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This paper is concerned with the statistical problem of parameter estimation
for hypoelliptic homogeneous Gaussian diffusions. Since quadratic forms of
the processes under study play a central role, some of their properties are
proved first. Then the maximum likelihood method is used to derive or-
dinary and sequential plans for parameter estimation and characteristics of
these plans are studied.

1. Introduction

Stochastic linear models for dynamical systems in continuous time have been
intensively studied both in the literature concerning systems theory ([3],
[181) and in that about the statistics of random processes ([1], [10])

In the present paper we are concerned with a multidimensional model
which is defined by an autonomous linear stochastic diflerential equation of
the following form:

dX:F=AX*dt+GdW, >0, Xi=x (1.1)

where

W =(W!'..., WY is some standard Brownian motion in R defined on
some basic probability space (Q, ., (54)z0, P),

A and G are nxn and n xr constant matrices,

x stands for any initial state of the system in R

Let us recall that (cf. [10]), for every xe R", the process X* = (X[, t = 0)
is a Gaussian Markov process with mean function

mF=EX‘=e'x, t>=0,
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and covariance function (not depending on x)

——
-

eA(t —5) Ks

Kis=E(XF—EX)(XF-EX)} = {K A1)
4

-
/A
v v

where the variance function (K,, t > 0} is given by
K, = AK,+K,A+GG, t>0,K;=0

or equivalently

t

K, = e* je“s GG' e *5dset", t > 0.

0
Moreover, (X*, xe R") is a homogeneous Gaussian diffusion corresponding
to the differential generator

1 2 0? "

L=3 .2 bignax, * 2, W%

ij=1

b

Q)' fo¥)

where A =((a;;)) and B = ((b;;)) = G- G". It is known (cf. [6], [7]) that if the
differential generator is hypoelliptic, i.e., equivalently, if the pair [4, G] is
controllable or

rank [G, AG,...,A"" 'G] =n, (H1)

t
then, for every 0 < s <, the integral [ e 4“GG'c™**du is a positive definite

matrix and in particular, for every ¢t > 0, the covariance matrix K, is regular.
Obviously this occurs for example when G is an nxn regular matrix.

It is also known (cf. [7], [19]) that if (H1) is satisfied together with the
assumption

A is a stable matrix (H2)

then there exists a unique invariant probability measure for the diffusion
(X*, xe R"); this measure is Gaussian with mean zero and nonsingular
covariance matrix

+ o
K,p= lim K, = | e*GG e**ds, (1.2)
1=+ x 1]

which is the unique nonnegative definite symmetric matrix satisfying the
Lyapunov equation

AK+KA' + GG =0.

Moreover, from [11] it follows that under (H1){H2) the diffusion (X*, xe R")
is ergodic.
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Here we are interested in the statistical problem of estimating the
parameters 4 and B = GG’ of the diffusion when they are unknown, in view
of the observation on some time interval [0, T] of one trajectory. This
problem has been studied in [1] and [8] under the assumption that the
differential generator is elliptic, i.e, det B # 0, and sequential procedures have
been investigated for the one-dimensional case (cf. [10]) and the two-
dimensional case (cf. [13])

In the present work we show that the methods used in these papers may
be extended in some ways under the weaker assumption (H1). Since prelimin-
ary results, which are of interest on their own merits, are needed in
statistical considerations, the paper is organized as follows:

Section 2 is devoted to the computation of some Radon-Nikodym
derivatives and to the study of quadratic forms of the observed process.

Section 3 is concerned with parameter estimation by the maximum
likelihood method.

In Section 4 sequential schemes for parameter estimation are studied.

2. Preliminary results

Let C = C(R, ; R") be the space of all continuous functions from R, into R"
and, for every T >0, let ¥; be the o-algebra generated on C by the
coordinates 7, for 0<t < T If Z =(Z,;t = 0) is some random process with
continuous sample paths, yu; will stand for the restriction to %; of the
probability distribution induced by Z on C.

