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0. Introduction

In nature there is a perfect equilibrium between particles of two sorts, namely bosons
(which have integer-valued spins) and fermions (having half-integer-valued spins).
Roughly speaking if we put a boson into a set of identical bosons then our boson
will probably “choose” for itself the same state as the remaining bosons possess.
Meanwhile, any fermion, when placed among identical fermions, will probably
“choose” a state completely different from states of other particles. The bosonic
behaviour is crucial in order to explain such phenomena as superconductivity and
superfluidity while the fermionic nature of electrons is necessary for the explanation,
e.g. the Mendeleev table. So the duality between bosons and fermions is a funda-

mental feature of the physical image of the world which was emphasized in the
Feynman's famous book [13].

In quantum mechanical models, an anti-symmetric relation of commutativity
is assigned to any system of bosons and a symmetric relation of anti-commutativity
is associated with any system of fermions. Thus any mathematical theory, in order
to be useful in physics of systems of elementary particles, should include both commu-
tativity and anti-commutativity relations. This postulate completely fails in the case

of differential geometry because for two vector fields defined by means of the Leibnitz
rule

X(af) = X(2)B+oX(B)

the commutator is well-defined but anti-commutator does not make any sense
(as a vector field).

Therefore new geometries for needs of elementary particles and quantum
physics have been pursued since the early seventies. The so called Lie superalgebras
elaborated by V. G. Kac, see [19], were an interesting result. Kac developed a theory
of “Lie algebras” with a partially anti-symmetric and partially symmetric bracket
and obtained many results concerning their classifications and representations.

» (33]
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Nevertheless his results belong rather to algebra than geometry and new geometric
properties of considered spaces were not obtained in this way.

But geometric nature of anti-commuting object occupied physicists since these
objects were closely connected with a “spin-geometry” (so called supersymmetries,
see [5], [16], [1], [28] and [23]) and a curved Minkowski space (so called supergrav-
ity, see [2], [9], [10] and [24)). K. Gawedzki has proved in [14] that the only *‘reason-
able” model of a supermanifold M, i.e., a manifold admitting both commuting
and anti-commuting vector fields looks as follows: M as a space is identical to an
“ordinary” manifold but the algebra of smooth local functions CZ.(M) (or, in
other words, sections of the trivial bundle M x K, where K = R or K = C) must
be replaced with an algebra I'5.(/1E) of sections of an auxiliary Grassmann bundle
AE which, contrary to M x K, may be endowed with an ample geometry. (The idea
of using a Grassmann algebra in order to join commutators and anti-commutators
in a common algebra is due to F. A. Berezin, ¢f. [5]). Thus supermanifolds provide
us with a generalization of the structure of a tangent bundle which is more adequate
for phenomena concerning elementary particles.

Thus the natural problem is to determine a class of vector bundles-like objects
which would be as generalizations of supermanifolds as vector bundles are generaliz-
ations of tangent bundles. The next problems are what is an effect of the geometry
of an “auxiliary” bundle AE in the geometry of supermanifolds and their generaliz-
ations. The present paper is devoted to both these problems.

In Section 1 we define a vector bundle-like object called a graded bundle in
which the Grassmann bundle AE is involved in transition functions. Then we state
that each smooth graded bundle is trivial, i.e.,, it may be transformed into a tensor
product of vector bundles, but there exist non-trivial holomorphic graded bundles.
Certain estimations for dimensions of spaces of some graded bundles having a fixed
auxiliary bundle are given but we are still far from a precise computation of these

dimensions. We present graded bundles associated with instanton solutions of gauge
fields.

In Section 2 we form a differential geometry for graded bundles based on
a superspace tensor calculus, see [14]. In particular we define curvature for graded
bundles and then we show that the geometric procedure for Chern classes works
only in special cases. Thus we see that both a local geometry and a global nature
of vector bundles may be extended onto a domain of graded structures but the
method for Chern classes, which is a link spanning them, is getting to be broken
down.

About thirty years ago, when tangent bundles had been well-known and general
constructions of vector bundles have been just appearing, mathematicians and
physicists asked why such a complicated structure would be needed. Who does
listen to such a question today?

