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§ 1. Introduction

In this note we treat the optimal stopping problem for controlled Markov
processes. Let a control region I' be a compact subset of RE
¥={(W,X,F,F, P zcR"} denotes an n-dimensional Markov pro-
cess, that is, W = path space = {w: [0, co)—>R", right continuous with
left limits}, X = coordinate function on W, X(¢, w) = w(t), F; = [ o,
[ -
where o, is the o-field generated by w(68), 0 < 8. F = o(F,, s << oo}, P78
a Markovian measure on I starting at . Let P“(f), t > 0, be the transition
semigroup of X% and HY(t), > 0 the transition semigroup of X* with
killing rate ¢ > 0, namely

) .- ;c"(xw))dﬂ
(1.1) H*(t)p(z) = Eje ° ¢ (X ()

where E¥ means the expectation w.r. to P%. Sometimes we denote c*(z) by
¢(x, u), and so on.
By d: [0, co) xW—>I" we denote a o,-adapted function. Let Uy
={d: d(t) = d(k2™%) for te[k2™V, (k+1)27%), ¥ =0,1,2...} and U
o
= |J Wy. We call d € A an admissible control. For d € Ay we can construct
N=1
a unique probability measure @2 on F such that
(12) Qi(X(t)e A/F,) = H¥)t—3)y,(X(s)) for
RVLs<t < (k+1)27N

where g, is the indicator function of set A, namely, Q% is a piecewise
Markovian measure with killing. Define

m(t) = {rAl: v is an F,-stopping time}.(?)
(!) aAb = min{a, b}, aVvb = max{a, b}.

[423]
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Let f be a bounded continuous function on R* X I" such that

If(z, u)—f(y, )|
<
oy 15—l >

We consider the following optimization problems:

¢
(1.3) 8, ,¢) = sup B3 [ f(X(s), d(s))ds +o (X (1)
0
and
(1.4) Vit,s,9) = sup B[ f(X(s),d(s))ds+o(X(x))
de¥, rem(t) 0

where E2 means the expectation w.r. to Q2.

Let C be a Banach lattice of all bounded and uniformly continuous
functions on R", with the supremum norm and the usual order. We assume
that H"(t) acts on C. Let A* be the generator of H%(t). Hereafter we assume
the following conditions (Al1)-(A3):

(A1) D = (") D(A") is dense in C and
uel’
(1.5) sup|A¥¢|l<< oo for ¢@eD,
uel’

(A2) H(t, w)p(x) is continuous in (¢, =, u)e [0, oo) xR"xI' for
¢ €C,

(A3) For any T > 0 there exists a positive constant 4 = A(T) such
that, for 1 < T,

(1.6) sup H(t, w)p(a) —H(t, wip(y)| < lo -yl
e
whenever ¢ is Lipschitz continuous with Lipschitz constant 1 and [jg] < 1.
Now we recall the following propositions:

ProrosITIoN 1 [8148(t, -, ¢) € C whenever ¢ € C. The operator S(1)
defined by

S(t)p(z) = 8(t, x, ¢)

has the following properiies:
(i) 8(t),t >0, i8 a semigroup(?) on C.
(il) ¢ < p=8(t)e < 8(1)y.
(iii) contraction: [8(t)g—8(1)yl < llp— yll.

(%) B(t+6)p = 8(t)(S(0)p), 8(0)¢g = ¢ and §(t)p is strongly continuous in i
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(iv) S(t)p = T(t, w)p for any t, u, ¢ where
:
T(t,u)p = [H(8, wf(-,w)ds+H(t, u)p

. t - fc(x(a,,u) dae - ; e(X(0),u) do
=E"fe 0 f(X(s), u) ds+e ° ¢ (X (2).

0

(v) If A(t), t = 0 is a semigroup with (iv), then

Sty < A(t)p.
(vi) The generator G of S(t) ts expressed by
(1.7) Gy = suB(A"cp +f*) for @eDnND(G).

Moreover, assuming
(A4) sup|(Lf) (H*(t)g —g) —4"gl>0 as 3]0, p D,
ue

(Ab) sulpllH"(t)f"—f‘H»O as )0,
we have D(@) > D.
COROLLARY 1. Suppose (A1)~(A5). Then the operator G defined by
Gp = sup(4A*p+1¥)
uel

t8 a dissipative(®) operator from D into C and S(t)p i8 an integral solution
of the Cauchy problem (1.8):

aw ~

The mapping W: [0, co)—C is called an ¢nfegral solution of (1.8)
if W is continuous, W(0) = ¢ and

i
(1.9) W) —pliz—IW () —plE< 2 [ IW(0)—ylz Gy, W(0)—y)d0
for any yeD

where 7 is the tangent functional, that is,
o1 !

