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Introduction

When I was invited to lecture at the Banach Semester on Control Theory,
two of my proposed lectures dealt with the uniform exponential stability
(u.e.s.) of linear autonomous neutral funectional differential equations
in a Hilbert phase space [3]. Due to excessive familiarity certain things
were Second nature to me which were quite new to the audience. In a word
I delivered two rather incoherent lectures. I think only professors Olbrot
and Zabezyk understood them. This paper is an attempt to rectify the
lacunae in those lectures. The work in [3], about which the lectures were
centered, basically studies the region of holomorphicity of the Laplace
transform of an operator valued function associated with the neutral
system; This operator valued function plays the same role as the funda-
mental transformation of a linear autonomous ordinary differential equa-
tion in Euclidean n-space. However, it does not generate a semi-group
of linear transformations. Unfortunately, I realized this after I gave my
lectures. Once one realizes this, a transparently simple criterion can be
developed to give necessary and sufficient conditions for a large class
of linear autonomous processes which include certain ordinary, partial,
functional differential and integral equations and combinations thereof.

The essential ingredient in the systems considered in this paper is
that their Laplace transforms are dominated by linear operators which
have some of the characteristics of diffusion operators (e.g. the operator
0%/dz? of the one dimensional heat equation).

The paper is organized as follows. Section 1 consists of preliminaries.
Section 2 develops the main result of this paper, Theorem 2.1. Although
the methods used in this section are elementary, it is interesting to note
that only in 1974 did Henry [5], using more sophisticated techniques,
find nccessary and sufficient conditions for the u.e.s. of linear autonomous
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neutral functional differential equations in C". Section 3 examines the
extent to which stability properties are parametrically dependent. Broadly
speaking, it is shown that what one would expect holds. Namely, that
if a parametrically dependent family, whose Laplace transforms are
continuous in the parameter, is u.e.s. for one value of the parameter,
then in some relatively open subset of that parameter all members of the
family are uniformly exponentially stable. Section 4 is devoted to examples.
The last, Example 4.4, is a system, depending on a parameter, which
does not conform to the systems in Section 2. In this example the system
is u.e.s. for one value of the parameter, but does not possess a relatively
open neighborhood in which every member of the family iz uniformly
exponentially stable.

I should like to thank Professor Jerzy Zabezyk for the discussions
we had concerning the above problem and others related to it. The reali-
zation that the semigroup structure is unnecessary for stability consi-
derations of systems involving dissipative type elements is one product
of our discussions.

1. Preliminaries

Z will denote the complex plane. H will denote a complex Hilbert
space, whose zero vector will be denoted by the symbol 0. The space of
bounded linear mappings from H into itseif will be denoted by [H] and
the identity mapping in [H] by I. The norms in all Banach spaces will
be denoted by |-} and the inner product in any Hilbert space by (-, *).
Let A > 0. We define a Hilbert function space 5 associated with H as
follows:

Let ¢(0) e H and ¢: [ —h, 0]—>H be Bochner square integrable. Then

(1.1) 9 = {(p(0), p> € F.
The inner product in > is given by

0
(1.2) (@, 9) = {¢(0), »(O) + [ (p(0), v(0))do.
-k

Another space of interest is the nonreflexive Banach space €, which
consists of the continuous linear mappings ¢: [—h, 0]->H with norm

lpl = sup{lg(a)l: ¢ e[ —h,0]}.
AssumprioN 1.1, A, will denote the infinitesimal generator of a C,

semi-group, 7T'(t), defined on H, which is compact for ¢ > 0 and satisfies
the condition that there exist real numbers M, and o such that

(1.3) (8T — )| < — 2

s — ol
for Res > o.
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The type of process considered in this paper has a Laplace transform
of the form

(1.4a) Z(s,¢) = [8I—4,—Q(8)] [9(0) + (s, 9)],
where ¢ € o, or of the form
(1.4b) Z(8,9) = [8I—4,—Q(s)] 7 [q1(s, @) +9(0)],

where ¢ € C;.

In equations (1.4) we impose the following conditions: ¢(s, ¢) and
q:(8, @) are finite Laplace transforms, whose inverses I(¢, ¢) and 1,(Z, ¢)
have support on some interval [T,,T,], —oo< T, < T,< oo, which
is independent of ¢, and 7, and I, are linear mappings which are continuous
in ¢, i.e.,

l: [Ty, T,]-[H]
and
L: [T,, T.,]~[H]

are continuous mappings. The operator valued function @ (s) in (1.4) satis-
fies the assumption:

AssuMPTION 1.2. In some right half plane Res > —§,, 5, > 0, Q(s)
is holomorpbhic and uniformly bounded in [H], i.e., if Res > —8, there
is an M, such that

1Q(8)| < M,
if Res > —p,.

