chart (Uy, o). Given a point p € M, we choose a chain of coordinate
charts (U, d,), ..., (Un, ¢n) such that Ui \nU; # @, i=1,...,m, and p € U,.
We can then find affine transformations f,, ..., f,, of R" such that

ficvody=fied, on U nU, i=1,..m,
where f, is the identity transformation. We set

dev(p) = fm  $m(p).

This defines a multivalued map dev: M — R", called a development of M into the
affine space R"; it is multivalued since dev(p) depends on the choice of a chain
Uy, ..., Un (as well as that of U,). However, the principle of monodromy asserts
that dev is a well defined map from M into R" if M is simply connected. It is clear
that dev is an immersion of M into R" (when M is simply connected).

In the construction above, if U,nU, # 9, then we can compare ¢, with f, ° P
on U,nU,. In general, they do not coincide unless M is simply connected, and
there is an affine transformation f of R" such that fo ¢q = f o dn. We call f the
holonomy transformation associated with the chain U,, U, ..., U,. If we fix a point
Po in Uy and consider all chains Uy, Uy, ..., U, such that p, € U,, then the set
of resulting holonomy transformations forms a subgroup of the affine transforma-
tion group of R", called the holonomy group with the base point p,. (This is nothing
but the affine holonomy group of the flat affine connection induced by the given
affine structure.) If we denote the fundamental group of M with the base point
Po by 7, and the holonomy group with the base point p, by @, then we have a natural
homomorphism 7, —» @. If M* is the (intermediate) covering space of M corre-
sponding to the kernel of this homomorphism, then the development map dev:
M* — R" is well defined (i.e., single valued). We call M* the holonomy covering of M;
it is a principal bundle over M with structure group @. (M* is nothing but the holo-
nomy bundle of the associated flat affine connection on M.)

Similarly, if M is a manifold with a projective structure, we can define a multi-
valued map dev: M — P" which becomes a single valued map on the holonomy
covering space M* and hence on the universal covering space M.

A somewhat related concept is that of exponential map for a manifold with
an affine structure. Let M be a manifold with an affine structure or, more generally,
an affine connection. We fix a point p, of M and an isomorphism between the tangent
space T, (M) and R". The exponential map exp: R” — M is defined only on some
domain E in R” since a geodesic may not extend infinitely. If we take a small neigh-
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borhood U, of p, and construct a development map as above starting with the
chart (U,, exp~!), then we see that

4.3) devoexpX) =X for XeEc R =T,(M).
Since dev is multivalued, (4.3) should be actually interpreted as

dev cexp(X) 3 X.
If M has trivial holonomy, e.g., if it is simply connected, then the map dev is singled
valued and (4.3) has no ambiguity.
In general, exp: E — R" is not surjective, i.e., not every point of M can be
joined by geodesic to p,. But if there is a geodesic from p, to p, we can develop p
along this geodesic and obtain X € R" such that exp(X) = p. Thus,

4.4 exp odev(p) =p if p=-exp(X) for some XeR" =T, (M),
where dev is the development along the geodesic exp(¢X), 0 < ¢ < 1. Hence we have

(4.5) PrOPOSITION. Let M be a simply connected manifold with an affine structure.
Suppose there is a point p, € M with the property that any other point p can be joined
to po by a geodesic. Then the exponential map exp at p, is an affine isomorphism
from a domain E (= dev(M)) of T, (M) onto M, and exp~" is a development map.

The following result is due to Koszul [19].

(4.6) PROPOSITION. Let M be a manifold with an affine structure, and let po € M.
If the domain of definition E c T, (M) for the exponential map at p, is convex, then
exp: E — M is surjective and hence is a covering map.

Proof. There is no loss of generality in assuming that M is simply connected
(replace M by its universal covering space). By (4.3), exp is a map of maximal rank
everywhere on E and hence its image exp(E) is an open subset of M. Let p, be a
point in the closure of exp(E), and let X; = dev(p,) € T, (M). Then X, is in the
closure of E since dev is locally an affine isomorphism. Since E is convex, tX; € E
for 0 <t < 1. As r — 1, exp(tX;) — p;, and exp(X,) is defined and equal to p,.
This shows that exp(E) is a closed subset of M. Being both open and closed, exp(E)
coincides with M. =

Let M be a manifold with a projective structure, and let p, € M. Let M(po)
denote the set of points p € M which can be joined by a geodesic to pg, i.e., the
set of points p for which there is a projective map from the interval 7 into M passing
through p, and p.

(4.7) LeEMMA. The set M(p,) defined above is open.