I believe that the above situation will have something in common with the
development of the graded bundles.
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1. Graded bundles. Triviality and non-triviality

Throughout the paper we deal with two cases: either the considered manifolds (real
or compiex) and mappings will be of C*-class (this case will not usually be mentioned)
or they will be complex and holomorphic (then manifolds will be called complex
and mappings holomorphic).

In order to obtain “graded effects” in the theory of fibre bundles the linear group
GL(n, K) should be replaced by a group of all invertible #x7n matrices of which
elements belong to a Grassmann algebra AV. These matrices naturally decompose

A=AD4 4D 44D
where af? e APV, dimgV =k, p=1,...,k, i,j=1,..,n, det4® £ 0.

Denote this group by GL(n, AV).

The equality A® = I, determines its normal subgroup HL(n, <1¥) which
is nilpotent,

The quotient space GL(n, AV)/GL(n, K) is diffeomorphic to K"*~1, Then
the Steenrod theorem determines a natural reduction of every smooth GL(n, AV)-
bundle to a linear bundle.

Thus we propose a more general approach to “graded bundles”. Let the struc-
tural group GL(n, K) of a bundle over a base manifold M be replaced by a family
of groups GL(n, AE;), x € M, where E. are fibres of a certain auxiliary vector
bundle E over M. Thus from now on the structural group will transform (together
with fibres) when passing from one point of M to another one. More precisely no
isomorphism between groups of transformations of all fibres is given.

A set of all non-equivalent (vector or principal) GL(n, K)-bundles is isomorphic
to H'(M, GL(n, K)), where the considered cohomology is given in a sheaf of sections
of the trivial bundle M x GL(n, K). Thus a set of all non-equivalent “graded bundles”
should be isomonphic to H'(M, GL(n, AE)), where the cohomology is considered
in the sheaf of sections of the bundle 7,: GL(n, AE) - M, n7'(x) := GL(n, AE,),
which is not so simple as M x GL(n, K).

The step by step construction of a “graded bundle” is presented in the following
schema

o e
' space in a given step |
i

-

[ -
' the base manifold M the auxiliary vector

bundle E over M

m m+klm+2k

|
| its dimension if ‘
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,l AE over M ! _,| elements in the bundle AE | | sheaf of sections of
i ‘ over M GL(n, AE)
e _ SO
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Let us observe that AE,-module structures in the fibres make of graded bundles
more subtle objects than ordinary vector bundles.

DEFINITION. We say that we have a graded bundle if the following system is
given: g(E) = (g’ ng’ M’ (E’ 7, M>, (Qa)’ (d¢)9 (gﬂﬁ)>9 Where

(1) (E, n, M) is a vector bundle of rank k over the base manifold M. We calil
it the auxiliary bundle. '

(2) 4 is a manifold and 7;: 4 — M is a projection on the base M (base is the
same as previously) such that each fibre 77 '(x) is isomorphic (algebraically and

topologically) to @ AE,.
(3) (£2,) is a covering of M and d,

dy: 7 Y(2) - ® AE., where Ex:= Elo,
are isomorphisms such that
dudyt(e,) = gap(X)e;, €€ é AE,, x€ Q4= 2.,n8,
and g4 is a section of GL(}:, AEgp) over 24, i.e.,
.55 x = gap(x) € GL(n, AE,).

The set (d,) is called an atlas of the graded bundle ¥(E). All the sections g
form a cocycle, i.e.,
8o = (8zp)”' on Ly,
Bap8py = Bay on -Qc:py-
The graded bundle is holomorphic if all the above manifolds and mappings
are complex and holomorphic, resp.
This definition in fact is due to “graded vector bundles” only. But there is no
serious problem if we want to define “principal graded bundles”.
We say that graded bundles ¥(E') and 9(E?) over the same M are equivalent
if the vector bundles E' and E? are isomorphic, E' = E? = E, and there exists
a family of sections (s;) of GL(n, AE;) over £, such that

gap = SaBapSi '
(the multiplication is the same as in sets of Grassmann-valued matrices).