(110)  |z(g, ) = lim — (llA +Agl|— [hl)) = inf — (|Ih+Agll— II).
2o 4 >0 A

(3) Dissipative means strictly dissipative in this note.
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Remark. (1.9) is equivalent to (1.11):

[

(1.11) W () — vl — W () —pll < [ +(Gy, W(6)— y)db.

We have similar results for V(t, z, ¢).

ProrosITION 2 [9]. V (¢, -, @) € C whenever ¢ € C. The operator V(i)
defined by

Vithe(s) = V(t,o,9)

has the following properties:
(i) V(t), t =0 it a semigroup on C.
(ii) p < p=V(t)p < V(O)y.
(iii) contraction: |V()e—V )yl < lg— .
(iv) V()p > ¢ and V()p> T(t, u)p for any t, 4, p.
(v) If A(t), t = 0 i8 a semigroup on C with (iv), then

Ve < A(M)e.
(vi) The generator G of V (t) is expressed by
(1.12) Gy = Ovsupi(A“cp +f*  for @eDND(G).
uel’
Moreover, if (A4) and (AB) hola, then D(®) > D.
COROLLARY 2. Suppose (A1)-(AB). Then the operator & defined 1y

(1.13) (fjr,v = Ovsup(4“p+f*) = 0vGy
ual

18 a dissipative operator from D into C and V (t)p i8 an integral solulion of
the Cauchy problem (1.14):

aw

(1.14) =

t) = GW(), W(0)=¢eC.

The optimal stopping is related to the free boundary problem. When
the value function ¥ (¢)¢ is smooth, we have Theorem 1.

THEOREM 1. Suppose (A1)~(AB) and, for_any &> 0,

(1.15) sup Q3 (sup | X (s)—x|> ¢)>0 as t]0.
ds¥ a<t

If V(i) € D and the right derivative d* V (t)p/dt and GV (t)p are continuous
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tn &, then V(1) is a solution of (1.16):
(i) W()=>o,
@ 2 mew,
(1.16)
d ~
(iii) (d_?r (t)—GW(t)) (W(t)—9) =0,
(iv) W(0) = .

THEOREM 2. Let W: [0, co)—>.D be increasing and continuously differ-
entiable. If W 18 a solution of (1.16), then W(t) = V(t)e.

We prove theorems in § 2, and in § 3 a simple example will be treated.

§ 2. Proof of corollaries and theorems
Since we can apply the same method to the proof of corollaries, we prove
only Corollary 1. Put
1
(2.1) Ghp = i(ﬂ(h)cp—tp) for ¢eC.

Then G, is a dissipative operator on C and
(2.2) Gro s> Gp for ¢ eD(G).

Moreo%rcr, there exists a unique (strong) solution W: [0, oo)—C of Cauchy
problem (2.3)

aw

(2.3) —

(1) =GW(), W(0)=¢eC,

and 8§, (t)p, defired by 8,(1)¢ = W(t), provides a unique semigroup
8,(t), t =0, on C, whose gencrator is @,. According to [4], we see that

(2.4) 8,(t) ¢ 5> S(t)¢ uniformly on any finite interval.

Since a solution is an integral solution, we have, by virtue of (1.10) and
(1.11),

(2.3)  (ISp(t)p—wll— ISx(8)p— wll

]
"1
s] = (I8(8)p —p -+ Gyl — I18,(6)p — i) a6 for yeC and 2> 0.
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For y e D (c D(@)), we get from (2.2) and (2.4):
¢
1 -
18)p—vli— 1S@)p— vl < [ (15(0)p — v+ 2yl — 1S(6)p — i) do.
Since the integrand is not greater than ||Gy||, letting 2 — 0 we get Corollary

1 by the convergence theorem.
Proof of Theorem 1. From the definition of ¥V ({)¢, (i) and (iv) are

arv
clear. Since —ﬂ is continuous in %, V(t)¢ is differentiable and
avi(t
d(t)‘P = GV (t)p. From the assumption that V(f)p € D we have
avi(t ~ -
(2.6) d(t)"’ — GV () = OvGV(1)g.

This implies (ii).

For the proof of (iii), we apply the random stopping method due to
Krylov [56]. Let r(¢), t> 0, be a bounded non-negative valued F,pro-
gressible measurable and right continuous path. Roughly speaking, r(-)
gives the following random stopping:

[
— [ r(s)ds
P(stop in (¢, t+dt)/non-stop until t) = r(t)e ° dt.