Proof. Let p, € M(p,) and let f: I - M be a projective map passing through
Po and p,. Going back to the construction of development maps, we cover the
geodesic f(I) by a chain of coordinate charts and develop a neighborhood of the
geodesic from p, to p;. The geodesic is developed into a line ! from x, = dev(p,)
to x; = dev(p,) in P". A neighborhood of the geodesic is developed onto a neigh-
borhood U of /. If p is a point sufficiently close to p,, then dev(p) is in U and a line



138 S. KOBAYASHI

from x, to x = dev(p) is in U. Then the corresponding geodesic goes from p, to
p. m

(4.8) THEOREM. Let M be a manifold with a projective structure. If it is complete
hyperbolic, i.e., dy is a complete distance, then any pair of points can be joined by
a geodesic.

Proof. Let p, € M and let M(p,) be the set of points p € M which can be joined
to po by a geodesic. By (4.7), M(p,) is open. It suffices to prove that M(p,) is closed.
We make use of the following general fact on metric spaces and distance-decreasing
maps.

(4.9) LEMMA. Let M and N be manifolds with projective structures, and let Proj(N, M)
denote the set of projective maps from N into M equipped with the compact-open
topology. If M is complete hyperbolic, then for any point a € N and any compact
set K = M the family

{f€Proj(N, M); fla) € K}
is compact.

The proof of this lemma relies only on the fact that every f € Pro}(N, M) is
distance-decreasing with respect to dy and dy, see [12]; p. 73.

We apply this lemma to the case where N = 7 and K = {py}. Let {p;} be a
sequence of points in M(p,) converging to a point pe M. Let f; € Proj(I, M) be
a geodesic through p, and p;. Let a € 1. Composing f; with an antomorphism of 1,
we may assume that fj(a) = p,. By (4.9), there is a converging subsequence {f;_}
of {f;}. Let f=limf; . Then fe€ Proj(/, M) passes through p, and p. =

(4.10) CoROLLARY. Let M be a manifold with an affine structure, and p, € M. Let
E be the domain of definition for the exponential map at p,. If M is complete hyper-
bolic, then E is a convex domain in T, (M) and exp: E - M is a covering map.

Proof. By (4.2) the proof can be reduced to the case where M is simply connected.
By (4.6) exp: E —» M is an affine isomorphism. Since any pair of points of M can
be joined by a geodesic, E is convex. ®

We should remark that the idea of the proof for (4.8) is in Vey [26]. In another
paper [27] Vey proved also the following result, see also [28].

(4.11) THEOREM. Let D be a convex domain in R" containing no lines. If there is a

properly discontinuous group G of affine transformations acting on D such that D|G
is compact, then D is a cone.

As pointed out by W. Goldman, (4.11) combined with (4.10) yields the follow-
ing:
(4.12) CorOLLARY. Let M be a compact manifold with an affine structure. Let E
be the domain of definition for the exponential map at po € M. If M is hyperbolic,

then E is a convex cone containing no lines in T, (M) and exp: E - M is a covering
map.
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Proof. Since M is compact, it is complete with respect to dy, and (4.10) applies
to M. Let G be the group of covering transformations of E so that M = E/G. By
(4.2), E is hyperbolic and cannot contain lines. By (4.11), E is a cone. =

(4.13) Remark. If M = D/G is a compact manifold with an affine structure (where
D is a domain in R" and G is a discrete group of affine transformations acting prop-
erly discontinuously and freely on D), then D is unbounded. In fact, if D is bounded,
M is complete hyperbolic (since D is hyperbolic and M is compact) and, by (4.8),
any two points of D can be joined by a geodesic. By (4.11), D must be a cone. This
is a contradiction.

We shall now examine a few simple examples.

(4.14) ExaMpLES. The only compact surfaces which admit affine structures are
a torus and a Klein bottle as shown by Benzécri [4], (see Milnor [22] for stronger
results). If M is an Euclidean torus (i.e., if coordinate changes are given by Euclidean
motions), then every geodesic extends infinitely in both directions and the universal
covering space of M is R”, implying that dy; = 0. Similarly, for an affine torus M
in which every geodesic extends infinitely in both directions, we have dy = 0.
For the punctured plane R?— {0}, we have also dg:_(q) = 0. Hence, if M
= (R?-{0})/G, where G is the infinite cyclice group of homothetic transformations
generated by the transformation

(x,y) — (ax,ay) (a: positive constant #1),

then we have also dy, = 0. (M is an affine torus called a Hopf torus.)
On the other hand, the quarter-plane R* x R* is complete hyperbolic. Let G
be the discrete abelian group generated by the following two affine transformations:

(x, p) = (ax, by), (x,)) - (cx, dy),
where a, b, ¢, d are positive real numbers such that

(loga)(logd) - (logh) (loge) # 0.
Then M = (R* xR*)/G is an affine torus and is complete hyperbolic.
For the upper half-plane Rx R*, the pseudo-distance dg,r. degenerates in
one direction, i.e., in the direction of the x-axis. Let G be the discrete abelian group
generated by the following two affine transformations of Rx R*:

(x,y) = (x+a,by), (x,y)— (x+c,dy),

where a,c € R and b, d € R such that a(logd)—c(logh) # 0. For the affine torus
M = (Rx R*)/G, the pseudo-distance dy degenerates also in the direction of the
X-axis.