Thus a set of all equivalence classes of graded bundles is in a natural 1-1 corre-
spondence with the cohomology space H'((£2,), GL(n, AE)) associated with the
covering (§2;). Exactly in the same way as in the definition of a fibre bundle we
may get rid of the dependence on a particular choice of the covering (£2,) by means
of the relation of compatibility and then by passing to the inductive limit. We can
identify the set of ail non-equivalent graded bundles with the Cech cohomology
space H'(M, GL(n, AE)), cf. [18].

The graded bundle %(E) is said to be trivial if there exists a graded bundle
%'(E) such that 9'(E) ~ %4(E) and for a covering (£2,) all the transition functions
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gas take values in GL(n, K) c GL(n, AE,). Therefore the trivial graded bundles
are of the type W® AE, where W is the vector bundle determined by the cocycle
gap- So that the existence of non-trivial graded bundles is a question *“to be or not
to be” for the idea of graded bundles.

THeOREM. (1) If 9(E) is a smooth graded bundle over a paracompact base mani-
fold M then it is trivial.

(2) There are non-trivial holomorphic graded bundles and the following inequalities
are satisfied

k
26,h(M, E) < dim Hy(M, HL(n, AE)) < 2n* Y hiy(M, A'E),
i=1

n?, k=1,
* _{["2/4], k>1,

where hi,(M, E) = dimc Ha(M, E), “w” denotes cohomology in a complex, holomorphic
sheaf, k is rank of E and “dim” in the middle is meant topologically.
The proof, based on the technics of sheaves is given in [7].

Remark 1. The space H,(M, GL(n, AE)) may be regarded as a set of data for
a generalized-multi-dimensional-mixed (additive and multiplicative)-skew symmetric
Cousin problem. The right side of equalities of the equivalence relation for matrix
elements £, of 4%y are sums of terms of the type f, 13, t12}, 14 fapt}, where £} are
matrix elements of s{". We recognize a huge number of particular realizations
of the equivalence relation so that dimensions 4'(M, HL(n, /AE)) seem to be much

lower than 2n? Z hY(M, A'E).

Remark 2. The necessary condition for the existence of non-trivial HL-graded
bundles is H*(M, A'E) # 0 for some i. Thus we face a surprising phenomenon,
namely graded bundles hardly coexist with global meromorphic sections of their
auxiliary bundles.

The space H,,(M, GL(n, AE)) may be considered as a space of all non-equivalent
holomorphic graded bundles ¥(E) having the identical auxiliary bundle E. Observe
that the multiplication of cocycles by complex numbers

(28up)" := 2'gl, zeC
determines multiplication of graded bundles by any complex number as a continuous
mapping in H.(M, GL(n, AE)).
For a graded bundle %(E) corresponding to a cocycle (g,5) the graded bundle
0 9(E) corresponds to the cocycle (Gag) Where Gy 1= g&®, which cocycle defines
up to equivalence the vector bundle 7o( 4(E)). Thus we get the following surjection
no: Hy(M, GL(n, AE)) > H., (M, GL(n, C)).

Since ¥(E) and 0+ 4(E) can be always joined by line 7- ¥(E), 1 €[0, 1), then n,
gives us a 1-1 correspondence between connected components of Hu(M, GL(r, AE))
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and HJ(M, GL(n, C)). Furthermore both these spaces of cohomologies are of the
same type of homotopy because all fibres =g '(p) are contractible,

Apart from complex lines z - 4(E) planes of the type I,+ 4@ H)(M, E), where
A is nxn such that 42 = 0, may be distinguished in HX(M, HL(n, AE)).

Furthermore, H. (M, GL(n, AE)) admits a stratification according to the
degree of bundles. This degree is equal to the degree of Grassmann algebra elements
in transition functions, which is maximal in a given cocycle and simultaneously
minimal in the class of all equivalent cocycles. The construction of a 2nd degree
graded bundle can be done over P!C.