Remark 1.1. It is possible to relax Assumption 1.2 to Q(s) being
uniformly bounded in Res > 0. We then can obtain conditions for asymp-
totic stability of the type Miller [7] gave, when H = R", for the integral
differential equation

H
#(1) = Aga(t)+ [ B(t—o)a(0)do.

One reason for not doing so is that the exposition becomes more complex
and camouflages a basically simple idea.
For convenience we shall write

(1.5) S(s) = [sI—4,—Q(s)]
and denote the inverse Laplace transform of (1.5) by

(1.6) Z71(8(s)) (1) = 8(p).
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Thus (1.4) are the Laplace transforms of the linear processes

£
(1.7a) a(t, ) = 8(1)p(0)+ [ 8(t—o0)i(o, p)do
0
and
4
(1.7b) z(t,p) = 8(t)p(0)+ [ 8(t—o)l(a, p)do,

where of course t > 0.

DEFINTTION 1.1. The processes (1.7) will be called uniformly exponentially
stable (w.e.8.) if there exist M,> 0 and f,> 0 such that for p € # or
¢ € C), as the case may be,

(@ (2, 5’)! < Mse_%l l‘%l
and

(2, @)| < Mye"s¢|g]
if 0.

2. Some stability properties of (1.7)

Remark 2.1. We shall, without loss of generality, from now on assume
the spectrum of A4, lies in Res < —p8,. This is accomplished by observing
that 4> 0 can be chosen such that

(2.1) (81 — A+ AT)™!

is holomorphic in Res > —pg,. Thus we can write (1.5)

(2.2) 8(s) = (sI—Ao+AI— (AT +Q(s)))"
= [I—(sI —A,+ A1) (AL +Q(8))] (8T —4,+ AI)™!
= [I—(sT—4,)7'Q(8)] (s —4,)7?,

where 4, and §(s) satisfy Assumptions 1.1 and 1.2. Moreover, (1.3) can
be now made to satisfy

M
|+ B1/2]
if Re s > —f,/2. Thereason for these observations is that in the discussion
given below extensive discussion will be devoted to the holomorphicity
of §(s) in Res > —pf; and inequality (2.3).

Also notice that Assumptions 1.1 and 1.2 guarantee that

(2.4) (81— A+ AL (AL +Q(s))

(2.3) 18I —4 )7} <
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i8 a compact operator for Res > —p,, and the values of # in Res > —8,
for which (2.4) has one as an eigenvalue are isolated (see e.g. [4], Lemma
13, p. 592) and at most finite in number.

The derivative of J(s) in (1.5) is

(2.5) (8(s)) = B(s) [-I+(@(s))] B(s).

By Assumption 1.2 @’(s) is holomorphic in Res > —pg,/2 and uniformly
bounded there. Hence if §(¢) has no poles in Res > —f,/2, then for each
zoe H
~B18 41w
2
=B344

Making use of Remark 2.1 and Assumptions 1.1 and 1.2 we easily deduce
the existence of M, > 0, independent of z, in H, such that

(2.7) 18 (D)) < My~ ().
Consequently we can state the following lemma,

LEMMA 2.1. Let Assumptions 1.1 and 1.2 hold. If S(s) has no poles
in Res > —pB,/2, then sysiems (1.7) are uniformly exponentially stable
(u.e.s.).

Proof. The proof is a consequence of inequality (2.7) and the fact
that 7 and I, in (1.7) have compact support.

LEmMMA 2.2. Let S(s) satisfy Assumptions 1.1 and 1.2. If 8(s) is not
holomorphic in Res = 0 there exist solutions of (1.7) whose norms are bounded
away from zero. Indeed, if 8(s) has a pole in Res > 0, then (1.7) have solu-
tions which diverge exponentially.