These affine tori illustrate how the pseudo-distance d,; may be used to obtain
a rough classification of the affine structures on a torus. For a systematic study
of the affine structures on a torus, see Nagano-Yagi [23] as well as Kuiper [20].

In [1] and [2] we find several interesting examples of compact affine manifolds
whose universal covering spaces are affine spaces. But they all have the trivial pseudo-
distance by (3.14) and (4.1).
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{4.15) ExaMPLE. In (3.26) we showed that the natural projective structure in the
unit ball B, in R” is invariant under the transitive group G = O(1,n)/{+ 4}
Since G leaves the distance dp_invariant, its action is proper. Hence, if I' is a discrete
subgroup of G acting freely on B,, then M = B,/I" is a manifold with a natural
projective structure. As we shall see later in Example (5.9), ds, comes from a G-
invariant Riemannian metric of constant negative curvature —4. Conversely, it is
a classical theorem in differential geometry that a Riemannian manifold is projec-
tively flat (i.e., admits a compatible projective structure) if and only if it is of constant
sectional curvature. (This goes back to a paper of Beltrami in 1868; see Eisenhart’s
book on Riemannian Geometry). In particular, every Riemann surface admits
a projective structure.

A simple necessary condition for the existence of a projective structure is given
by
(4.16) THEOREM. If a manifold M admits a projective structure, then its Pontryagin
classes vanish.

The proof requires the concept of projective equivalence of affine connections
which will be explained in the following section. We cover M with coordinate charts
{Uy, ¢} as explained at the beginning of § 4. Taking U, sufficiently small, we may
assume ¢, maps U, into R" instead of P". We pull back the flat affine connection
of R" to U, by ¢, and obtain a flat affine connection I'; on each U,. In the intersection
U,nUg, the two connections I, and I, are projectively equivalent in the sense
explained in the next section. Then the Pontryagin forms expressed in terms of the
curvature of I'; coincide with those of I';, [16] (see also [3] where it is shown that
the Pontryagin forms can be written in terms of Weyl’s projective curvature tensor).

It is still an open question whether the Euler number of a manifold with an
affine structure is zero or not. According to Koszul [19], we have

(4.17) TueoreM. If a compact manifold admits a hyperbolic affine structure, then
its first Betti number is nonzero.

5. Infinitesimal projective metric
Let M be a manifold with a projective structure. We shall now define the infinitesimal
pseudo-metric corresponding to the pseudo-distance d\ (see Wu [30]).
Let I be the interval —1 < # < 1 with the Poincaré metric ds; = 2du/(1 —u?)
as in § 2. Let ¥ be a tangent vector of 7. We set
|V| = the Euclidean norm of V,
[I¥]] = the norm defined by ds;.
Thus, if ¥ = A(d/du), € To(I), then

(5.1) V=14,
=AM
(5.2) Wil = gy

In particular, if V is a vector at the origin 0 €/, ie,, if a = 0, then ||V = 2|V|.
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We define a pseudo-metric Fp: T(M) — [0, o) by
(3.3) Fu(p, X) = inf[|[Vl] for XeT,(M),

where the infimum is taken over all tangent vectors ¥ € T(I) and all projective maps
f: I = M such that £, (V) = X.

Since ds; is invariant under all projective automorphisms of 7, we may restrict
V¥ in Definition (5.3) to a tangent vector at the origin. Since |[V|| = 2|V at the origin,
we may rewrite (5.3) as follows:

(5.4) Fu(p,X) =inf2|V| for XeT,(M),

where the infimum is taken over all tangent vectors V € T,(I) at the origin and all
projective maps f: I -+ M such that £ (V) = X.
The following are the infinitesimal versions of (3.8) to (3.10).

(5.5) PROPOSITION. Let M and M' be manifolds with projective structures. Then

FM’ (f(p)s f*(X)) < FM(p’ X)
for all projective maps [ M - M'.
(5.6) PROPOSITION. For the interval I, we have
FI = ds,.

(5.7) PROPOSITION. If @ is a pseudo-metric on a manifold M with a projective structure
such that

? (f@@), fo(N) < dsi(a, V)
for all projective maps f- I - M, then
D < Fy.
The infinitesimal version of (4.1) is given by the following

(5.8) PROPOSITION. Let M be a manifold with a projective structure and~1\~4 a covering

manifold with the induced projective structure and the projection n: M — M. Then
W*FM = Fﬁ.

