MATHEMATICAL CONTROL THEORY
BANACH CENTER PUBLICATIONS, VOLUME 14
PWN — POLISH SOIENTIFIO PUBLISHERS
WARSAW 1985

CONVERGENCE RATE OF THE SOLUTIONS OF SINGULARLY
PERTURBED TIME-OPTIMAL CONTROL PROBLEMS

V. M. VELIOYV

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria

The order reduction procedure for time-optimal control problems is in-
vestigated. Estimates of the convergence rate of the mimimal time are
obtaiped for a general set of admissible controls. As applications we con-
sider problems with measurable constrained controls, differentiable
constrained controls, controls with integral constraints and state con-
strained problems.

1. Introduction
Consider a control system described by the follqwiﬁé eiméti(ins:
(1) & =A0+A,y+Bu, xz(0) =z,
A=Az + Ay +Byu, y(0) =1y,

where e R™, y ¢ R*, (x(t),y(1)) is the state variable, u(t) e R" is the
control, A;, B;, ¢ =1,...,4,j =1, 2 are constant matrices with approp-
riate dimensions, 4 is a small positive parameter which represents a sin-
gular perturbation. We shall denote by % (¢) the set of admissible controls
on the interval [0, t], specified in Section 2. We shall study the time-
optimal problem (P,) for system (1) with a target—the origin (0,,, 0,)
€ R™*". Assuming that 4;' exists, for 1 = 0 system (1) becomes

(2) & =A@w+Bou, (0) =,

where Ay =A,—A,A;'A4,, B, = B,—A4,A;'B,. Denote by (P,) the
reduced problem, which is the time-optimal problem for system (2) with
a target — 0,,. In this paper we study the convergence of the optimal
time T, for problem (P,) to the optimal time T, for problem (P;), when A4
tends to zero. Section 2 contains our main theorem, which gives an esti-
mate of the difference |T,—T,|, depending on the properties of the ad-
missible controls, In the next sections we specialize this estimate in the case
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of measurable constrained controls, differentiable constrained controls
and controls with integral constraints. Section § shows that our analysis
can be extended to problems with state constraints.

For related results see papers [4], [6]. Work [6] gives an approximate
solution of the full order problem on the basis of a separation of the slow
and fast modes., [4] contains a detailed proof of the convergence of the
optimal controls for A tending to zero, when #(t) is a set of measurable
functions. The approach presented here is different from those in [4],
[6], and provides a basis for estimating the convergence rate of the optimal
time in the case of measurable constrained controls as well as in the case
of other important classes of admissible controls.

2. Main theorem

We shall define the set of admissible controls. Let %, (t) be the set of all
(k—1)-times continuously differentiable funections w«(-): [0, {]>R" with
absolutely continuous (k—1)st derivative, such that

u®(0) = () =0,, ¢=0,...,k-1,
wNr)e U, i =1,...,k for a.e. T€[0,t].

Here U;, + =0, ..., k are convex closed sets in R", containing the origin
in their interior, and U, is bounded. Let the set of admissible controls
on the interval [0, ] be

i
#() = {u() e %), o [ H[u@FPds<1,i=1,...,1}, p>1,4a>0,
0

where [u]* is the ith component of u. In the sequel we assume that

Al. The eigenvalues of the matrix 4, have negative real parts, i.e.,
Reo(4) < —p< 0;

A2, rank(B,, A,B, ..., A7 'B;] = m;
A3. rank[B,, A, B,,..., A}’ B,] = n;
A4. Problem (P,) has a solution.

Let us denote by T, the optimal time.

AB5. There exists a, > 0 such that for each a e (—a,, a;) problem
(P,) has a solution in the set

¢
\J {u(-) € Uy (), 6 f [u(s)'|Pds <1—a, £ =1,..., r}.
>0 G

If T is the optimal time, then limw(a) = 1lim|T*—T,| = 0.

a—0 a—0
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The function w(:) can be interpreted as a sensitivity measure for
problem (P,) with respect to perturbations in the constraints.