Proof. Assumption 1.1 and Remark 2.1 guarantee that S(s) has
only a finite number of poles in Res > —f,. Suppose that such a pole
occurs at u, Reu > 0. Then making use of Remark 2.1 we may assume
there exists an integer m > 1 such that the generalized null space

Nap(p) ={z: [I—(pI—4,)7'Q(p)"z = 0}
is not empty, where m is the smallest positive integer such that

Nm(.u) = Nm+1(.u)'
Since (uI —A,)~* is compact, N,,(u) is finite dimensional and thus for s
in a neighborhood of u, S(s) must have the Laurent expansion

o0

(2.8) B(s) = D (s—ufRy,

fowm —1m
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where B_,, # 0 (see e.g. [6]). In the case of (1.7a) there exists «,, |z,| = 1,
such that R_,,o, # 0. We let ¢ = (z,, 0>, and choose ¢(u) a positively
oriented circle in Z with center x# which contains no poles of 8(s), other
than y, on its boundary or interior. The solution of (1.7a) may be given
in the form

(2.9) o(t, $) =—2%n7 f e"‘g(s)mods+—2}ﬂ—i f 3 (8)z,ds,

o(m) o

where ¢, is chosen to consist of at most finitely many contours surrounding
the poles of S(s) in Res > 0 plus some vertical line, Res = —p,, 0 < 8,
< B;. Since R_,,x, # 0, the first integral in (2.9) has the form

1 m—1

(2.10) T f 5 (8) m,d8 = e“‘Z 2,(0)g;,
o(4) i=0

where the p; are polynomials in ¢ such that degree p; < j, ¢; € H and

m—1

Py = m—i) R_,2,.

Thus (2.10) is not identically zero for ¢ > 0 and in fact either diverges
(if Reu > 0) or at least does not converge to zero (if Reu = 0) as { tends
to infinity. The second integral in (2.9) has the form

rom) g TRt
@1)  @t,d) = D Doyt 5 [ Blsaeds,
j=1 k=1 —fy—1o0

where Rey,; >0, p; #p, j =1, ..., (i.e,, if S(8) has poles other than u
in Res > 0, otherwise the first term on the right side of (2.11) is zecro).
This proves the lemma for (1.7a).

In the case of (1.7b) we find an approximation {g,} such that {g,(0)
= @y}, {Iga| = ||} and ¢,(0)—>0 pointwise in [ —Fk, 0). Then for n suffi-
ciently large the solution (¢, ¢,) of (1.7b) can be shown to have the same
qualitative property that (2.9) has (see e.g. [1] for a complete description
of this process for a special type of problem).

Lemmas 2.1 and 2.2 may be summed up in the following theorem.

THEOREM 2.1. Let Assumptions 1.1 and 1.2 hold. Then the systems (1.7)
are uniformly exponentially stable if and only if there exists § > 0 such that
S(s) ¢s holomorphic in Res > —p.
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3. Stability and parametric dependence

In this section we consider the manner in which stability varies when

a family of linear processes depends continuously on a parameter. Before
describing the processes we need some definitions. Let £ < R™ be simply
connccted.

(i) Let h: 2—>R* be continuous and define

Hy = {{p(0),¢>: @(0) e H and ¢: [—h(a), 0]-H is Bochner
square integrable}.
(ii) Let q(s, a, @), p € #,, be the finite Laplace transform of I(, a, ¢),
where
I: QxR*->[H]

is continuous. We shall assume the support of I for a fixed is — oo < T, (a)
< T;(a) < oo, where T, and T, are continuous.

(iii) Let @: Z x 2—[H] be continuous in and, for a € 2 fixed, holo-
morphicin Res > —f, and such that |@(s, a)| < M, M < oo, if Res > —f,.
We consider the family of linear processes defined on {2 whose Laplace
transforms can be written

(3.1) E('g:‘%:a) =S’(s,a) ['P(O)"'Q(s!aré’)]r
where
(3.2) g(sy a) = [sI—-4,—Q(s, a)]".

We denote the inverse transforms of (3.2) by 8(¢, a). Thus (3.1) is the
Laplace transform of

[
(3.3) z(t, 9, a) = 8(t, a)[q)(O)-l- [ 8(t—a)i(o, a,&)da].

Clearly, by Theorem 2.1, (3.3) is u.e.s. if and only if §(s, a) is holomorphic
in Res > —f, 8> 0. Thus we can state the following lemma.

LEmMMA 3.1. Let (3.3) be u.e.s. for a, € 2. Then there exists a mazximal

relatively open set U (a,) in £, containing a,, such that (3.3) s u.e.s. for all a
in Ul(ay).

Proof. We only need to prove that (3.3) is u.e.s. in some relatively
open neighborhood of a,. The proof proceeds by contradiction. Thus
suppose there exist {a,} c 2 which converge to a, and {s,} c Res>0
such that

(34) (snI_AO)_lQ(su! an)

has, for each %, one as an eigenvalue. Since |Q (8, a)] < M for Res > 0,
,b follows that {s,} lies in a compact set in Res > 0. Hence we can find



142 R. DATKO

a subsequence {(s,, a,)} which converges to (s,, a;). But by continuity
and the compactness of (3.4) it follows that

(801 —A4)~'Q (80, @)

has one as an eigenvalue which implies that (s, a,) is not analytic in
Res > —f, p > 0. This contradiction proves the lemma.