(5.9) ExaMPLE. Let B, = {x = (x,...,x) eR"; (x,x) <1} be the open unit

ball in R®. Then

F. — 21(1—(5\7. x))(dx, dx)+(x, dx)zl”z
By (1 _ (x, x)) .

Since the group O(1, n) acts transitively not only on B, but also on the tangent
unit sphere bundle of B, (see (3.26)), it suffices to verify that the metric on the right
is invariant by O(l, n) and agrees with Fy on one nonzero vector at the origin
of B,. The invariance can be verified by identifying B, with a domain D in P" as in
(3.26) and expressing the metric on the right in terms of the homogeneous coor-
dinates £°, &1, ..., &".

We shall compare the two metrics above on the vector d/dx' at the origin.
Restricted to the interval —1 < x! < 1, x? = ... = x", the metric on the right
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becomes 2dx! /(1 —x'x!). The mapping ] - B, given by x! = u, x2 =0, ..., x" =0
is an isometry with respect to F; and Fp_. (This follows from (5.5) applied to the
map / —+ B, and to map B, — I given by u = x'.) From (5.6) and (2.2) it follows
that, restricted to the interval —1 < x' < I, x> = ... = x" = 0, the metric Fp,
becomes also 2dx' /(1 — x'x'). This completes the proof.

In order to show that d,, is the integrated form of F,,, we establish first the
following (proved more generally by Wu [30], see § 6)

(5.10) PROPOSITION. The projective pseudo-metric Fy: T(M) — [0, ) is upper
semicontinuous.

Proof. Let Fy(po, Xo) = k. Given € > 0, we must find a neighborhood U
of (po, Xo) in T(M) such that

(5.11) Fy(p,X) <k+e¢ for (p,X)eU.
Let Vo € To(I) and f: I - M a projective map such that f,(V) = X, and
Voll < k+3e.

Let B, be the unit ball as in (5.9). We extend fto a projective immersion f B,- M
so that f(u) = f(u, 0, ...,0). By the isometric mapping 7 — B, used in the proof
of (5.9), we identify ¥, with a tangent vector of B, at the origin. Let N be a neigh-
borhood of V, in T(B,) such that

Fp(b,V)<k+e for (b,V)eN.

Such a neighborhood N exists since Fy (0, Vo) = ||[Vol| < k+1/2 and Fp_ is conti-
nuous by (5.9). Let U = f:(N). By (5.5), the inequality (5.11) is satisfied. =

Since F, is upper semicontinuous, we can define a pseudo-distance § on M
by the following integral:

(5.12) 8(p, ) = inf{ F(c(r), &),

where the infimum is taken over all piecewise smooth curves ¢ from p to g and ¢(¢)
denotes the velocity vector of the curve c.
We claim the following basic resulit.

(5.13) THEOREM. We have dyy = 8, i.e.,

du(p,q) = inf{ F(c(), e(y)dr.
We shall prove only the inequality in one direction, namely
(5.14) dy > 8.

The opposite inequality can be proved in a manner similar to the corresponding
result for the complex case, see Royden [25]. The detail can be found in Wu {30].
In order to prove (5.14), we make use of (3.10). It suffices to show that

(5.15) 3(f(@), /() < erla, b), a,bel
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for all projective maps f: I — M. Since g; is the integrated form of ds; = F;, in-
equality (5.15) follows from inequality (5.5) applied to f: I - M.

In a special case, (5.10) can be improved.

(5.16) PROPOSITION. If a manifold M with a projective structure is complete hyperbolic,
then Fy is a continuous function on T(M).
We need the following lemma.

(5.17) LeMMA. If M is complete hyperbolic, then for every X € T,(M) there exists
a vector V € To(I) together with a projective map f: I - M such that f,(V) =X
and Fy(p, X) = |IVi|.

Proof. In other words, we are claiming that the infimum in (5.3} is actually
attained if M is complete hyperbolic. To prove this, we consider the family of all
projective maps f: I — M such that f(0) = p. By (4.9) this family is compact. This
implies (5.17).

Proof of (5.16). In order to show that Fy, is continuous at (p,, X,) € T(M),
let (pi, X)eT(M), i =1,2,..., be a sequence of tangent vectors converging to
(Po, Xo). For each i = 0,1, ..., let ¥, € To(J) and f; € Proj(/, M) such that fi, (Vi)
= X; and Fpu(p;, X;) = |IV;]l. Since F) is upper semicontinuous, we have

lim |{V|| = lim Fy(p;, X;) < Fy(po, Xo) = [IVol!.