So we have the following gain:
2.7y I@,e,d,7)
J —fr(ﬂ)do 8
=[rie * ([ fX(6),d(0))d0+p (X (s)))ds +
—f'r(o)ao ¢
+e ®  ([7(X(0),a0)d0+p(X (1))
0
t -frda —j"rdo
=fe? (f(X(9),d(8)+r)p(X(s))ds+e ° @(X(t).
0
Let R be the totality of r(-).
LevmaA. V(t)p(z) = sup E2I(t,@,d,r).

refi,

Proof. For T em(t) we put

i () =2V Hepia-y(0).
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Then we have
lim lim1(t, 9, d, 7y, = [ f(X(s), d(8)ds+o(X (7).
=00 [V—+00 )

Therecfore,

(2.8) V(t)p(w) < sup BLI(t, 9, d, 7).
Ra

For the converse, putting
Ry ={reR: r(t) =r(k27Y), 2Vt < (k+1)27Y, k =0,1,2,...}
and
R =) Ry
Nml
we remark that R is dense, that is
(2.9) s;gEgI(t', o, d,r) = s;i)EgI(t, o, d,r).
Fix d =%y, r € Ry and T > 0 arbitrarily and put

a
[ rdo

¢ -
Z@t) = [(F(X(s), AN +r(a) V(T—s)p(X(s))e °  ds+

¢
—[rds

+e¢ *  V(T-t)p(X().

For simplicity, we denote the integrand of right side by J(8). We will
show that

(2.10) EXZ()/F)<Z(s) for k2 VLs<t<(k+1)27Y,
8 ¢
(211) E3(Z(1)/F,) = [ J(0)ao+E( [ J(0)d6+

¢
—fras

+e V(T—t)qp(X(t))/F,).

For the computation of the conditional expectation of right side of (2.11),
Q7 can be regarded as the Markovian measure Q%{) and r(0) = r(s)
and d(0) = d(s). Therefore

¢ 6
I, = B( [ e7@C-(§(X(6), d(s)) —r(s) [ F(X (h), d(s))dh)db/F,)

= o= [ (X (6), d(s)doF),
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¢ 8
I, = E:(fe"‘”“""’r(s) (ff(X(h), d(a))dh +V(T— B)cp(X(B))dG/F,)
:
= [em0=0r(5)TH (9 —5) V(T — 0) (X (3))d0

¢
< [ ey (5) V(T — 8)p (X (3)) 20
= V(T —8)g (X (8))(1 —e~CX=2),

Combining I, and I, with (2.11), we see that

B zZ(0)|F,) < [ J(0)d6+

—fras ¢
+g° [e""(')(“")E:(ff(X(B), d(s))d8+

+V(T —t)p(X(1))/F,) -
— e~V (T —5)p(X () + V(T —2)p (X (a))]

[ —~frds
= f J(6)db+e ©  [ereN-opU) (3 g) V(T —t)gp (X (s)) —
¢

— &= (T — 5)p(X (5)) + V(T — 8)p (X (3))]

s
—frdo

< [J(0)db+e °  V(T—s)p(X(s)) = Z(s).
0

This implies
(2.12) EYZ(1)|F)< Z(s) for any s<t<T,

that is, Z(t) is F,-supermartingale w.r. to Q2. 8o, using V(t)p > ¢, (2.12)
turns out

V(T)p(@) = Z(0) > B3Z(T) > BXI(T, ¢, d, 7).

Hence we obtain the converse of (2.8), by virtue of (2.9). This completes
the proof of the Lemma.
Setting M = {(t, ): V(!)¢(z) > ¢(x)}, we show that

dv (t)e

a0 (¢) =GV ()p(x) on M,

(2.13)
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By the Lemma we see that

P —[rdn
(214) 0 =supE|fe ?  (7(X(6), a(8)+r(O)p(X(6)))0+
.Y L]

—f‘rda
+e ' p(X(t)-Vt)g(a).
Fix (t, r) € M arbitrarily and put W (0, x) = V(t— 0)p(z). So W(0, z)
= V()p(z) and W(t, ) = ¢(2). Let r e Ry and d € Ay. For simplicity
we put

a
¢ —f(rdn

218) I(s,t,®,¥) = fe’ ®(0, X(0), d(8)) +r(6) ¥ (9, X(6))do

and

]
- frado

(2.16) J(t) = B3I(0,t,f,9)+e ° W, X(t))—-W(0, a).