2.1. Radon—Nikodym derivatives. The following lemma will be import-
ant in our future considerations:

Lemma 2.1.1. Let (I(t);t>0) be some nxn matrix-valued function
which is absolutely continuous with derivative I (1) and such that for every T > 0

T
[ [Ty0lde < + oo, k,1=1,...,n,
4]

where I'(t) = ((F,(,(t))). Let Y*=(Y*,t>=0) be the solution process of the
stochastic differential equation

dY* =[A+GG' ()] Y*dt+Gdn,, t=0, Y§=x, (2.1)

where (n,, t = 0) is some r-dimensional Brownian motion. Then the measure ,ui,
is absolutely continuous with respect to the measure ,u:x with the following
Radon-Nikodym derivative:

dp s
dul,

T T
=exp|— [ M) GG™ dn,+3 (j) n ' () GG™ [2A+ GG I’ ()] =, dt} .
0
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If, moreover, I'(t) is a symmetric matrix for t = 0, then the Radon—Nikodym
derivative can be written

dpx,
dﬂy!

T
exp {3 [Tr( )G)dt+3x' T(0)x—3ar [(T)ny} x
0

x exp {3 j M@+ AT@O+T ) A+T()GG T'(1)]r,dt}.
1]
Proof. Note that the equation
Ax—(A+ GG I' (1) x = Ga,(x)

admits the solution

a,(x) = —G'I'(t) x.

Then (cf. [10]) one has ,u;, 3 ,u;", and, moreover,

d“;" T ’ ! ]+
ai =exp{| [An,—{A+GG'T' (1)} =,]) [GG']™ dm, —
Yx 0

h]

—4 [ [Am,~ {A+GG' I'(0)} n,] [GG']* [An,+ {A+GG' T (1)} m]dt}.

o

On using the properties of pseudoinverses, namely [GG'][GG']* = GG™* (cf.
[10]), the first assertion in the lemma immediately follows. Now, if I'(t) is
symmetric, the stochastic integral can be computed as follows:

T T
[ I'(0)GG*t dn, = [ n, (1) GG* dr,
o 0

.
m, I'(t)dn,— | 7, T (t)(E—GG*)dn,
0

Il
=R Y |

T
m, I (t)dn,— | n, T (t)(E— GG*) An,dt,
0

[
O Gy ™

where E stands for the n xn identity matrix. By the It6 formula one gets:
T T T
{m F()dn, =3 {{ ;I (O)dn,+ | dn, ()7}
0 0 0

=%{n'rr(-T)nT—x'r(0)x—} Tr(G’F(t)G)dt—} m I (tym, dt}.
0 0
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Then one has
T
dit, x
T
dnu’yx

T

=exp (3 [ Tr(G' T (1)G)dt +4x' T (0)x—} 7 F(T)n-r} X
0

xexp {3 j m ['(f)m,dt} x
T T
X eXp {j n I'(t)(E—GG*)An, dt+4 j n, F(t)GG* [2A+ GG’ I'(1)] n,dt}.

hs 0

The last term within brackets can be written:

T T
3 [T (W)(E-GG*) An,dt+4 [ m A(E—GG*) (1) m, dt
0 0

T T T

+3 j' n, I (t)GG™ An,dt+3 j mA'GG* I'(ym, dt +3% j n, I'(t)GG' I'(t)n, dt,
0 0 0

that 1s,

T
$ {m[ATO+T(OA+T()GG T (1)]n,dt,
0

which completes the proof of the last assertion. ]

Now let us state the following corollary, which will be useful in the
maximum likelihood approach to parameter estimation:

CoROLLARY 2.1.2. Let X*=(X* t>0) be the solution process of the
stochastic differential equation
dXF =(E—GG*)AXdt+Gdn,, 1>0,X5=x (2.2)
where (n,,t = 0) is as in Lemma 1.1.1. Then p;, @ﬂ;x with the following
Radon-Nikodym derivative
T
du T B
Proof. App]ymg the first part of Lemma 1.1.1. with I'(1) = —(GG')" A4,
t 2 0, one gets
d,ux
d T