If a holomorphic graded bundle 4(E) is given then we can subordinate to it
a holomorphic vector bundle %,(E) of rank »n2* by forgetting all the E,-moduli
structures and remaining the linear structures of the fibres. Note, that not all vector
bundles belonging to the equivalence class correspond to a graded bundle in
such a way if one of them corresponds. If 4(E) is a trivial graded bundle then.
Y(E) = no(%(E))® AE.

There are “inverse” problems: when a given vector bundle W does admit a
non-trivial graded bundle %(E) such that W = %,(E) and what is a method of
reproduction of the auxiliary bundle E if the vector bundle %,(E) is given. The
partial answer is

AsserTION, (1) Each holomorphic vector bundle 4,(E) associated with a holo-

morphic graded bundle %(E) admits a sequence of subbundles: %,(E):= W,
k k k

> W, > ... > W, such that rank of W; is n((l.)+('.+l)+ +(k)) and W,
= 71 %(E))® A*E. These subbundles can be obtained by acting of the cocycles

k
on @ AE and then by forgetting of the AE,-module structures.

j=i

(2) If vector bundles 7(%(E)) and n,(%"(E)) belong to the same connected
component of H)(M, GL(n, C)) then graded bundles ¥(E) and %'(E) belong to
the same component of H.(M, GL(n, AE)) and %,(E) and %,(E) belong to the
same component of Hay(M, GL(nx 2%, C)). In particular the first Chern class holds

¢ (94E)) = cl(no (9(E))®1E).

ExampLES. A. Let &: E — M be a spin structure over a Riemannian 4-manifold
M, see [24]. Then any graded bundle %(E) is trivial. It means the non-existence
of any global collective bundle-like structure consisting of a number of isomorphic
spin-structures which would be locally separable into a direct sum of the spin struc-
tures but globally would not. In particular all spin structures considered in the
extended supergravity, see [8], [9], [10], are separable in the sense of graded bundles.
This fact can simplify the equations of the extended supergravity.

B. The holomorphic vector bundles E admitting non-trivial graded bundles
%(E) are very popular in complex analysis and mathematical physics. Here below
a few examples.
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Bl. Let E, be a trivial holomorphic line bundle. Then Hi(M, E,) # 0 means
that the additive Cousin problem for functions cannot be solved for every data.
If D is an open domain in C? then Hi(D, E,) # 0 iff D is not holomorphically
convex, e.g. if C2— D contains compact components. )

B2. Let M = P!C (Riemann sphere) and E = H* be a line bundle such that
¢i(H?) = p < —1. Then hL(P'C,E) = —p—1 # 0.

k n
In the general case when E = @ H", ny(%(E)) = @ H" the space of all
Im1 Jj=1
graded bundles contains points of a complex plane C?, where

& a az=0
H = ’
d= UZ=1 ;H(r,—r,—p,—l), where H(a) = {0 a<0

3 .

Thus the condition H'(M, E) # 0 is not necessary for the existence of (general)
non-trivial graded bundles,

B3. Let M be a compact Riemann surface and put £ = TM. Then

0, genus (M) =0,
hi(M,E) =11, genus (M) =1,
3(g—1) genus M)=g > 2.

B4. M is a Stein manifold. Then the vanishing theorem makes each HL-graded
bundle trivial. Furthermore, by adopting the Grauert theorem we obtain
Hy(M, GL(n, AE)) = H)(M, GL(n, AE)), which isomorphism implies the triviality
of all holomorphic graded bundles over M.

BS. Graded bundles over instanton solutions. The Penrose transformation
allows us to associate uniquely with any instanton (which we mean as a self-dual
solution of Euclidean Yang-Mills equations over S* up to gauge transformations)
a holomorphic bundle E over P3C of rank k > 1 together with an anti-involutive
map I: E - E so that

D e(E)=0, c2(E) =p >0, c3(E) = 0.

(2) E is stable, i.e., HO(P*C, E) = 0.

(3) Let the projection of P3C on the quaternion projective space P'H given by

(215 22, 23, 2] = [21+Jz2, 23 +]z4]

determine the bundle ¢: P3C — S*. Then all bundles Ej,-,(,, x € S%, are trivial.