Then, putting 4 = 2=, we see that
x4

—f rdé
(2.17) J(@) =J(kd)+Ele ° [Z(k4,t,f, W(t, )+

+o ¥ Wi, X(t)—W(kd, X (ka))]

for k such that k4 < ¢t < (k+1) 4. Since W(8, *) belongs to D and is diffe-
rentiable, we have

(2.18) ES(inside of [ ] of (2.17)/F,,) = I(kA,t, f+ a;‘v +

+AKRAT o —W) :

Therefore the second term on the right side of (2.17) becomes
kd

—f rds
Ede ° (kA t f+—— + AW o — W)

Repeating the same calculation, we get

(k—1)4
r dé

- f
Ta) = T(k-1)4)+Be ©a{B-0a,ka, 5407

+ A%C-vAy o W)
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and so on. Hence (2.17) turns out

(2.19) J(t) = B (0, t, f+g+A“"’W, ¢—W)
< E:I(o t, 3;: +GW,p— W)
Since ﬂ = — M, properties (i) and (iii) imply that the right

oo ot
side of (2.19) is not greater than 0. Hence
[

- rdh
(2.20) 0O —supE”f [ﬂ (6, X(6)) +GW (6, X(6)) +

+7(6) (¢ (X(6)) — W(0, X(G))J}d&.

Put 8 = }(V(t)p(@) —@(2)). Then 6 > 0 and there cxists 4 > 0 such
that V(s)p(y) > @(y)+ 6 whenever |s—1] << 4 and [z—y| << 4. We denote
by o 4 A(the hitting time to the set {y: |x—y| < 4}). Let (d, r;) be an
approximate optimal for (2.20). Then we have, by virtue of (i) and (ii),

iAo

ridh .
(2.21) 0 = limEk f e 9 (—33;[(0,2(0))+GW(6,X(9)))¢10

k—00
and
ine — Brkdh
(2.22) 0 =LmEZ* [ e ® " r(6)(p(X(6)—W(0, X(0)))do.
k—+oo 0

Since ¢ (X(6)) — W(6, X(6)) < —& in the integrand of (2.22), we get

0 tAao

tAo —ffkdh —f re dh
(223) O =HLmEY [ ¢°  r(6)ds = hmEd"(l—e 0 ).
k00 0
oW

For simplicity we put U = —E—+@W and we have

O<EX[ (¢°  —1)U(6, X(6))ds

iAo
-I rg dh
< sup |U(8,y)|EFL—e ).

<t lz~yl<d
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Since U is bounded on [0, t] x R", the right side converges to 0 as k—co.
Hence, (2.21) turns out

A
(2.24) 0 =limEZ [
k-+o0

0

uU(B,X(B))dG.

Recalling U <0, we see

sho

0 =lim EX* f U6, X(0))d0 for any s <t.
fo—00 0

That is,
1 sAA
(2.23) 0 =lim um—E:kf ulo, X(6))ds.
840 koo 8 ’

Since U (6, -) belongs to C and is continuous in 6, for any &> 0 there
exists a positive g = u(e) < 4 such that

(2.26) |U(8,y)—U(0,2))<e whenever 0< u and |[z—y|<pu.
Hence, for 8 < g,

SAC
dy;

(2.27) -1— B, f U6, X(0))a6—U (0, w)E:"(sAa) < &.
0

On the other hand,

(2.28) 1—%E‘,’,(0As)<Qg(a< 8) = Q3(sup|X (0)— 2| < 4).
0

' 1
Therefore, by virtue of (1.15), " E%(a As) tends to 1 as 8}0, uniformly
in d e A. So, from (2.25) and (2.27), we have

(2.29) 0 ="U(0,z) = %V(o,mHGW(o,m).

This completes the proof of Theorem 1.

Proof of Theorem 2. Let W be a solution of (1.16) of Theorem 2.
Putting M = {{t, z): W (¢, ) > ¢(x)}, we have

aWt GW(t,m) on M,
~a 7 I on .

Therefore by the smoothness of W, we have

ow ow -

28 — Banach Center t. 14
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Since both terms are non-negative, (2.30) turns out
ow - -

(2.31) 5 (t,z) =0v@W(t,z) = GW(, z).

So, W is a solution of (1.14).
Let ®, be an approximate for @, i.e.,

Gr =~ (VW) —1)

and consider the Cauchy problem

dW,(?)
dit

(2.32) = G,W,(1), W,(0) =9.

