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The optimal and sequentially-optimal algorithms (OA and SOA) are
defined for a general model of the computation. The algorithm, guaran-
teeing the best accuracy in the solution of a problem, which is the worst
for this algorithm among the problems of a certain class, is called optimal
by accuracy. It is shown that such a definition does not always reflects
the specificity of an effective organization of the real computational
processes. The sequentially-optimal by accuracy algorithm is defined as an
algorithm, which at any stage of the computational process guarantees
the best possible accuracy with respect to all the information accumulated
at the previous stages of the computation. AO and SOA are constructed
for the problems of a global extremum search, optimal recovery and
numerical integration of functions. Issues of applications are discussed.

1. General problem and definition of optimality

Let F be a set of a linear space over the real or complex field and let
S be a mapping from F to a certain space B with a distance function y.
The problem is to find the best approximation to S(f) e B for some
fePF, ie. such an approximation element a(f) e B that

e(a,f) = y(8(f) a(f))

is minimal. Let us call e(a,f) the accuracy of solution.

Before defining the general scheme we would like to give a few
examples. Let a function f be defined on a set K of n-dimensional Eucli-
dean space E,. If the maximal value of f over K is sought, then B = Hj,

8(f) = max f(x). If the whole get or a point, at which the maximal value
zeK
is attained, is sought as well, then B = E, x 2% with a distance function

defined in a suitable way.

[675]
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For the problem of the optimal recovery of a function one may put
B = {¢| ¢: K—E,}, 8(f) =f, and for that of numerical integration
B = E,, 8(f) =Kff(w)dw-

For choosing a proper method in the problem solution, e.g. one of
the enumerated above, it is necessary to have some information of the
function f. This information may be obtained proceeding from the physi-
cal essence of the mathematical model. Such properties of functions
a8 continuity, smoothness, monotony, convexity, boundness of the change
rate may correspond to different physical properties.

The information possessed by the computer (mathematician) is the
ground on which he relates f to either set (class) F. If such information
is absent or insufficient, there might be a need for a stage of the pre-
liminary research.

After the class F is fixed, all the information consists of the com-
puter’s knowledge of the operator §, which is approximated, and the
fact that feF.

A method (algorithm, strategy) a is given by a set of mappings

1) @ = (@ry .00y Dy, B)
with
# =z F->Y,, 2, e X,,
Fy: Xy xY>X,3 @y Y,
Zy: Xy XY, XX, x¥Yy>Xy3 23— Y,
Dyt Xy x Y Xoo XXy XYy ;> Xy oy 'Yy,
B: Xyx¥yx ... xXyx¥Yy—>Bs 8.
The problem solution consists of the successive computations:
Yo =& (f)y By = &2(@1, Y1), Y2 = 2a(f), .00
ooy By = By (Bay Y1y ooy Tyo1y Uno1)y Yy = (S,

g = E(wuyn veey By Yuy)

TFinally,
a(f) = 8.

The operations of computing #,(f), ¢ =1, ..., N, are called basic, those
of (@1, Y1y s Bimyy Yima)y § =2, 0y Ny B(B0y Y1y ooy By V) ouziliony
and the last one — auxiliary and final.
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Computations of various characteristics of a function f at a point
@, € I, such as the values of the function or its derivatives, are often
chosen as an operation of a basic computation.

The number of the basic computations N is considered to be fixed
and determined by the computer resources. Henceforth, in all the
examples of the construction of OA and SOA we shall consider a case:

m e, wx(f) =f(=), X;=K, Y,=E, +=1...,N.

Although all definitions are of a general character, it is convenient to
bear in mind this very case.

Now, we would like to describe a set of feasible algorithms. Any
mappings from X, x ¥, X...xXyxY, to B are often considered as
feasible final operations. This will be the case, if there are no special
comments. The sets of feasible mappings &,, ..., &y depend on the com-
putation model under study. Two extreme cases are of the utmost interest.

The first case corresponds to a situation in which the computer,
while performing any basic operation, does not use any information
accumulated on the previous steps of the computational process. It might
be so, for example, if all the computations are to be performed simul-
taneously. In this case &, =@, i =1,..., N, a = (@, ..., 8y, ). Such
strategies (algorithms) are called passive. Let us denote the set of all
of them as AY.

The second case represents a situation where the computer has all
the information about the results of the previous basic operations and he
possesses of pufficient recources for the storage of this information and
its processing. If this is a case, all the algorithms in the form given by
(1) are feasible. A set of all such algorithms is called a set of sequential
algorithms and is denoted as 4%,

Intermediate cages are also under consideration ([1], [2]).