= exp {Tr[(GG")" ‘j' dn,m, A —%3 A jn,n,th 3

= exp {j 7. A'(GG)* (GG)(GG)* dn,—
T

—3 [ 1 A'(GG)* (GG')N(GG)* An,dt —

0

~4] mAGG)" [E —(GG)(GG)"] An, dt}
0

T . T
= exp {[ 7 A'(GG)" dm,—} [ , A'(GG)* A, dt},
0 0

which can be written as in the corollary.
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2.2. Quadratic forms of the process. Since the quadratic lunctional
T

| X7 X[ dt will play a central role in what follows, we now investigate some
(1]

of its properties.
T
Lemma 2.2.1. Under assumption (H1) the matrix | X7 X7 dt is almost
0

surely positive definite. If, moreover, (H2) is satisfied then, K , g being defined
by (1.2), one has:

T

.1 ,
lim — J XX dt=K,p almost surely.
T—+ T

0

Proof. 1In order to prove the first assertion one has to show that the set

Q= U [h’(} X:XT dt)h = 0]

heR™ [0} 0

is negligible. It is clear that since X* has continuous sample paths it is
sufficient to prove that

Q= U N KX h=0]

heR™\ (0] se[0,T]
is negligible. Let 0 =¢, <t, <... <t, < T; since
Q, < QFf = {det[X7,....X;]1=0]

and the subset of (R)" {(v,,...,v,)e(R"" det[v,,...,v,] =0} has Lebesgue
measure zero, the assertion of the lemma will be proved if one asserts that

the Gaussian random vector (Xfl', e X:";)’ is nonsingular. But one can write
— '1
x+ [ e 4G dWJ
0
X; e 0 E 0 ‘2
.‘l ' J‘ e~ As Gdl’Vs
. == ll )
X: 0 Sl LlE .. E]] o
‘Pl
[ e Gadw,
L 'n—1 -
fi+1
where the random vectors [ e “GdW,, i=0,...,n are independent
L L
i+1

with the respective covariance matrices | e “*GG’e”**ds. Since it has
t

been noticed (cf. Section 1) that these matrices are positive definite when (H1)
is satisfied, the proof of the first statement is completed. The second assertion
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is a simple consequence of the ergodicity of the diffusion (X* xe R"), which
has been stated (cf. Section 1) under (H1){H2), since, for the invariant

measure p, one has
+ x
| wdu(y) =K,up= | e*GG e**ds. .
R 0

From the second part of Lemma 2.2.1. it follows that under (H1)-(H2)
for every symmetric nonnegative matrix S # 0

T
im | X7 SXdi =+ as..

T—=+x Q

Now we shall show that, in order that this limit should hold, assumption
T

(H2) is not essential. We look at the Laplace transform of | X X[ dt, ic., the
0

functional ¢! defined on the set & of symmetric nonnegative definite
matrices S by

T T
@3(S)=Elexp[—TrS [ X7 X7 dt]} =Elexp[— | X7 SX7dt]}. (23)
0 0

Lemma 2.2.2. Under assumption (H1) the functional @I is given by:

T
@1 (S)=exp {3 [ Tr(G'y7 '(S)G)dr+3x x} x
0

xexp {3 x' @7 (S)(E+y7 (8) 47 () 1v7 () dr(S)x) x
x[det:Ew;l(S)AT(S)}]“%, Se s,

where (7,(S), t 2 0) is a positive definite matrix-valued function which is defined
by the equation

‘))t = Ayl+?lA’+GGl_2'YI S‘}Jh t 2 0, Yo = E, (24)
and
T
A,(S) = ¢1(S) | ¢, ' (S)GG ¢, 1 (S)dtdr(S)
0
with

‘15: (S) = (A +GGI}’r_ ' (S)) d’t (S)a t =20, ¢0(S) =E.