(4) I: E- Eis a conjugate linear map such that I? = —id and I(E,) = E;x),
where 7: P3C — P3C is the anti-podal mapping which exchanges anti-podal points
in all fibres o~ (x).

Instantons for wich rank(E) = k, ¢,(E) = p form a real manifold of dimension
4kp—k?+1, see [3], [17). Note that for the numbers k, p hold k£ < 2p.

The dimension of the first cohomology with coefficients in the instanton bundle
Eis

ho(P3C, E) = 2p—k.
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This means that non-trivial HL-graded bundle having the instanton bundle E
as an auxiliary bundle exist iff the number p is greater than /2, where rank(E)
= k. Then such a graded bundle of rank » can be viewed as a system of » interacting
p-instantons. Recall that each p-instanton looks like a system of p interacting so
called pseudoparticles. Thus the considered graded bundles can be interpreted as
systems of p x n interacting pseudoparticles.

B6. Massless particles. By means of the Penrose transformation one obtains
a 1-1 correspondence between a set of wave functions of helicity s of massless particles
and the cohomology HL(P3*C+, H-2*-2), where P3C* < P3Cis a space of projective
positive twistors (in the sense of some (2, 2)-hermitian form). Thus the procedure
of graded bundles enables us to superpose the wave functions.

2. Supergeometry of graded bundles

In this section underlying manifolds and mappings can be both smooth and holomor-
phic unless no other assumption is made.

K. Gawedzki in [14], cf. also [20] and [21], worked out a superspace tensor
calculus which is adequate for graded bundles too. As a superspace we mean the
base manifold M together with an algebra I',.(AE) of local sections of the Grassmann
bundle AE (this algebra replaces the algebra CfS.(M) or Cii(M) from differential
geometry). The algebra I',.(AE) possesses a natural Z, gradation

AE = AoEeAl E,

where
[*/2] [(k-1)/2)
AgE:= ) APE, ME:= Y A¥HE, k=dimgE, xeM.
p=0 pno

We consider as a (graded) vector any K-lincar mapping X of I'y,.(AE) which
can be decomposed X = X,+X,, where X, (the even part) and X, (the odd part)
satisfy

Xe(-rloc(/ltE)) c o (4E),

X (af) = X (DB +aX(B), «,Bel(AE),
Xa(Ploc(AlE)) < Floc(/ltgal E),

Xo(ap) = Xoy()B+ () X,(B), where I|pg = (—1)".

One can easily check that for even vector fields 2 commutator is well defined
but anti-commutator makes no sense but for odd vector fields it is just anti-commu-
tator that makes sense whereas commutator does not.

Any vector X has the following expansion, of [11],

m k
0 0
- E a ¢ E y_¢ = di
X a 3x‘+j="8 o M dimM,
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. 0
where coefficients «'(x), 8/(x) belongs to the Grassmann algebras AE,, Fr are

. . . . 0
“ordinary” vectors which constitute basises of tangent spaces 7, M and 207 are

contractions in the Grassmann algebras AE, with local sections 6/ of E forming

basises in the fibres E,. The vectors of type « —8%" a(x) € Ag Ex (resp. a(x)e A, Ey)
7

o6’

Using the above notion of vector K. Gawgdzki built in [14] a complete graded
tensor calculus. Let us note that both symmetric and anti-symmetric graded tensor
consists of two parts and one of them is symmetric while the second one is anti-
symmetric in the usual sense. The exterior derivative of anti-symmetric graded
tensor fields holds the equality 4> = 0 which determines cohomologies of superspaces,
see [20].

Our main purpose is to verify whether the geometric Weil procedure for Chern
classes, see [6], works in the case of graded bundles or not. Thus we will need special
differential graded forms, namely

and f(x) e A, E, (resp. B(x) € A E,) are even (resp. odd).

0 0 d
(Pza'a—xi‘l‘/\.../\é;:, w—ﬁ'éxTAAé;T

Let us observe that if a(x) € A; E,, f(x) € A;E, then
gAy = (=1)*yng.