The algorithm a° is called optimal (minimaz) by accuracy in a geb
AY of algorithms with N basic operations, if

gup e(a’ f) = int sup (e, f).

feF aedN ferr
Denote
wi=(“’1’---;mi): ?/i=(?/1:---:’yi); zi=(mi;?/1)y
Fz’: = {fe-Fl mj(f) = Yy, .7 =1, srey i}!
(2) e(¢") = inf sup y(8(f), #),
BB [P,
where

ijXj) yjeyj, j:].,o--,ic

3 — Banach Center t, XIII
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It is possible to show that

(3) inf sup e(a,f) = int  sup ... inf sup &(2Y).
uE_A'{v feR xEX IIIE{U]_IFZ].'#B} zNeXpr UNEf'HNIFENqéﬂ}

After the completion of all the basic computations the computer’s
information of the problem f is f e F,~, if the results of the basic com-

putations are
z;(f) = ¥y, i=4..,N.

In case where all final operations are feasible and the computer
aims to achieve the best guaranteed accuracy, he will choose £, at which
infimum in (2) is attained, as an optimal final operation. By means of
this correspondence

Bo: Xy X ¥y X... XXy X Yy—>B
ig defined. We used to consider in it an element of OA and sometimes call
(&4, ..., ¥y) an algorithm, meaning that the final operation is §°.
It is easy to see that

0 0 - $
NN uD (@ly Y1y +vey Ty Yn) = inf N, Sup e(2")
vVely |F$10'y1._",m-(z)wquEn} 2NeX  x...x Xy yVely 1P,y %}

is the best guaranteed result (accuracy) in the set 4 and that the strat-
egy (#%,..., 2%, B°) is optimal in AY.

2. Construction of optimal algorithms for some concrete problems

2.1. On functional class 7. In further examples we dwell on a fune-
tional class

(4) F = {f: E=E,| |f(u)—f(v})| < Mo(u, v); 4,v € K}

which is determined by an arbitrary non-negative function g defined
on K xK. We assume that g has the properties of pseudometrics:

o(u, u) =0, olu,v) =g(v,u) =0, e(u,v)+o(v,w)= o(u,w),
w, v, w e K,

If it i3 not so, one may construct another function with the prop-
erties of pseudometrics, which determines the same functional class F.
A number of the functional classes may be described in such a form,
including the classes of functions satisfying Lipschitz or Hélder condition
with a fixed constant or different constants on various parts of K, classes
determined by modules of the continuity and even those of discontinuous
funections, in case g being discontinuous.
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A general class ¥ defined by p suits satisfactorily a number of the
practical problems. The matter is that a problem, for which a question
of finding an OA deserves a serious consideration, is, as a rule, a problem
of a complicated nature. Important examples are given by problems of
the computer aided design. The performance of a single basic operation
for them may require a solution of a complex problem to calculate the
effectiveness of a variant of a technical system which is designed. The
information concerning this kind of problem is, as a rule, scarce. In this
connection, the constraints on f in (4) are not very restrictive. The in-
equality in (4) describes the boundness of the change rate in the charac-
teristics of the optimized system as functions of the systems parameters.

2.2, Search for global extremum. Let us suppose that it is necessary
to find an approximate value f(z,) = max f(z) and a point of K at which
gek

the approximate value is attained; then the accuracy of solution is the
difference between the maximum value and its approximation. Then

8(f) = {f(=), Argrggf(w)), a(f) = (F(2a)s 2,),

P{8(f), e(f)) = flzo) —f(m).

Let the basic computations be finished: y, = f(=»;), ¢ = 1,..., N.

Olearly, f°(z") = (y,,, ), where y, = max y,. If only the maximum
i=l,.,0N .
value were sought, it would be necessary to define 8° as follows:

fo(z") = } inf max f(z)+3} sup max f(z).