Let us denote by o the index of controllability of the pair (4,, B,),
i.e., the smallest integer such that rank[B,, 4,B,,..., A 'B,] = m.
In this section we prove the following result:

THEOREM 1. There exist constants 1, > 0 and o such that for every A
€ (0, 4,) problem (P,) has a solution, and if T, 18 the oplimal time, then

|T, —T,| < cAVOHR) 4 g (pARP+DIe+RY)

The proof will be presented after a sequence of lemmas.
In paper [6] it is proved that there exists a linear transformation

HRH

which reduces system (1) to the system

) E= A, (A E+By(M)u, [ (0)] s )[ ] [Eo]
A = A, (n+B(A)u,  |n(0) Yo

where A,(1) = 4,+0(A), By(A) = B,+0(4), A(2) = 4,+0(4) and B,(4)
= B, +0(4). Here and further in the paper we denote by O(e) any vector
or matrix function F(-) which satisfies the inequality |F(¢)] < ce for
some constant ¢ and for all sufficiently small ¢ > 0. It is proved in [6]
that the matrix S(A) is invertible, its norm is uniformly bounded in A
an & —x, = O(1). For each 1> 0 problem (P,) is equivalent to preblem
(P,), which is: to steer the initial point (£, #) to the origin according
to (3) in a minimal time,

Denote by D,(t) (D,(t)) the set of all initial points (&, 5) (resp. @)
which can be steered to the origin according to (3) (resp. (2)) by means
of controls from %,(t).

LEMMA 1. Let g be an arbitrary integer. There exist constants ¢, > 0
and t, > 0 such that for every te(0,1,) and for any selection of vectors
0y ...y 0, Ry o < ttt®, ¢ =1,...,q, the problem of moments

¢
(4) fs“‘u(s)ds =0, t=1,...,¢q
0

has a solution tn %, (t).

Proof. Let 0 = aqy< a,<...< @pypq =1 and let 7; = ;t. Define
the function w(-): [0,?]>R" as w(zr) = w; for v e[y;_,,7,), where the
vectors w; will be specified below, so that w,;eU,, j =1,...,q+k+1.
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Since 0, eIntU;, ¢+ =0, ..., k¥ and U, is bounded, there exists a constant
t, > 0 such that if t e (0,t,), then the function

s N 8r—1

u(8) =f f f'w(ar,,)ds,,...d.sr1

satisfies the inclusion u®(s) e U, for each s€[0,1], t =0,...,k By
induction we obtain that «®*%(t) =0,,¢ =1, ..., k, exactly when

a+k+1

-1
1
(b) 2 ( ‘___(i—l)!l! (g—a;_) (1 — J_)l) w, =0, i=1,..,k.
-1

J=1 i

If (56) holds, then integrating by parts we can rewrite equation (4) in the
form

¢ a+k+1
_t-1)!  —1) 1%+
© (i(-:k—)l)! J et s =% D @ —dthe =
0 1=

It is easy to verify that the numbers a,, ..., a;,; can be chosen in such
a way that the linear algebraic system consisting of equations (5) and (6)
has a solution with respect to w;,..., %, ;.. If the inequality ||
< ¢, #*** holds for ¢ =1,...,q and for a sufficiently small constant ¢,,
then w;e Uy, j=1,...,q+k+1 and u() e %,(t). Since u(-) satisfies
also equalities (4), this completes the proof.

LEMMA 2. There exist constants t; > 0 and c, > 0 such thal
{z € R™, \&| < czt""f"} c Dy(t) for every t e (0,1t,).

Proof. From condition A2 and from the definition of ¢ it follows that
there exist unit vectors w,,...,w, and integers s,...,8,€{1,..., 0}
such that the vectors A§~'B,w;, j =1, ..., m, are linearly independent.
Denote

8;+k S
of — otitw; for ¢ =g,
i = . .
0,, for ¢ #s8,j=1,...,m.
Let v} = —v/™ w, = —w,_, fort=1,...,m,j =m+1,...,2m. Accor-

ding to Lemma 1 for each j =1, ..., 2m there exists u,(:) € #,(t) which
satisfies equations (4) for v, = v} and ¢ = m. Applying the Taylor formula
we obtain that

f exp(—A,8) B, u(s)ds =1 0‘1)1 15+ (— A Byw, + 0 (3™,
0 A
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Since o < m, we conclude that there exist constants y > 0 and t, > 0
so that

co {:t 1)' 1t — A, By, § =1, ..., m} c D,(t).
From the choice of the vectors w; we get the desired result,