Proof. The existence of a unique solution to (2.4) is established in [10]
(see also [14]); the fact that y, is invertible comes from (H1) (cf. [10]). It is
easy to see that, setting I'(t) =y, 1(S), one has

FO)+ATO)+T(O)A+T()GG' T(1)-25=0, >0, 0 =E.
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Then, taking into account the second part of Lemma 2.1.1, one obtains

T
f‘
T(S) =E |y syear [Hae v
@y (S) exp 4 ,th()
0
T T
=E{exp{— Y;I'SY,de-F JTr )dt+7x'x_
0 o

T
=Y 911 (S Yf+j1ﬁx'31ﬂ’d‘}}
0

T

= exp{-% j Tr(G’y,_l(S)G)dt+%x’x} x Eexp{ -3 YF yr1(S) ¥,7].

0

Moreover, from (2.1) we know that Y7 is a Gaussian random vector with the
mean

my (S) = ¢7(S)x

and the covariance matrix
T B
Ar(S) = ¢7(S) [.¢; ' (S)GG' ¢, ' (S)dtor(S)
0

with ($,(S), t = 0) as in the statement. Then (cf. Lemma 11.6 in the Russian
version of [10]) one gets

E(exp{—zYf vr ' (5) Y7})
=exp{—3m] (S)(E+yr ' (5)47(8) ' yr ' (S)m] (5)} =
1
x {det[E+yr '(S) A (9)]} 2
and the proof is complete. ]
Now we are able to prove the following statement:

CoroLLary 2.2.3. If (H1) is satisfied, then, for every xe R" and Se ¥,
S # 0, there exist strictly positive constants «,{(S) and B(S) such that

Pz (S) < a,(5)e” T, T>0.
Proof. First, since y71(S)e & and A;(S)e S, it is clear that
expiix' x} xexp | -3 X PT(S)(E+7y7 ' (5)4,(5) ' v7 ' (S) b7 (S) x} < exp{ix x)
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So we only have to prove that

T
exp {3 | Tr(G'y, ' (S)G)dr} x
0
< (det [E+37 ' (5) A7 (S)]) T < K (S)e o

for some positive constants K(S) and B(S).
But, setting’

T
Ar(S)= [ &7 1 (5)GG ¢;” ' (S)dt,
0

we have

det[E+yr ' (S) A7 (8)] = det [E+97 ' (S) 61 (S) 47 (S) 97 (5)]
> 1 +det[yr ' (S) ¢ (5) A7 (S) $7(5)]

det y(S
det AT(S)+E%;)T—T((S))]2
= [det ()] det ~
yr(S)
Then the first member of (2.5} is bounded by
T
exp {3 [ Te(G'y, 1 (S) G)dt} x
0
1
det y- (S 2
x(det 7 ()" x S
det A (S)+ (———det PRI

But, since

T
det ¢ (S) = exp {| Tr(A+GG'y, ' (S)) dt},
0
one gets for the product of the first two terms in (2.6)
T
exp{— | Tr(A+GG'y, ' (S))dt}
0
or, by using (24),
T T
exp{— [ Try,(8)Sdt—3% | Tr5,(S)y, ' (S)dt},
0 0
i.e., taking into account the fact that

L071®) = ' O3, % O=E

345

(2.5)

(2.6)
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the expression
T 1
exp [ — [ Try,(S)S dt} [dety,(S)] .
J )

Now (2.6) can be written

detyr(®) 127 |
dmarie | e [ Ten®sar

and in order to get (2.5) it remains to prove that

det y,(S)
‘I?ng{det A, (S)+—( deto S))Z} >0

[det A (S)+

and

Inf Tr {3,(S)S} > 0.

t20
The first inequality follows from the fact that det A,(S) increases with r and is
zero if and only if t = 0, and that det y,(S)/(det ¢,(S))? is positive with value 1
for t = 0. In order to prove the second inequality let us consider (g,(S),
t > 0), the solution of

6, = Ao, +06, A"+ GG — 206, Sa,, t=20,00=0.