By taking a subsequence we may assume that {V;} converges to a vector W e To(I).
By (4.9), a subsequence of {f;}, still denoted {f;}. will converge to a projective
map g. Since g(W) = limf,(V,) = limX, = X,, we have Fy(po,, Xy) < [|W]|. Since
limV; = W, we have ||W]|| = lim|{¥;||. Hence, Fy(po, Xo) < limF(p;, X}). m

(5.18) ExampLE. For the following domain D in R?, Fp is not continuous. Let
D ={(x,y)e R*; x*+y* < 1}—{(x,0) e R*; 1/2 < x}.
Then Fp is not continuous at (¢/dx)o0,0y € To(D).

(5.19) PrROPOSITION. Let M be a manifold with a projective structure. It is hyperbolic
if and only if there is a Riemannian metric on M such that

'F.M’(p!A,)2 ”XH for XETD(M)’
where || X|| denotes the Riemannian length of X.

Proof. If such a Riemannian metric exists, dy is bounded below by the Rie-
mannian distance because of (5.13). Hence, M is hyperbolic.

Assume that M is hyperbolic. If we show that in a neighborhood of every
point p of M there exists a Riemannian metric with the required property, then
we can construct a desired global Riemannian metric by the standard method using
a partition of the unity. Let B be an open ball around p. Let r be a small positive
number such that N(2r) = {ge M; dy(p,q) < 2r} is contained in B. Let

I,={uel, —a<u<a}, where r=Ilog(l+a)/(l-a),
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so that I, = {uel; di(0,u) < r}. Let g e N(r) and X € T(M). Let V € To(I) and
S & Proj(I, M) be such that f(0) = ¢g and f,(¥) = X. Since f is distance-decreasing,
we have

SU) e Nr) = N2r) c Bc M.
Hence,

F:,(O, V) 2 Fu(q, foV) = Fg(gq, X).
But, F; = 2du/(1—-u?) and F; = 2adu/(a®-u?) so that F;(0,V) = aF; (0, V).
Hence,

Fi(0,V) > aFp(q, X).

By taking the infimum over V and f, we obtain

Fu(g,X) = aFg(q, X) for X e T(N(r)).
Since we know the explicit expression of Fp for a ball B (see (5.9)), we know that
F,, is bounded below by a Riemannian metric on N(r). =
We know that if M is hyperbolic, then there is no nonconstant projective map
f of R into M. We shall show that the converse holds when M is compact. As in
the complex case, for a noncompact manifold the converse is not necessarily true.

(5.20) ExampLE, The domain D = {(x, y) € R?; |x| < 1, |xy| < 1}—{(0, »); |y| =1}
is not hyperbolic, but there is no nonconstant projective map of R into D.

On the interval I, ={ueR; —r <u <r} we consider the metric ds,
= 2r2du/(r—u?*). In particular, I = I, and ds; = ds,. We note that the homothetic
map I — I, sending u to ru is an isometry of (J, rds;) onto (I,, ds,), not of (I, ds;)
onto (1,, ds,). On the other hand, ds; and ds, coincide at the origin 0. In fact,

(dsl)uzo = (dS',. u=0 = (2du)u=0-

We begin with the proof of the “Reparametrization Lemma” of Brody. The
proof is essentially the same as that of the corresponding lemma in the complex
case obtained by Brody [6]. (For the projective case, see also Wu [30).)

(5.21) LEMMA. Let M be a manifold with a projective structure. Fix a Riemannian
metric dsi on M. Given f e Proj(I,, M), define a function U on I, by

U= f*dsM'/df,.
IfUQ) > ¢ > Q, then there is a map g € Proj({,, M) such that

() the function g*dsy/ds, is bounded by c on I, and attains the maximum value
c at the origin;

(b) g = f o pa o h, where h is a projective automorphism of I, and u, (0 < a < 1
is the multiplication by a (i.e., u,(u) = au for ucl,).

Proof. For t € [0, 1), define f; € Proj(/,, M) by
fi@) =foulw)y=f(u) for uel.
Set U, = f.*dsy/ds,. Then

U = B plds ko, 1)
‘T T uRds, ds, BV rr—eay
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Set

Hr?—u?)
A@) = sup U, (1) = supU(tu) - - 1.
() ueE t ) ugl? ( ) (rz_tzuz)

It is easy to see that A(¢) is finite, continuous and monotone-increasing in [0, 1)

and that A(t) > c for 1 sufficiently close to 1 and A4(0) = 0. Thus

c = A(a) = supU,(u) for some a€e]0,1).
uel,

From the explicit expression of U,(u) given above, we see that U,(«) approaches
zero at the boundary of I, and hence reaches its maximum in the interior I,. Let
o be a point of I,, where U,(u) attains the maximum c. Let 4 be a projective auto-
morphism of I, which sends 0 to u,. Then g = f o u, o h possesses all the desired
properties. m

We are now in a position to prove the following projective analogue of Brody’s
theorem.