LEMMA 3. There exist constants ay > 0 and A3 > 0 such that for each
a € (0, a;) one can choose a constant ¢(a) > 0 such thal the inclusion

al
1 - -
G [ exp(=duaiBoute)ds, u) e 2u(ad)} > 0 € B, 0] < o{a) )

0
holds for every A € (0, Ay).

Proof. Let 8, j =1,...,n, w; and ("), § =1,...,2n, be chosen
a8 in the proof of Lemma 2, but for the matrices 4, and B, instead of
A, and B, and for ¢t = ai (a is a positive number). From the choice of
%;(*) and from the estimate

(7) sup{lu(r)l, r € [0, €]} = O("),

applying the Taylor formula we obtain successively

al

(8) ———1 exp(—ﬁ,,s/l).ﬁ,u,(s)ds
- - 1 k_ntk+l
—_ Q— a—-1 n
= -E q 1)! ‘/) B, fs 8)ds +0(A a )

= ¢, a*t* ¥ (— A4,)%7 Byw; + Z ((—4,)*B,—

—1)!
ad
—(—4)'B) [ s uy(o)ds +O(#amET
0
=0, aaf+k).k( —A4)"f“B2w, —{-O(;."H'l ak+1) -}-O(}."a"”‘“).
Since 8, < n, there exists a constant y > 0 such that
(9) co{deat* i (—A4)5 ' Bywy, j=1,...,n}
> {n e R", |n| < ya™t*2*},

From (8) and (9) we obtain the statement of the lemma for ¢(a) = ya"+*/2.
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LEMMA 4. For any N > 0 there exist constants ¢(N) and A, > 0 such
that

{§ e B™, |§| < N2} x {n € R" |5| < N} < Dy(o(N)alie+R)
for every 4 € (0, 4,).
Proof. Let for each A e (0, min{i,, 4,}) the point (&, %') satisfy the
inequalities
(10) I#I<NA, <N,

Write ¢ = AY°*®_ Taking the number q> (N/e,)/"*®, we have from
Lemma 2 that &' e Dy(eq). Each point from the set —exp(A,sq)Dy(eq)
can be reached from the origin according to (2) by means of a control
from %,(eq). For all sufficiently small 4 > 0 this set contains a ball with
centre 0, and radius NA/2. Hence there exist unique vectors «,...
veey Ty € R™ and a constant § > 0 such that the point & = §Niz, can
be reached from §* according to (2) by means of a control u}(-) e ¥, (22q)
t=0,...,m, and if

(11) |& — il < BN A,
then 0,, eco{&,¢ =0,...,m}.

Let a €(0, a3) and let M > a be an arbitrary number. We can find
unique vectors ¥,, ..., ¥, € R* and a constant y > 0 so that if

(12) 75— Ae(a)yyl < yA*e(a),
then 0, eco{ff}, j =0,...,n}. According to Lemma 3, for each
je{0,...,n} there exists a control v}(-) € %,(ad) such that

ad
1 IR
= [ exp(—dys/1)B,v)(s)ds = Ho(a)y, — ).

Define the control

u{(7) for v e[0,2¢q],
uly(r) =10, for v e(2eq, (2¢+M)e—ad,
v‘}(r—(2q+M)s+a).) for re[(2¢q+M)e—al,(2q+M)e].
Let (&(*), niy(-)) be the solution of (3) for u(-) = uy(:) and an initial

condition (£, 5*). Taking into account (7) and applying the Cauchy for-
mula to the first equation of (3) we obtain

| ((2g + M) €) — 8| < |84(229) — &1 + | &5 ((2¢ + M) ) — £5(229)|

< llexp(A,2eq) —exp (4,2eg)ll [£] +
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2y
+ [ |lexp(d,(2eq—9)) By— exp (44(26g—8)) Bo|| I (r)|ds +