It is known (cf. [17]) that, since (HI) is satisfied, o,(S) is monotone
nondecreasing and, moreover, for every t > 0, ¢,(S) is positive definite. It is
easy to see that, setting 9,(S) = yr_,(S)—or_,(S), one has §,(S) = E and for
t = 0:

8,(S)+(A—207_,(S5)5)5,(S)+8,(S) (A — 201, (S)SY — 25, (S) S5,(S) = 0.

So (cf. [17]), for every te[0, T], ,(S) is nonnegative definite and therefore
for every t = 0 the matrix y,(S)—o,(S) is also nonnegative definite. All these
properties lead to what is needed. =

3. Maximum likelihood estimation of the drift parameter

Here we investigate the problem of estimating the unknown parameters A
and B = GG’ of the diffusion process under consideration in view of the
observation of [0, T] of one trajectory starting from zero at time zero, since
in view of the preliminary results this is not really a restriction. So we start
with a process X =(X,, t =2 0) satislying (1.1) with x = 0.

An estimation of matrix B can be obtained by using the quadratic
variation [ X] of process X. Precisely, B can be computed with probability one

1
on every finite time interval [0, T] by B = jr—[X Jr. So we can consider the
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problem of estimating the matrix A when B is assumed known without any
restriction, B having been previously computed. First we investigate the case
where the matrix A4 is completely unknown (for which the results have been
announced in [9]) and then the case where it 1s known up to a multiplicative
constant.

3.1. The case where the drift parameter is completely unknown. Since
from (1.1) one has

T T T
fdX, X, = A [ X,X,dt+G | dW, X,
0 0 0

one also has

O~

T
{d(E—BB*)X,} X, =(E—BB*)A | X, X,dt
]

because BB* = GG™ is nothing but the matrix of the orthogonal projection
on the subspace of R" generated by the columns of G. Then, by using Lemma
2.2.1, under (H1) one gets

T T
(E-BB*)A = {[[d(E-BB")X, X{]} {| X, X;dt} ™. (3.1)
0 (1)
Let us notice that the stochastic integral in the second member of (3.1} is in
fact an ordinary integral since the process ((E—BB*)X,, t > 0) has locally
bounded variation. Finally, as B, the matrix (E—BB*) A can be computed
with probability one on some finite time interval; this allows us to assume
that this matrix is known too.

Now, from Corollary 2.1.2, the measure ,u;o, which only depends on
known matrices B and (E—BB*) A4, can be considered as a dominating
measure for the statistical space associated with the estimation problem
concerned; the log-likelihood function can be written in the following form:

T T
Tr{B*[[dX,X,A'—34 | X, X,dt 4]}
0 0

Then the next result is an immediate consequence of Lemma 2.2.1:

ProrosiTioN 3.1.1. Under (H1) a maximum likelihood estimator of the
matrix A is given by

T T
Ay = [g dX, X;][([’ X, X,dt]™ L. (3.2)

Remark 3.1.2. From (l.1) one can write

T T
Ar=A+G[faw, X[ X X, dt] . (3.3)
o 0
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This ensures, because of the controllability of the pair [4, G], that the
1

-~ ) ~ (1 2
pair [Ay, G] is itselfl controllable; so the estimator [AT, (? [X]T) :I takes
its values in the parameter space. Moreover, let us notice that the matrix
(E—BB*) Ay provides again the matrix (E—BB¥)A defined by (3.1).
Now we state the asymptotic properties of the estimator:

ProposiTION 3.1.3. Under (H1) and (H2) the estimator Ay defined by
(3.2) is strongly consistent, i.e.,

lim A=A a.s..
T+ x

Moreover, the vector T'* vec(A;— A) is asymptotically normally distributed
with mean zero and covariance matrix K, ®B where K, 5 is given by (1.2).

Proof. We start from the decomposition of the estimator given in
equation (3.3). By Lemma 2.2.1 one gets
T

1 -1
lim [? J‘ X, X,’dt] =K.} as..
T-+x

0

Moreover, since for every coordinate (X!, t > 0) of the observed process X
one has

T
1 . .
lim — J(X;)z dt = Kiiy >0 as,
T-'+mT ’

0
by Theorem 4.1, Appendix 1, [4], one obtains

T

1

lim T de,X; =0 as..