(5.22) THEOREM. Let M be a compact manifold with a projective structure. Fix a

Riemannian metric ds on M. If M is non-hyperbolic, there is a projective map h: R
— M such that

h*ds, < du?,  where u is the natural coordinate in R.

Proof. We denote the length of a tangent vector X of M with respect to dsk
by 1| X]l. By (the trivial half of) (5.19), we can find a sequence of tangent vectors
X, such that [|X,,|]| = 1 and Fy(pn, Xm) < 1/m. From Definition (5.3) of Fy, we
can find projective maps j, € Proj(/, M) and tangent vectors

Vm = am(d/du)o € TO([)’ a, >0,
such that j,.(V,) = X,, and lima,, = 0. (We may further assume that a, is mono-
tone-decreasing.) Set 7, = l/a, and define f, € Proj(,_, M) by

Sat) = jn(anu) for  |u| < ry,.
If we set ¥V, = (d/du)o € To(R), then

fm‘(Vo) = Xu.
For each f,, we define a function U, on I, as in (5.21), ic., Up = fiy dsy/ds, .
Since the length of ¥, with respect to ds,_ is always 2, we obtain
Un(0) = || fae(VO)II/2 = |1 Xull/2 = 1/2.

Applying (5.21) to each f,, and a positive constant ¢ < 1/2, we obtain a map gn
€ Proj(I,_, M) such that

(2) gmdsy < cds, on I,
and the equality holds at 0;
(b) Image (g,) = Image (f,,).

By (a) the family {g,} is equicontinuous. To be more precise, since
gmdsy < cds, <cds, for mz>1

10 Bamnach Center 1. 12
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the family {gmll,,; m = [} is equicontinuous for each fixed /. Since the family
{gmll;, } is equicontinuous, the Arzela-Ascoli theorem implies that we can extract
a subsequence which converges to a map h, € Proj(J,,, M). Applying the same
theorem to the corresponding subsequence in the equicontinuous family {gm|l, ; m
> 2}, we can extract a subsequence which converges to a map 4, € Proj(Z,,, M).
Continuing in this way, we obtain maps A, € Proj(J,_, M). Clearly, h,, is an extension
of h,_,. Thus we obtain a map 4 € Proj(R, M) which extends all 4,.

Since grds, at the origin is equal to (cds; u=a = 2¢(du)y-o, it follows that

(F*dsp)u=0 = lim(gmdsy)u=o = 2c(du)u-o # 0,

which shows that 4 is nonconstant.
Since gndsy < cds, , by taking the limit we obtain A*ds% < 4c2du®. By suitably
normalizing /4, we obtain h*ds} < du®. m

(5.23) Remark. It is not clear how useful the inequality A*ds% < du? is in the projec-
tive case. A similar inequality in the complex case is certainly very important.

(5.24) COROLLARY. Let M be a compact manifold with a projective structure. Then
it is hyperbolic if and only if there is no nonconstant projective map of R into M.

(5.25) COROLLARY. Let M be a compact manifold with a projective structure. Then
M is hyperbolic if and only if there is no nonzero vector X such that Fy(p,X) =0

Proof. If M is hyperbolic, Fy:(p, X) is positive for every nonzero X whether M
is compact or not (see (5.19)). If M is not hyperbolic, there is a nonconstant projective
map f of R into M. If X is any vector tangent to the curve f: R —» M, then Fy(p, X)
=0by (5.5 and Fr =0. m

(5.26) Remark. For the second half of (5.25), the compactness assumption is neces-
sary. In fact, for the nonhyperbolic domain D in Example (5.20), Fp(p, X) is positive
for every nonzero X.

(5.27) Remark. If M is compact and if X is a vector such that Fy(p, X) = 0, then
there is a projective map f of R into M such that X is tangent to the curve f* R —» M.
This follows from the proof of (5.22) as follows. Take a Riemannian metric on M.
We may assume that X is a unit vector with respect to the Riemannian metric.
In the proof of (5.22), let X,, = X for all m. Then our assertion follows because
of (b) and the fact that a geodesic is determined by its tangent vector at one point.
The corresponding result in the complex case is unknown since a holomorphic
curve is not determined by its tangent vector at one point.

6. d\; and F,, in the nonflat case

We shall now extend the construction of dy; and F), to a manifold M with an affine
connection which is not necessarily flat.
Let I' = (Fj,,) be an affine connection on M expressed in terms of Christoffel’s
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symbols with respect to a local coordinate system x!, ..., x". A geodesic x(¢) = (x'(z))
15 defined by the system of differential equations
d2x! Z dx! dx* dx’
, ax L ax ax _ ex
6.1) ar t g dr T % dr

where ¢ is a function of t. (The equation means that the acceleration, the left hand
side, is proportional to the velocity.) We can choose parameter ¢ to make ¢ = 0
in (6.1). (In fact, we have only to replace ¢ by Se‘f"" dt). A parameter for which
o = 0 is called an affine parameter of the geodesic and is unique up to an affine
change t — ar+b.