+ llexp (Ao e M) — I, || |&}(2eq)| +
(2a+ M)e
+ [ |lexp(do(Me—s) By 1 (s)1ds

(2¢+M)s—ad
< O(ANA+0(2)0(2e9) +0(eM) (|8} +
+0(A) N4 +0(4)0(2¢q)) +0(al) O (a*2%)
< Po (Me+a)i,

where I, is the m xm identity matrix, p, is an appropriate constant.
Further we estimate

| nés (2 + M) &) — 7| < |lexp(d(2g+2)e/A)|| 1|+

1.
|7 [ expld((@a-+20)e~o)13) Byl 0)as

+
(2q+2M)s
_i_7 f exp(1‘((2q+M)8—s)/l)B:u:1(3)ds—’7;

< p16xp ( —e(2¢+ M) 3/2}-) +piexp(—oMe(24) +

al

.i_ | exp(dyar—)1) By (vyde—n)

0
where p, and p,; are such that

|lexp (4, (2¢ + M) e/3)|| N < p,exp(—e(2¢ +M)e/23),
2sq

% f exp (4, ((2q + M)z —5)/A) B,u}(s)ds
)

+

?

< p.exp(—oMe/22).

Hence we obtain that for appropriate constants p, and p,,
| néis{(2a + M) &) — ]| < psexp (—eMe[22) + lexp (A a) I, Inj)
= pyexp (— e MA~CHE D) +p at¥e(a).

We can choose a > 0 such that pya < $fN and p,a<y/2. I o +k—1 > 0,
then taking M = a we can find 1> 0 such that

P30xp(—§ e MATIHE-IEHH) < 93¥0(a) /2

for every 1€(0,2). If 0+k—1 = 0, then k¥ = 0 and we can choose M > a
such that

Psexp(—4oM) < dyc(a).

3 — Banach Center t, 14
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In both cases we can take the numbers a > 0, M > a and 7 > 0 such that
(12) holds for % = };((2¢+M)e) and A € (0, 7). If 7 is sufficiently small,
then (11) is also fulfilled for A € (0, A). Since the set %, ((29 +M)e) is con-
vex, we obtain the statement of the lemma.

Proof of Theorem 1. Let u,(-) € %,(T,) be an optimal control for
the problem (P,). For each a € (0, a,) there exists a control ug(-) € ¥, (T™)
which steers the initial point =, to 0, according to (2) and

re
a,.f [u¢(8)|lds<1l—a, 4 =1,...,7 (see AB).
0

Let (£3(-), n3(-)) be the solution of (3) for u(:) = ug(-). Then there exists
a constant N independent of a such that

IE(TH <N, [n(T°)| <N
for all sufficiently small 4 > 0. From Lemma 4 we conclude that there

exists a control v;(-) € %, (¢(N)AV*¥) which steers the point (£3(T°), 73(T%))
to (0,,, 0,) according to (3). Thus the control

Uy (7) for tel0,T],
0,(z—T") for <t e(T° T°+c(N)IHe+h]
steers the point (£, #}) to (0,,0,) according to (3). It follows from (7)
that, for appropriate constants ¢ and ¢,
T4 o{NMAL(o+K)
4 f [u5(8) I[P ds < 1—a+E(c(N)AVEetR)fotl 1 g galkp+IMath),
0

Let us take a = cA®+Dle+k) We¢ obtain that problem (P,), and thus
(P,;), has a solution and the optimal time T, satisfies the inequality

(13) T, < T+ e(N)AVCH) — T 4 g (cAbP+DIE+RY | o(N) O+,

Now let u,(-) € %,(T,) be an optimal control for problem (P,;) and let
za(+) be the corresponding solution of (2). Since 7', is bounded in 4, applying
the Cauchy formula to the first equation of (3) and to (2) we obtain that
for an appropriate constant L, |zj(T,)| < LA. According to Lemma 2,
@, can be steered to 0, by means of a control w,(:) e #,(T, +dA"+"),
where d = (L/e,)*), For some constant M, we have

o+ aall(e+k)
a; f [, (8) 1P ds < 14+ MAKPHVItR) ¢ 1 r,
0
Hence T° < T, +d2Ve¥ for @ = —MA*P+0Ie+k) 304 from A5 we obtain