T—-+=x
0

Then the first assertion is proved.
Now, still from (3.3), one can write

T

ﬁvec(AAT—A)={l}1; J‘X,Xﬂlt:lhl@)(;}vc {

0

ml'—
OQ_..,_j,_]
o
=
>
\_—\,—_J

AY

where

vcc{ﬁ !dWX’} 1 J(x ®E)dW,
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From Lemma 2.2.1 and

T

[ (X,®E)(X,®E) dt = j(X ®E)(X,®E)dt = j()!{t X)®E dt

0

one gets

1
lim — | (X,®E)(X,®E)dt =K, z®E.
T—-+x T ’

0
Then, by using the results of [16] concerning the asymptotic normality of
stochastic integrals, one deduces that

T

1
lim vec (—— JdW, X;) = N(0, K, s®E),
T—>+x \ﬁ
0

where the limit stands in the sense of convergence in probability distribution.

It follows that in the same sense ﬁ vec(A;— A) converges to the
Gaussian distribution with mean zero and covariance matrix

(K4.p®G)(K s ®E) (K4 3 ®E) (K 3®G) = (K15 K 4,0 ®(GE))(K ;5 ®G)

=(EQG) (K p}®G) =K }®(GG) =K }®B. =

Remark 3.1.4. Note that if one assumes that the parameter space is
that of pairs [A4, B] such that, on the one hand, [A, G] is controllable and,
on the other hand, A is a stable matrix, then the estimator /fT defined by
(3.2) 1s not a maximum likelihood estimator; in fact, under these conditions
such an estimator does not exist. The matrix A is not stable in general but
the probability that it is tends to one when T increases to infinity.

In the case where B is nonsingular it is possible to modify Ay in order
to obtain an estimator of A which is stable: one has

T T
[dX, X;+ | X, dX{ = X7 X7 -[X]r;
0 0

SO

1
(jdX X~ X7 X5 (jx X, dt) —jx X;dr +

+?j X, X{dt'(jX, X;dt)"l(j' X,dX,—3Xr X7)= —B.
0 0 0
This shows that the Lyapunov equation

ArQ+QA4r = - B,
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where
N T T
A = (j dX,X;~%XTX'T)(j X, X, di)™ 1,
0 0

T

admits the positive definite matrix T [X,X.dt as a solution, which implies
O i~
that A, is stable (see [15]). Moreover, it is clear that the estimator Ay has

the same asymptotic properties as Ar.

So, in some sense, under asumptions (H1)}{(H2) the problem of par-
ameter estimation is completely solved. The question is: does the maximum
hkelihood estimator given by (3.2) still converge if one drops assumption
(H2)? We have no answer to this in general, but the problem has been
positively solved in the one-dimensional case (cf. [10]).

We are now going to look at the problem of parameter estimation in
the case where the drift coefficient is known up to an unknown multiplicat-
ive constant; the results will include those cited before concerning the one-
dimensional case.

3.2. The case where the drift matrix is known up to a multiplicative
constant, Here we assume that A4 beléngs to the set {0A4,; 6 R}, where A,
is some known n xn matrix and 6 is an unknown parameter which one has
to estimate. Since if BB™ A, = 0 then € can be computed from (3.1), we shall
also assume that BB A4, # 0.

Because the log-likelihood function is equal to

T T
6 { X,AoB"dX,—30* | X; Ay B™ Ay X, dt,
0 0
the maximum likelihood estimator of 6 is given by
T
[ X; Ao B* dX,
(1)

Or =7 (3.4)
[ X, Ay B* Ao X, dt
o

ProrosiTioN 3.2.1. Under (H1) the estimator O, defined by (3.4) is
strongly consistent, ie.,
limf8,=0  as.

T -
Proof. As before, from (1.1) one can write
T
| X; Ao B* GaWw,
gT = 0+ o

- .
[ X; Ao B* Ay X, dt
(4]
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t
But ([ X:A4oB" Ay X,ds, t > 0) is the quadratic variation process of the
0

martingale ([ X; Ao B* GdW,, r > 0) and
0

T
lim { X;A4B" Ag X, dt = oo as.