LEMMA 3.2, Let (3.1) be u.e.s. for a, and U(a,) be the maximal relatively
open set desoribed in Lemma 3.1. If a, 8 on the boundary of U{a,) but not
in Ul(a,), then S(s, a,) has one or more poles on the imaginary awis and
the rematnder in Res < 0.

Proof. Clearly 8(s, a,) cannot have all its poles in Res < 0 for then
by Assumption 1.1 and Theorem 2.1 g, would be in U (a,). Suppose S(s, a,)
has a pole at 4i,, Rel, > 0. Let C(4,) be a positively oriented circle in
Res > 0 which contains A, as its center and has no other poles of S(s, a,)
on its boundary or interior. Then near s = 4,, S(s, a,) has the Laurent
expansion

(3.5) S(s,a) = D Rys—4y,

j=—m

where m > 1, R_,, 5+ 0 and

1
(3.6) B =5 f (8—24,)"18(s, a,)ds
cip

(see e.g. [6]). {a,} € U(a,) converge to a,. By continuity and compact-
ness {S(s, a,)} converges to S(s,a;) on C(4,). Thus for n sufficiently
large

@.1) Bnle) =5 [(—1)"B(s, a)ds #0,

C@p

which implies that S(s, a,) has, for large », at least one pole inside C(1,).
This is impossible since a, € U(a,). Hence 8(s, a,) can have no pole in
Res > 0, but must have, by Theorem 2.1, at least one pole on the imaginary
axis.

Combining Lemmas 3.1 and 3.2 we obtain the following theorem.

THEOREM 3.1. If a, € 2 i3 such that (3.3) is u.e.s. for a = a,, then there
exislts a maximal relatively open set U(a,), containing a,, such that (3.3)
18 u.e.s. for all a in U(a,). If a, i8 on the boundary of U(e,) but not in U (a,),
the 8(s, a), defined by (3.2), has at least one pole on the imaginary axis and
none in Res > 0.



THE UNIFORM EXPONENTIAL STABILITY 143

4. Examples

ExaMPiE 4.1. Let 0<A <h,<...<h, =h. Let {4}cH, A:
[—%, 0]-[H] be continuous and A, satisfy Assumption 1.1. Consider
the C, semi-group generated by solutions of

m 0
(4.1a) % ((m(t)) = Aow(t)+2A,m(t—h,)+ fA(a)a;(t+a)dcr
-h

=1
if t> 0,
(41b) (1) =e¢(t), te[—h,0)
and

(4.1c) =2(0) = ¢(0).
This type of system has its Laplace transform described by

(4.2) T(8) Ryyevey bppy @) = [sI—A,,— Zm Ao — J?A(a)e“do']-l[q)(())—I-
-h

Jem1
+;:’A,_£ e““*"f’«.-o<o)da+_f f A()e™*~g(B)dpdo|.

In this instance the structure of S(s) is apparent and Q = {(h,, ..., h,;)
eR™: 0< by <hs< ... < By}

A specific example of Example 4.1 whose stability properties were
discussed in [3] is:

ExaMPLE 4.2. Let ¢ > 0 and » > 0. Consider

(4.3a) pi(@y 8) = P (@, 1)+ g .fa"(m: t-+o)doa,
where t > 0, z € [0, 1]. Let
(4.3b) Bl2,1) = @(z, 1)
for #[0,1] and ¢t e[—A, 0], and
(4.3¢) u(0,1) = u(l,t) =0
for te[—h, ).
Let

(4.4) Uz, s) = fm e~ u(, t)dt.
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The equivalent of S(s) in our theory satisfies the two point boundary
value problem

@ 1o
(4.5a) -d—w—i(U(m,s))—]—[q-—}——-s]U(m,s) =0,

(4.5b) U(0,s) = U1,s) =0.

(Sce e.g. [2], the sections on distributed systems.) For (4.3) the poles are
obtained by solving the equations

g(1—e™*%

(4.6) §——— = —n’n?, n=1,..

s "

which are the points where (4.5) has only trivial solutions. Since Q = {(q, k)
cR*: ¢>0,h >0}, we see that (0, 0) is a point of u.e.s. for the system.

The points in & where (4.6) has solutions of the form s = {w, w real,
are only those points which satisfy

(4.7) gh =»?n?, n=1,2,...