(14) Ty < T, -+ AR oo ( R0+ IN0HR))
Combining (13) and (14) we complete the proof of the theorem.
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3. Measurable and differentiable constrained controls

In this section we shall apply Theorem 1 in the case #(1) = (1), i.e.,
a;=0,4=1,...,r. Time-optimal control problems with differentiable
constrained controls are studied in [1], [6], [7]-[9]. Conditions for optima-
lity and some properties of the optimal controls are established in {1),
[7], [8]- The relationship between the problem with differentiable controls
and the problem with measurable controls (the case k¥ = 0) is studied
in [5], [9].

Taking into account that condition A5 is fulfilled for w(-) = 0 and
applying Theorem 1, we obtain the estimate

(15) T3 —Ty] < eAe+H
for 4 € (0, A,).

Remark 1. The convergence lim |7, —T,;| = 0 has been proved in [4]
A0 .

in the “classical” case k = 0.

Remark 2. The accuracy of the obtained estimate remains an open
question. We note only that there are examples with ¢ =1, k¥ = 0, such
that T, —T, = eA; and there are examples with ¢ =1, k = 1, such that
1T, —Ty| > 0(A).

4. Controls with L, constraints

The estimate obtained in Theorem 1 depends on the sensitivity measure
w(:) of the reduced problem (P,). In this section we shall estimate the
function w(-) in case p > 1. In order to simplify the exposition we shall
consider the case k = 0, i.e., the set of admigsible controls on the interval
[0,1] consists of all measurable functions u(-) such that u(s) e U, for

a.e. $€[0,¢] and f‘ I[u(s)F|Pds <1, i =1, ..., 7. Time-optimal problems
with such constral;'nts are investigated in [3].
LEMMA 5. There exist constants a, > 0 and L such that
wia) < L[a]‘p'lmp"‘l)
for every a € {—ay, a,).
Proof. Let ae(0,1) and let wu,(-) e #(T,) steer the point x, to 0p,

according to equation (2), For the control u,(:) = (1 —a)uy(*) € %,(T,)
we have

T

f°|[u,,(s)3‘aﬁds< l—af<l—a, {=1,...,r.
0
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Let z,(:) be the solution of (2) for #(:) = u,(+}. Then for some constant d,
[2(Ty)| < da. From Lemma 2 we obtain that, using controls from the set
e¥y(1) (e€(0,1),2€(0,1)), we can steer to 0,, each point from the ball
{z € R®, |m| < ec,yt°}. Furthermore, there exists a constant M such that
if u(-) € e#,(t), then
[
[ I[w(@e)TPds < MePt, & =1,...,1.
0
Taking ¢ = (d Mur /oz)pl(pa—l)a(p—l)l(m—l) = La®~M#o-1) and ¢ = (a /Mt)"”
we obtain the inequalities Mt < a and da<ec,t’. Hence T < T+
+La®-V#e=1) for g €(0, 1).
Now let v,(*) € #,(T~°) steer @, to 0,, according to (2) and let
T—ﬂ
[ @ <1+a, i=1,..,r.
0

Taking #%,(-}) = (1 —3a)v,(-), we have
p—a

f |[%a(8)]'Pds < (1—32)*(1+a) <1—a

for all sufficiently small a > 0 and for ¢ =1, ..., r. Repeating the above
arguments we estimate

To <T°+ La(p—l)l(zw*l).

Since, obviously, "> T, and T, > T~ " for a > 0, we get the desired
result.