feIi'zl- zelC JeF 4 reK

Tt is shown in [3] that the points «!, ..., 2% of the optimal strategy
are the centers of the covering of K by equal p-spheres of a minimal
radiug (we call a set {#| o(», a) <t} a g-sphere with a center o and a
radius 7). Thus

gup min o(z,#}) = min sup min e(z, 2;).
zeK i=l,...,.N zVeEN zeK i=1,.,N

It may be trivial to solve a problem of the optimal covering as it
iz for

Eo={u={(Ugy., %) 0<y<1, 1 =1,...,0}

o{u,v) = max |u'—o*|, N =m"
Seml, .,
with an integer m. In this case i,/2m, ..., i,/2m are the centers of the
optimal covering, ¢, = 1, 3,...,2m—1; j =1, ..., n. In other cases, find-
ing of 2, ..., 2% is a difficult problem of discrete geometry ([4]).
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2.3. Optimal recovery. Let us suppose that it is needed to compute
the value of f at a number of points of &, but it is not known in advance,
which ones will have to be used. The value of f may be computed without
an error at every point of the set K, but as the resources of the computer
are limited, only N computations may be done. After the selection of
points #y, ..., ¥y and computation v, = f(x,), ..., ¥» = f(@y) the com-
pulber constructs a function ¢ providing the best uniform approximation
to f. The computation of values f(z) may be replaced now by the com-
putation of ¢ (). For this problem

= {81 8: E=B}, 8(f)=Ff, »{f,B) =sup|f(x)—p(z),

xeK
Bo(z") = PN+
To find an optimal passive sirategy one has to find

inf sup inf sup sup |f(z)— B(x)|
arN eKN Ne{yN |7 Naé-a} feld fel N zell

and «¥ = (a2, ..., a%), B°(2Y) for which infimums are attained. The
strategy (xl’, §°)is an optimal by accuracy in the set Ay . It appears (see [6])
that =) is the same centers vector of the optimal covering of K as for
the problem of the global optimization, and 8°(z") = ¢ , where

(@) = § mox fy;~Mo(@, &)} +} min {y,+Me(z, o).

2.4. Numerical integration. Let B = B, §(f) = [f(z)d». Assume
x

that K, f € F are measurable, g(#, v) is summable over « for a fixed ».

Now we find optimal coefficients pi, ..., pY, if points z,, ..., zy of
a quadrature formulae are fixed. The optimal coefficients are defined
by an equation

nia;x| [t dm—gpof l=,ﬁ\ﬂlﬁ,]§i}x|ff dm—é’ﬁ?f ;)
with
PV = D1y .00y Pu)-

The problem represents a particular case of the general problem,
where the computer has to choose only a final operation with a corre-
sponding mapping linear over ¥,

Let us define I;(z"), ¢ =1,..., N, a8 any sets, satisfying the follow-
ing condltlons g(m,wi) = min g(m mj) for @ € K;(2V), I{;(2") is measur-

j=

able, U.K =K, K,(z ) K;(aV) = @ for ¢+ j. Note that such

1=1
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a partition of K may be non-unique. Let u(4) = [ dz. It may be shown
A

that (see (6)) p§ = u(K;(zY)), ¢ =1, ..., N, are the optimal coefficients.
Optimal points 2, ..., # may be found as a solution of the problem

fmin Q(m,mg)dw—mm f min o(z, z,)ds,
K t=1..,N eVeEN f dml,...,N

which is closely connected with that of the optimal covering. We note

further that [ min g(m #9)dx is the best result (accuracy) guaran-
K i=1,...,

teed by quadrature formulas The best guaranteed result will not be changed,
if an arbitrary mapping ﬁ in the form of (1) is a feasible final operation.

It is even more interesting that the best result guaranteed by the
gsequential algorithms is equal to that guaranteed by the passive strat-
egies for all problems under discussion, i.e.

inf sup &(a,f) ~ inf sup &(a, f).
acdd fep aEA. femr

Thus, the optimal passive strategy is also optimal among all the sequential
algorithms. It is corollary of some general results ([7], [8]), although it
may be easily proved by a direct way for the functional class we are
dealing with.

3. Sequentially-optimal algorithms

3.1. Definition of sequentially-optimal algorithm. Let X = [0,1],
e(u,v)= M|u—v|. Then

1 3 2N -3 2N—-1
(W’ﬁ""’ 2N ' 2N )

is an optimal pasgive strategy. As noted above, it i3 also optimal in the

set of all the sequential algorithms A¥. Clearly, the same is relevant
1 2¥-1 3 2N —3

2N’ 2oN ‘22N’ 2N )

Suppose that using the latter algorithm the computer has got after
two basic computations

1 1 2N -1 2N -1
—_—— == — —_— == .Z'[ .
f(2N) MzN’ f( 2N ) 2N
Then, obviously, f(z) = 2« for x# e[1/2N, (2N —1)/2N], i.e. there is no
need to compute f at the points of [1/2N, (2N —1)/2N]. Nevertheless,
the OA prescribes to perform all the remaining computations at the
points of this very set.