(Use I’Hopital’s rule on the right side of (4.6) for 8 = 0, and observe
that there can be no solutions of (4.6) of the form tw, w > 0.) Thus the
boundary of the region of stability which contains (0, 0) is the hyperbola

gh = =2,

The techniques given in Sections 2 and 3 may also be applied to
“peutral problems”. That is problems where S(s) has the structure

(4:8) 8(s) = [#(I~B(#) —4, —Q(9)]

and 4, and @(s) satisfy Assumptions 1.1 and 1.2 and B(38) satisfies the
following assumption.

AsSSUMPTION 4.1. In Res > —§,;:
(i) B(s) and 4,B(s) are holomorphic and
(ii) |B(8) < o<1 and |4,B(8)I< M, M < .

Remark 4.1. The condition [B(8)] < ¢ < 1 is indispensable. For even
in finite dimensions it can be shown that linear autonomous neutral
functional differential equations may be unstable if it is violated (see
e.g. [5]). The holomorphicity and boundedness of 4,B(s) in Res > —f8,
are technical conditions and it is not clear to what extent they are essen-
tial. In finite dimensions they follow from the conditions on B(s). However,
since in infinite dimensions the operator 4, is unbounded, these assump-
tions are not automatically satisfied from the conditions placed on B(s).



THE UNIFORM EXPONENTIAL STABILITY 145

Observe that we need to prove u.e.s. of systems of the form (1.7)
or (3.3) by showing that the inverse Laplace transform S(t) of 8(s) decays
exponentially. To accomplish this for (4.8) we make the following trans-
formation:

(4.9) Y(s) = [I—B(8)]8(s).
Let Y (t) denote the inverse Laplace transform of ¥ (s), i.e.,
(4.10) Y(t) =27 ¥ (s)) (1).

Because of Assumption 4.1 Y (t) will decay exponentially if and only if
S(t) does also. However, Y (3) fits into the structure of the §(s) considered
in Section 2. To see this observe that by (4.8) and (4.9)

(4.11) Y(s) = [I—B(s)] [(8I—4,) (I-B(s))— (4,B(s) +Q(8))]*
= [(sI —4,)— (4oB(8) +Q(8) (I —B(s))'|;*
if Res > —pB,. Moreover for Reg¢ > —f, Assumption 4.1 guarantees that
(4.12) Q1(8) = (4,B(8) +Q(8)) (I —B(s))™*
satisfies Assumption 1.2.

ExAMPLE 4.3. A simple example of a so-called “neutral” problem is
d 3
(4.13) —[st0— fK(t—-a)w(o) da] = 4,2(1),
0

where H = R", A, i8 an n X n matrix and K: [0, o0)—[R"] decays expo-
nentially- and is such that

| E(s)| =| | e-s‘K(t)dt|< o<1
0
if Res > —pB,, f#; > 0. The main thing to notice in this example is that
u.c.s. will hold if and only if the equation
det (s:(I—K(s)) —-A,,) =0

has all solutions with Res << 0. This spectral condition holds even though
(4.13) does not necessarily generate a semi-group.

ExAMPLE 4.4. In this example 4, does not satisfy Assumption 1.1.
Consider

(4.14a) (%5 1) = pipp (@, 1) — mla, 1 —h),
where ¢ > 0 and = € [0,1]. Let
(4.14b) pl@,t) =ox,t) and plz,t) =yt

10 — Banach Center t. 14
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for x €[0,1]) and t e[ —h, 0] and
(4.14c) #(0,t) = u(d,t) =0
for t e[ —h, oo). Let U(x, 8) be given by (4.4).

The equivalent of S(s) for (4.14) satisfies the two point boundary
value problem (again see [2])

2
“dat
(4.15b) U,s) =U@1,s) =0.

The poles of (4.14) are the points where (4.15) has only trivial solutions,
i.e., where
(4.16) 248 = —n2n2, n=1,2,..

For » = 0 (4.16) has all solutions with Res < 0. However, when %k > 0,
if we seek solutions of the form 8 = iw, w > 0, we obtain the two equations

(4.15a) (z,8) = (82 +se M) U(z, 1),

(4.17a) —w?—wsinwh = —n?x?
(4.17b) wcoswh = 0.
Equations (4.17) have solutions in w and % of the form
—14+ V1 +4ntx?
(4.18a) 0 = 1t ¥itdntz
2
and
™
4.18 _T
(4.18b) o

But for large n, h =~ 1/2n. Thus we can find a sequence {A,}—0 such that
the {S(s, k,)} associated with (4.14) have poles on the imaginary axis.
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