Applying Lemma 5 and Theorem 1 we obtain the estimate
(18) T, —T,| < c(;'llc+;_(n-l)lq(pc—l)) < 2cAp—Wielpa—1)

Estimates of this type can be obtained similarly in the case of integral
constraints on the derivatives of the controls (if ¥ > 1),

Estimate (16) has no sense in the case p = 1. In this case it is possible
that condition A5 is not fulfilled. There exist examples in which problem
(P,) has no solution for a > 0 as well as examples in which I << 4 o0
but limT" > T,.

a—l
a>0

ExAMPLE 1.
3 = a?, r'(0) =2} =V2/2-1,
@t =a'+u, 2(0)=at=—3V2/2,
lu| < 1, f |u(8)|ds < 3w/4. It can be seen that T, < 5x/4 but I € [3x/2,

3r] for all sufficiently small a«> 0. Observe that the initial pomt

(@3, ;) does not belong to a flat part of the set | D,(?) (see [3]).
£>0
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The following example shows that condition A5 is essential for the
convergence lim T, = T,.
A0

EXAMPLE 2.
# = a?, xl =V2/2-1,
# =2+, zt = —3V2/2,
M=—ytu, y,=0.

The constraints on the control are the same as in Example 1. The reduced
problem is exactly the problem considered in the previous example. It

can be seen that lim T; > T,. However, for some other initial points
A0

condition A5 holds and so we have the convergence lim T, = T,.
- a0

S. State constrained problems

In this section we extend the result obtained in Section 3 to the problems
with state constraints for the slow phenomena. Namely, we show that
estimate (15) remains true under an additional condition of Slater’s type.
We limit our consideration to the case of measurable controls (k = 0)
and time invariant state constraints.

Admissible controls are all measurable functions with values in
a convex compact set U,, 0, eInt U,. We consider the problems (P;)
and (P,) defined in Section 1 but with the additional constraint z € X,
where X is a convex closed set in R™ such that 0,,, z, € Int X. We agsume
that conditions A1-A4 hold as well as the following condition:

B. There exist a constant ¢ > 0 and an admissible control wu,(-)
such that if x,(-) is the solution of (2) for u(-) = %,(-), then z,(¢) eInt X
for every te [0, T+ &1

THEOREM 2. There exist constanis c and 1y > 0 such that for each 2 € (0, 4,)
problem (P,) has a solution and if T, 18 the opiimal time, then

| T, —T,) < eA're.
Proof. The proof of Theorem 6.1 [2] contains the following result:

LEMMA 6. There exists a constant L such that §f u,(-) € %,(t;), 4 € (0, 1),
1, <y, then

|2:(8) — a3 (s)| < LA, |m(t)I<L

for every 8 €[0,1,], A € (0, 1), where (w,(-), y‘(-)) 18 the solution of (1) and
Th () 8 the solution of (2) for w(-) = u,(*).
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Without loss of generality we supposc that X is compact. Then there
cxists a constant y > 0 so that for each a€e(0,1), te[0,T,+¢,] and
« € X the inequality

(17) dist (az,(t) + (1 —a)z, 0X) > ya

holds, where dist(z, X) = min{jz— |, Z € X} and ¢X is the boundary
of X.

Let u,(-) be an optimal control for problem (P,). Then #)(-) = (1 —
—LAly)uy(+) + (LA[y)ue() is an admissible control for each sufficiently
small 1. Let (x,(-), 9:()) be the solution of (1) and let #5(-) be the solution
of (2) for u(-) = u}(:). From Lemma 6 and (17) we obtain successively

zy(tye X, dist(z)(t), 8X) > pLijy =Li, x(t)eX

for all ¢t € [0, T,]. Since 0,, € Int X, Lemma 4 holds also in the case of state
constraints. From Lemma 6 and Lemma 4 we conclude that problem (P,)
has a solution and

(18) T, < T,+c(L)A".

Now let u,(-) be an optimal control for problem (P,) and let (z;(),
¥:(*)) be the corresponding solution of (1). Define %(-) = (1 —Li/y)u,(-)+
+(LAjy)u,(-). As above, % (-) is an admissible control for all sufficiently
small 4. Let 2}(-) and Z}(-) be the solutions of (2) for #(-) = u,(-) and for
() = @(-), respectively. Then

(1) = (1 —LA[y)ag (1) +(LA[y)z, (1)
= (L —L[y)@,(t) + (LA [y}, (1) + (L —Li[y) (23 () — 2, (2)).

Applying Lemma 6, (17) and Lemma 2 we obtain the inequality T, < T, +
+¢, LY 3, which combined with (18) completes the proof.
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