to the strategy (
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This example shows that the definition of the optimality does not
mect fully the requirements of the efficient organization of the real com-
putational processes. The application of the principle of guaranteed results
at every stage of a computational process makes necessary to look for
an algorithm, which is not only optimal, i.e. gunarantees the best a priori
possible result, but makes use in an optimal way of all information accu-
mulated durmg the computational process. A formal definition of such
algorithms is the following:

An algorithm a° = (&, .. ,wN,ﬁ") is called sequemmlly-optzmal by
aoouracy in AYN, iff the outer minimum in the expression:

e4(N) = int sup ... inf gup  e(2V)
Ty 1GX1+1 Yy 15{7/1'+ 1 i +1 0} zNeXN yNeElVNIFN %0}

is attained at @;,, = &,,(2"), the minimum in (2) is attained at g = fo(e¥
for any possible 2%, ¢ =1,..., N, and the outer minimum in the right-
hand side of (3) is attained at z, = &}.

The notions of the algorithms optimal and sequentially-optimal by
the number of the basic computations are also of some interest. Lef

¢(N) = inf sup e(a,f), N(e) =min{V| (V)< e}.
cusA{\'r fer

An algorithm o is called optimal by the number of the basic computa-
tions among the sequential algorithms guaranteeing the accuracy e, iff of

e AV and sup e(a?, f) < e
feF
An algorithm o is called sequentially-oplimal by the number of the

basic compuiations among the sequeniial algorithms guaranteeing the accuracy
g, iff it is optimal and prescribes to act in any possible situation so that
to minimize the number of the remaining basic computations while guar-
anteeing the achievement of the accuracy e.

The overall number of the basic computations may prove to be
much less than N ().

All definitions of the optimality, that we have given, do not take
into account the resources spent on the internal needs of the algorithm,
that is — the computations of the functions &, 5. This disregarding
of the so-called combinatorial cost of the algorithm is justified in case
where the problem is so complicated that the overwhelming part of the
resources is spent on the basic computations. The applied significance
of such problems is out of question and it was discussed in brief above.
Other approaches are also investigated ([9]).

Now we shall construet sequentially-optimal algorithms for the
problems of a global extremum search, optimal recovery and numerical
integration of functions. Here, we confine by the consideration of the
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functional class

= {fI If(w)=f)I < Mlu—v|, %,ve[0,1]}, K =T[0,1].

3.2, Sequenna].ly-optnnal algorithm of global optimization. Let us
consider a case, where the accuracy ¢ is specified and the number of the
basic computations is to be minimized ([10], [11]).

The first basic computation (according to the algorithm sequentially
optimal by the number of the basic computations) should be effected
at any one of the points

Ni(s) 1
Upy ooy Uy  Where \J [u;—e, u;+e] = [0,1], N(e) = ]?E—[
J=1 .
Here J¢[ is the minimal integer, which is greater or equal i
Suppose that the basic computations at the points ,, ..., »; are
performed, ¥, = f(®),...,¥; = f(#;). The upper bound for values of
the functions from F4 at any point 2 € K is given by
¢ii(o) = min {y+MU |0y}

=1,

The set

K;={» oi )>jn}axtw+e}
-congists of the points, at which functions of F ; may assume values greater
than max yj—l—s Suppose that

I=l...

N (8

iq [v;—e,v;+¢] > K
and it is impossible to cover K ; by N,(e)—1 closed intervals with
the lengths 2¢. Then N ,i(€) is the “minimal number of the basic compu-
tations, with which the accuracy ¢ in the situation 2* may be achieved.
Any one from the points v;, j =1, ..., N 4(¢), may be chosen as a point
@;,, of the (¢+1)st the basm computatlon by SOA.

The number of the basic computations by SOA proved to be 4-50
times less than by OA, while the same accuracy was specified.

Now we shall make a few points on the issues of the SOA applica-
tions. The problem of a global optimization is taken just as an example,
the same points being relevant to other problems. A usual objection
to the practical applications of SOA is that the constant M is allegedly
unknown for the most practical problems, In this case one may evaluate
M, taking

M, = o;,max [f(z;) —f(@)| /llw; — ol
fhei
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with o,>1 as an approximation to M after ¢ basic computations. In
such manner, a number of new algorithms may be constructed, depending
on coefficients o;. These algorithms are not optimal and do not even
guarantee the finding of a global extremum, however, their high efficiency
is confirmed by the practical applications.