T—=w Q

(see Corollary 2.2.3). So, by the analogue for continuous time martingales of
the strong law of large numbers (see {4], Theorem 4.1, p. 394) the assertion
follows. n

Remark 3.2.2. Note that

T

| X; Ay B* dX, = §(X7 B* Ao Xy — TTr BB* Ag)+

0
T T

+4Tr(4g B —B* Ao)([ dX, X,— | X,dX;).
0 (1)
So, if B* A, is symmetric, then

9- X’TB+ AoXT_TTrBB+ AO
T= .

T
2[ X, A3B* Ao X, dt
0

Moreover, if B* A, is skew symmetric, then

T T
TrA'B* (| dX, X,— [ X,dX])
0 0

éT=

T
2( X, Ay B* Ao X, dt
0

Remark 3.2.3. The results of this section (under (H1)) may easily be

p
generalized to the following case. Let A = Y 6, 4;, where 4,,i=1,...,p, are
i=1

known matrices such that BB* 4, # 0, i=1,...,p, and
A}B*A,-+A}B+A,-=0, i #£j.
In this case, the maximum likelihood estimator of 8,, i = 1,..., p, 1s given by
T
j' X, A;B* dX,
A 0

9:‘,7 = ’

T
[ X, A;B* A; X, dt
0
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and it is clear that for all i=1,...,p

llm gl'.T = 6,’ a.8..

T

Now we give an example of a 2-dimensional process which is a model
for the so-called geophysical problem.

ExaMPLE 3.24. It is known (see [2], [13]) that the instantaneous axis
of rotation of the earth is displaced with respect to the minor axis of the
terrestrial ellipsoid. This displacement consists of a periodic part and a
fluctuating part. The latter can be assumed to be a solution of a system of
stochastic differential equations of the form

dX, () =0, X (t)dt -0, X, (t)dt +gdw, (1),
dX,(t) =0, X,(0)dt +0, X,{t)dt+gdw, (1),

where (w, (1), r 2 0) and (w,(¢), t > 0) are two independent Wiener processes,
6, and 6, are unknown and g? is known. It is clear that the above system of
equations can be written in the form (1.1) with

Gl _92 1 0
A= = ;
(92 0,)’ © 9(0 1)

Moreover, because A = 0; A, +0, A,, where

A_10 A_0—1
7ot/ 27\ 0

and A} A, + A3 A; = 0 the maximum likelihood estimators of 8, and 8, are
given by

T T
[ Xi(0dX,()+ | X,(dX (1)
0 0

gl.T = T >
X3+ X3(0)]d:
0
T T
§ X1(0dX,(0)—§ Xz (dX, ()
52.1_ _0 0

T
[ [XT(O)+X3(B)]at
0

It has been shown (see [4]) that these estimators are consistent when the

solution process
X (t
X, =( X ))
X, (9



ESTIMATION FOR GAUSSIAN DIFFUSION 353

is assumed.to be stationary. Taking into account Remark 3.2.3, we can assert

that these estimators are still strongly consistent when one drops the
assumption of stationarity.

4. Sequential estimation

As in Section 3.2, we assume that A belongs to the set {#A4,; 8 € R}, where A,
is some known n xn matrix such that BB* 4, # 0. Here we deal with the
problem of sequential estimation of unknown parameter §. A mathematical
statement of the problem and some details concerming the case of continuous
time observations may be found for example in [10], [12].

Let H be a nonnegative number. Define the stopping time

¢
t(H)=inf{t: [ X;Ap,B* Ax X,ds = H}. (4.1)
. 0

In the case of a one-dimensional process X it has been shown (cf. [10])
that Et"(H) <00 for all n. We shall prove the following stronger result:

LEMMA 4.1. Under (H1) there exists a 6 > 0 such that

Eexp {ét(H)} < .