As a connection in the graded bundle ¥(E) we mean a mapping V: I'j,.(¥)
— I,.(4 ® T*M) such that

V(sy+5,) = Vs, +Vs,,
V(as) = da®s+aVs, sel.(¥9), ael(AE).

For a given system s = (5, ..., 5,), 8 € I'.c(%9), of local sections which form
a basis of the /1E-module I'\,.(¥) one gets a connection matrix

' VS‘ = W{Sj.
Observe that w{ are graded one-forms
m k
. AT .
=3 S iri, o,
=1 p=0

If s; = gfs; is another basis then w transforms as follows
wg = Vg+gw,

where V is a connection in AE® K™. Note that in order to define a connection
in 4(E) a connection in the auxiliary bundle must be given.

If any connection in %(E) is given then we can define horizontal sections of the
graded bundle in a traditional way.
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Similarly as in geometry of fibre bundles we may introduce a connection by
means of a connection graded form ¢ on the space of the principal graded bundle
which fulfills w = s*y.

It is natural to define a curvature matrix 2 by

Q:=Vw—waAw

(however we should remember that the skew-product of e, dx;, #,dx;, «,(x), §,(x)
€ A, E, is commutative). The transformation rule is

Q2 = gQe1,
There is no problem with the Bianchi identity
VR +Q2Aw—-wAQ = 0,

Nevertheless apart from the perfect accordance with classical geometry certain
formulae of geometry of fibre bundles fail in geometry of graded bundles. For
instance instead of dtrf2 = 0 the weaker equations hold

(0) dtr2, =0, dtrQ, =dtrw,Aw,

(L, := Q|4 g, where the cutting is made in the set of values) so that dtr 2 is a graded
3-form depending on w,.

From now on all bundles and graded bundles will be complex. Let us recall
the Weil construction of Chern classes, see [6). It makes sense since: there exist
J-homogeneous polynomial functions in matrix elements defined in the set of ail
complex n x n matrices p; such that

(l) pJ(GAG—l) = pJ(A), G € GL(”: C)’ .] = degpj < n,
()] dp,(§) = 0.

Let us observe that none of the above properties can be maintained in the case
of graded bundles.

In order to prove the non-existence of any polynomial-function satisfying
(1) it is sufficient to check for a certain matrix 4 with elements in AF that eigenvalues
of matrices gdg~!, ge GL(n, AV) may change independently each from another
one.

Since p,(£2) = tr 2 then formula (0) makes (2) not correct for graded bundles.

But the above obstructions do not exclude any possibility of defining “graded
Chern classes” in this way for special graded bundles. For instance if 4(E) is a graded
K(n, AE)-bundle such that the group K(n, AE)| 0p is Abelian and if we assume
that dtr w, Aw; = 0 then

cg () 1= trQlego 4 ane

defines an element of H'(M, Z@® E) which looks like a first Chern class of such
graded bundles.

The impossibility of the direct extension of the Weil construction of Chern
classes seems to be relevant to the impossibility of founding any natural integration
of odd graded forms, see [8].
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Now we will point out a substitute of the first Chern class for projective holo-
morphic graded bundles.

By a projective graded bundle up to the equivalence we understand an element
of the cohomology H.(M, GL(n, AE)/N(E)), where N(E,) is a normal subgroup
of GL(n, AE,) such that all quotient groups are mutually isomorphic and holo-
morphic.,

Assume that N(E,) are Abelian. Then we have the following exact sequence

— Hi(M,N(E)) - H)(M, GL(n, AE))
— Hu(M, GL(n, AE)/N(E))->> HZ(M, N(E)),

where extreme terms are topological groups and terms in the middle are topological
spaces with distinguished zero-elements.

If N(E) =1, AE®I,, where j =k or j is even and k/2 < j < k then &
takes values in H2(M, AE) and is much similar to the first Chern class of line
bundles.

3. Comment

In graded bundles the great group GL(n, AV) is involved. In this theory we have
no reduction of this group to a compact or an Abelian part as we have usually
in the theory of fibre bundles. I expect to see in graded bundles a lot of effects of the
lack of such reductions.
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