3.3. Sequentially-optimal recovery of functions. Let the number ¥
of the basic computations be specified.

Any one of the points 1/2N,3/2N,..., (2N —1)/2N (which are the
centers of the optimal covering of [0,1]) may be chosen as a point o,
of the firgt basic computation by a SOA. Suppose that the computations
at the points @, ..., s; have been effected and let =z, < @, < ... < zy,
where @, #;, ..., &y i8 the permutation of the numbers «,,...,2;. In
order to find the point x,,, one has to solve the integer problem for the
determination of:

. Ti1
N) = min Max \——, (% — 1) W, T2}y + 0
)= win o mex | (s W, ),
Ryt =N =1
2(1—azy)
ooy (B — @1 ) W (Bs) m}r
where
( |f(205) — ,J‘—l)”M+mij_mi,j—1)/(w-ij—wi,j—l)7

and W, () is the value of the following multistep antagonistic game.

At the first step the minimizing player chooses a point ¢ e (0, 1)
dividing the interval [0, 1] into two, while the maximizing player, know-
ing %, assigns to these intervals two numbers I,, 1, such that 0 <1, <}{,
0, <t—-t 1, +1, =1, where l€[0,1] is a previously fixed number
known to both players.

At the second step the minimizing player chooses a point within
one of the intervals [0,%] and [t,1] dividing it into two subintervals;
the maximizing player, knowing this choice, assigns to them two non-
negative numbers, each of which does not exceed the length of its sub-
interval, with a sum equal to the number that was assigned to the union
of these subintervals at the first step, etc. After » steps the maximizing
player obtains from the minimizing one the maximum of the numbers
assigned to the n+1 subintervals, into which the interval [0, 1] has
been divided.

Let T, ,(I) be a point of the optimal choice of the minimizing player
at the first step of the game. Here » is any integer of the set {1, ..., 7(n, I)}.
Thus, the optimal choice of the minimizing player is non-unique. The
formulas for W, (1), T,,(), r(n,1l) are given in [5] and [12].
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If nyy .0vy My 18 2 Seb at which the minimum in the right-hand side
of (b) is attained, then one may choose for z;,, any one of the points

71 .
wﬂm, ro=1,3..,20 -1, if ni>0;

mi’j_l_l‘ (wf_,-——m,;.j_l)Tn;.,.j(lﬁ), Tj = 1, ceey ?’(ﬂ;, Zij)} j = 2, ceny 'l:,

if %_;5>0;

7; . .
mﬁ-‘-(l—wﬁ)Wil—l—f’ Yipp =2y 4, .0y 2my,, i mi, >0,
3.4. Sequentially-optimal algorithm of numerical integration. Let the
number N of the basic computations be specified. Any one of the
points 1/2N, 3/2N, ..., (2N —1)/2N may be chosen as x,. Suppose that
the computations at the points @,, ..., x;, were effected and let z,; < #,, < ...
... < @y Where z;,, &4, ..., 2,18 the permutation of the numbers =4, ..., ;.
In order to find the point @;,;, one has to solve the integer problem
for the determination of

(6) i) = min
Ngaes .,ni+15{0.1;2----}
Ryttt =N—1i

1 '17 (mij_wi,j—l)zMz"‘(yij“yi,j—l)z 4 M (1 —u;)? ]

[M T
4 n;41/2

+
4 M ~ ny+1 4 my,+1/2

One may easily get an approximate solution of the problem by rounding
off the problem solution with the same objective function as in (6), but
without the requirement that n,,..., %, are to be integers. The latter
problem may be eagily solved. The exact solution of the problem (6)
may be found, if the Gross’ criterion ([13]) is applied.

If nf,..., ni,, is a set at which the minimum in the right-hand side
of (6) is attained, then, as it is shown in [14], one may choose for z;,,
any one of the points

¥y . . .
oy —— rp =1,3,...,2n —1 it x>0
11 2%2 +1 ] »1 H ) H 1 ? 1 b
pe
7 1 . 1
Tijort @y —Tyy) = 1 =1...,n, i n>0,
'nl’-"l"'l
Tir1 A ) ;
05‘"—}-(1——37“)—1——— 7‘,,;+1=2, 4, .--,2%2+1, lf ’"’1:+1>0’
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So, one may see that the construction of SOA requires the necessity
to solve difficult problems from various mathematical fields: discrete
geometry, game theory, integer programming and others, In most cases,
the complete solutions are presently obtain for the classes of one-variable
functions. Sometimes, however, these results may be applied for the
solution of the multidimensional problems ([16], [16]).
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