From (6.1) it is clear that the geodesics remain unchanged if we replace (I'})
by its symmetric part (3(I"};+1I%;)). Since we are interested mainly in geodesics,
we shall assume that I'= (I'},) is torsionfree, i.e.,

(6.2) rj, =1TIj;.

Following Weyl we say that two torsion-free affine connections I" = (I},)
and I' = (I'}y) on M are projectively related or projectively equivalent if there exists
a |-form p = " ydx’ on M such that

(6.3) ]T‘J'ik_I?k = 8y + Bk yy.

Two such connections define the same system of geodesics. In fact, (6.1) is
equivalent to

dxt Z = dxl dx*  _ dxt
(6.4) e T T a d T % dr
where
N dx*
6.5) =0+ ZZW--HT.

It is known that, conversely, two torsion-free affine connections with the same system
of geodesics are projectively related if dimM > 2.

It is clear from (6.5) that an affine parameter ¢ with respect to the connection I’
needs not be an affine parameter with respect to I, Thus, the concept of affine par-
ameter is not a projective invariant. Following J. H. C. Whitehead [29] we introduce
the concept of projective parameter. Let Ric = (Rj,) denote the Ricci tensor of a
connection I'. Let x(¢) = (x'(r)) be a geodesic with an affine parameter ¢ with respect

to I'. Then a projective parameter p of x(t) is a solution of the following differential
equation:

2 O, dx d
(6.6) {p,t}=m>_JRjkW7t_,

where {p, t} is the Schwarzian derivative:
127 v 2 % s\ 2
25 - (5) -5 (%)
6.7 =P (B S (B) - 22,
(6.7) {p,1} T2\, p v
with primes denoting derivatives with respect to 1.

10*
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As we shall see shortly, a projective parameter p is unique up to a linear frac-
tional transformation:

(6.8) p— (ap+b)/(cp+4d).

As Whitehead has shown, p is a projective parameter with respect to any torsion-free
affine connection projectively related to I'. (An outline of the proof of this fact will
be given later.) Thus, the concept of projective parameter is a projective invariant.

We say that a mapping f of the interval = {—1 < u < 1} into a manifold M
with a torsion-free affine connection I is projective if the curve f(u) is a geodesic
and u is a projective parameter. Clearly, this concept depends only on the projective
equivalence class of a torsion-free affine connection 1. If M and M’ are manifolds
with torsion-free affine connections, a mapping f: M — M’ is said to be projective
if, for every projective map #: I — M, the composed map f - A: I — M’ is projective,
1.e., if f maps every geodesic of M into a godesic of M’ preserving a projective par-
ameter.

Once the concept of projective map f: I - M is established, we can extend
Definition (3.4) of dp and Definition (5.3) of F, to a manifold with a torsion-free
affine connection. Many of the results proved in the preceding sections extend
immediately to manifolds with torsion-free affine connection. In particular, the
following are valid in the case of torsion-free affine connection: (3.8), (3.9), (3.10),
(3.11), (3.13), (4.1), (4.2), (4.9), (5.5), (5.7), (5.8), (5.10), (5.13), (5.16), (5.17), (5.21),
(5.22), (5.24), (5.25). It should be noted, however, that our proof of (5.10) that Fy,
is upper semicontinuous makes use of the flatness of the structure. A proof valid
in the nonflat case was given by Wu [30]. The trivial half of (5.19) is valid in the
nonflat case. The other half is probably true also in the nonflat case. The proof
of (5.22) makes use of (5.19). But we can avoid its use in the compact case arguing
as in (5.27).

In order to prove the uniqueness (up to a linear fractional transformation)
and the projective invariance of a projective parameter p, we need the following
lemma whose proof is straightforward.

(6.9) LEMMA. Formula for Schwarzian derivatives of composite functions:
de\’
{S9 u} = ({S, t}—{u’ t})(?d;) .
Setting s = ¢, we obtain
ds\’
(6.10) {s,u} = —{u, S}(E) .

In order to show that a solution p of (6.6) is unique up to a transformation
(6.8), suppose that g is another solution of (6.6). Then

{P, t}—{q, t} = 0.
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By (6.9), {p, g} = 0. From Definition (6.7) it is easy to solve the equation {p,gq} =0
explicitly to obtain p = (eq+b)/(cq+4d).

In order to prove the projective invariance of p, we need also the following
formula whose proof is again straightforward. (It goes back to Weyl.)