Proof. From Corollary 2.2.3 it follows that there exist positive const-
ants @ and B such that

Eexp {— IX’AOB+A0X dt} < ae”?7.
So
T
P((H) > T) = P(j X, A, B* Ao X, dt < H)
1]
< e Eexp{- J'XA B* Ag X,dt} < aee T,

Now let 0 < < B. Since
eTPx(H)2 T) < efae” 697,

we have also

Eexp {67 (H)}

f—o

°‘———38

e’ P(v(H) > 1)dr < dae” J emB-dng 9% oo,
0

which completes the proof. =

23 — Banach Center t. 16
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Define the sequential plan (t(H), 0,y,), where t(H) is given by (4.1) and

(H)

N 1
gt(H)ZE J X: AE)B-'-dX‘.
0

Note that 0,4, is in fact the maximum likelihood estimator of 6 based on the
observation of the process X on the random time interval [0, t(H)]. It is
also easy to see that the case studied here covers those considered in [10].
We shall now prove:

ProposITION 4.2. Under (H1) the sequential plan (t(H), 0,,) has the
following properties for all 8¢ R:

~ ~ ~ 1
() O, is normally distributed with EO 4, =0 and var0 g = ﬁ;

(i) in the class of sequential plans (t, 0) such that

EO* <, E[X/ApB*AX,dt <H

0
the sequential plan (v(H), 0,4,) is admissible and minimax with respect to the
quadratic loss function.

Proof. Part (i) follows from the equality

o H)

-

I
B = 0+ f XAy B* GaW,
0

t(H)

and the fact that { [ X;A;B" GdW,, H > 0) is a Wiener process.
0
To prove admissibility note that for all sequential plans (r, ) such that

Ef* < and E | XAy B* Ao X, dt < H:
0

E@-6)*>

(1+b'(9)?
—H—+b2 (6),

where b(0) = E(f—0). This is a simple generixlization of the Cramér-Rao
inequality (see [10]). Next, suppose that (z (H), 0,,) is inadmissible and show
that b(0) =0 is the only function satisfying

(1+4'(8)*+Hb?(6) < 1.

This leads to admissibility. Moreover, (1 (H), 9,(,,,) has a constant risk, so it is
also minimax. a
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Remark 4.3. Assume (H1) and, as in Remark 3.2.3, that 4 = Z 0; A;,

where A4; are known matrices such that BB™ A4; # 0 and A;B" A4; +A B' A;
=0,i#j,i,j=1,...,p. It is clear that one may use, in order to estlmate 0,
i=1,..., p, the sequential plans (t;(H), 0, ) where

!
t(H)=inf{t: | X;A]B" A, X ds = H)
0

and
t;(H)

-~

1
i = j X! A'B* dX,.
0

The estimator H,,(H, 1s normally distributed with Eg,-,,!_(,,, =6, and
var 9,,(,,, = 1/H("). Moreover, by the Cramér-Rao inequality, the
scqucntlal plan (t(H), 9,,{,,)) ts minimum variance unbiased in the class of
unbiased sequential plans (t;, ) such that

Ef} < oo, EjXAB*Ath H.

By the same argument as in Lemma 4.1, one may also show that for all
i=1,...,p there exists a constant §; > 0 such that
Eexp {8;7;(H)} < 0.

Finally note that in the case of Example 3.2.4 the above sequential plans
are nothing but (t(H), 0, y,) wWhere

t(H) = inf {t: }[Xf(s)+X§(s)]ds = H}

and
_‘L’(H) H) -
~ 1
91,1(11) =ﬁ J X, (s)dX,(s)+ J Xz(S)dXZ(S)J,
"0 0
t(H) o H) _
~ 1
92.1'(H)=E J‘ X1(S)dX2(5)—j X,(5)dX,(s) |,
0 0 -

which have been derived in {13].
For some related questions one can also consult [5].

- - o - o 1
(') Infact, Oy = (Oreyimys - 91’",;‘"’1)' is normally distributed with Efy, = f and var 0y = m E,

and then 9,_,1(,,,,...,9,,_rp(,,, are independent.
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