(6.11) LemMaA. If R},‘,. and E’kh denote the curvature components of two torsion-free
affine connections I' and I' which are projectively related by (6.3), then

ﬁju—R}u = 5}(%:1—%:1-)"' aL(’PJ:u—TI’J'Pk)"' 5{(%:1:"%%),
where .« denotes the covariant derivative of vy, with respect to the connection.
Consequently, for Ricci tensors Rj, (= 2. Ry,) and R;, we have
(6.12) th_Rﬂl = —n(Wra—Ys¥n) + Pny— Vs ¥n-

If t and p are affine and projective parameters with respect to the connection I',
then (6.6) and (6.12) imply

— dxd dx dxidx! | d
(6.13) {p,t}——l—ZR,h—‘ix—7~{P,t}—22(%::- 'P;'Pn)‘; dt(dt)

On the other hand, from

dxx! Z dxl dx*  _ dx' . _ Z dx’
@ o g g = Yt 9=22 vy

it follows that

t= Se‘ adr gt
Hence,
" R Z dx’ dx*
(6.14) 'T =0 = ZZ% .{, =2 WJ;,,W 7.
From (6.13) and (6.14) we obtain
_ = - dt\?
(6.15) 7, 0= (o, -1, t;)(;) .

But (6.9) used twice yields the following formula:

(6.16) (5 4} = ({s, (1= (G, )~ })(é}f—)) ({f—;)

Setting s =p, u = p, t = t, r = t in (6.16) and using (6.15), we obtain {p, p} =
This shows that p = (ap+ b)/(cp+ d), thus establishing the invariance of the pl’O]eCthC
parameter under the projective change of connection I - I.

Now we shall state some of the results in [14], [15], [17], [30] without proof.
The Ricci tensor of an affine connection is not necessarily symmetric. So we say
that it is positive or negative definite when its symmetric part (4(R;;+ Ry;)) is positive
or negative definite. From (6.6) it is expected that only the symmetric part matters.
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(6.17) THEOREM. Let M be a manifold with a torsion-free affine connection.
(a) If its Ricci tensor is negative definite everywhere, then M is hyperbolic, i.e.,
dy is a distance.

(b) If the affine connection is complete and its Ricci tensor is positive semi-definite,
then dy vanishes identically.

Actually, Wu proves (a) under a slightly weaker condition (see Theorem ] in
[30]). In the proof he uses the infinitesimal metric F),. Both (a) and (b) rely on the
following classical result.

(6.18) LEMMA. If y,, v, are linearly independent solutions of the differential equation
y'(O+Q@y(@) =0,
then the general solution of the differential equation
{u, 1} = 20(r)
is given by
u(t) = (ay +by,)/(cy, +dy;) with  ad—bc # 0.

Sturm’s comparison theorems allow us to estimate the range of a projective
parameter.

In the Riemannian case, F), can be compared with the Riemannian metric
when the Ricci tensor is strongly negative.

(6.19) THEOREM. Let M be a Riemannian manifold with metric dsi; = Zgn dx/dx*
and Ricci tensor R;, such that

(Ry) < —c*(gy) (c>0).

Then
4c?
n—1

Fy = dsy .
In particular, if ds¥ is a complete metric, so is Fy,.
If the metric dsy is Einstein with Ry, = —c2gjx, then F} = dsk.

(6.20) Remark. The last part of (6.19) can be applied to a torsion-free affine connec-
tion I" with negative definite parallel Ricci tensor Ry. If we set gy = —3(Rju+ Ryj),
then dsz, = ). gixdx)dx* is a Riemannian metric parallel with respect to I" so that I
is the Levi-Civita connection of dsy; and Ry = —gj.

(6.21) CoroLLARY. If M is a compact Riemannian manifold with negative Ricci
tensor, then its group of projective automorphisms is finite.

Proof. By (6.19) the group leaves the metric F), invariant and hence is compact.
On the other hand, the vanishing theorem a la Bochner for infinitesimal projective
transformations shows that the group is discrete (see Couty [9]).

Koszul 18], [19] studied affine manifolds admitting a 1-form whose covariant
derivative is positive definite. His work can be understood in terms of projective
equivalence defined by (6.3). We shall state here one related result.
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(6.22) THEOREM. Let M be a compact manifold with a torsion-free affine connection.
If its Ricci tensor is negative semi-definite and if there is a 1-form y = 3 p;dx’!
such that its covariant derivative Dy =)y, dX’®dx* (or more precisely, the
symmetric part of Dvy) is positive definite, then M is hyperbolic, i.e., dy, is a distance.

Proof. From the given connection I, we construct a new connection I” by (6.3).

Replacing y by cy with a small positive constant ¢ if necessary, we see from (6.12)
that the Ricci tensor Ry of I' is negative definite. By (6.17), M is hyperbolic. m

(6.23) Remark. The special case of (6.22) where M is locally affine and y is closed
(so that Dy is symmetric) is the second half of the main theorem in Koszul [19].
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