Then there exists a unique solution W),(t) and, according to the method
of proof of Corollary 1, W,(t) converges to V (t)p. Put

@) =6W(t) -G, W(i).
Then we have

aw (1)
at

= G, W (1) +£(t).

d
Therefore, setting (g, k> = |hlit(g, k), we get EllW(t)—Wh(t)H'
= 2{GpW (1) -G, W, (2), W(1) — W, (1)) +2 {fp(t), W (1) —W,(2)). Since G,
is dissipative, the first term of the right side is non-positive. So

$
(2.33) W (@) —Wa)I2< 2 [ {fuls), W(s)—Wy(s))ds

!
<2 [1fa(o)Il IW(s)—W,(a)lids.

Recalling that W(¢) e D, we have &, W (t)—W(t), namely |f; ()]0 as
k0. Moreover, [|f,(s)| and |W(s)—W,(s)|| are bounded on any finite
interval of (&, 8). Therefore, from (2.33) we obtain

|W(#) =W, ()|~0 as k0.
Hence W(t) = V(t)o.
W., Remark 1. Under the conditions of Theorem 1, V(I)¢ is a unique

solution of the free boundary problem (1.16) and, at the same time, a unique
solution of the Bellman equation of (1.14).

Remark 2, Using a solution W of Theorem 2, we can find an approxi-
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mate optimal policy. Besides the assumptions of Theorem 1, we assume:

(a;) The convergence of (1.15) is uniform in .

(a,) A¥W (¢, z) is uniformly continuous on (any finite time interval) x
X R™ x I

For I'>0 we put V(t,0) = W(I'—t,z). Let deN and rem(T).
The process Z(t), 0 <t< T, defined by

¢

ov
Z(t) = V(t, X(t) - f = (6, X () +4(a(s) (s, X (o)) ds

is F,-martingale w.r. to @Q%-measure. Hence
(2.34) P oV

E2V(r, X (1))=Y (0, a) =ng-a—8(s,X(s))+A (d(8)) V{8, X(5))ds.
Therefore we have

Ep(X (1)) —W(T, o) < — % [ f(X(s), d(s))ds.
0

This implies
(2.3b) W(T,z)= V(T)p(o).
We choose an approximate optimal d and 7 in the following way. Put
M(T) = {(t,2): V(t,2) = p()} = [0, T]xE"
and 7 = the hitting time to M (TI'), that is,
T =inf{t: (t, X (1)) e M(T)}.

Since {T} xR" c M(T), we have 7 < T'. From the assumptions, for ¢> 0
there exist 4 and 6 such that

(2.36) [Aw)V(t,z)—A(u)V(s,y)<<e for wuel,
. If(@, u)—f(y, w)| < ¢ for wel
whenever |¢—y|< & and |t—s| < 8, and

(2.37) Qi(sup| X(0)—=2| > 8)< e for de, xeR"
<o
Therefore we have
(2.38) |GV (1, 2)—GV (s, y)| < sup|A(w)V(t,z)—A(u)V(s,9)I< e

and

v ov " x
(2.39) o O (B YSIEV (L, z)~QV (8,y)| <.
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Fix N so that 4 = 27Y < 4. Take a Borel function d,: R*—T,
(2.40) GV (k4, ) = A(d,(2) V (k4, 2) +f (2, d;())

and define d €9, by

d(w(kd)) for te[kd,(k+1)4),
d(w(jd)) for t>j4

where j4 < T'< (j+1)4. Then we have, in the same way as (2.34),

(2.41) d(t, w) =‘

(2.42) EEV(§, X(3)-V(0,2) = Eif (s, X(8)) +

+A(d(8) V (s, X (s))ds.
From (2.36)-(2.39) we have, putting é = 4{2Va],
av ov .
(2.43) lw(syy)—w(s,y)l<€
and
(2.44) |4 (d(s) V(e,y)—A(d@) V(@ 9)|<e.

Since |f(z, u)|, ’%‘z (8, a;)l and [A(u)V (s, z)| are bounded (say, by })
on [0, T] xR" xI', we have by (2.37)

(2.45) E"")

) (s X(s)——-—(a X(@)| <etke

and similarly for A(d(c'))V(é', -) and f(, d(#)). Therefore, recalling the
definition of d, we have

(2.46) (the right side of (2.42)) > —3(k +1)eT — ff(X(.s'), &(s))ds.

Hence,

Ep(X(n))+ [ f(X(s), d(s))ds > W (T, 2)—3(k+1)eT.

Appealing to (2.35), we can see that (d, %) is an approximate optimal.
Remark 2 gives a probabilistic proof of Theorem 2.
§ 3. Example

Let P“(t) be a transition semigroup of a 1-dimensional Lévy process of
pure jumping type with finite Lévy measure n*(ds, dz) = dsn"(dz), that



NOTE ON NON-LINEAR SEMIGROUPS AND FREE BOUNDARY PROBLEM 437
is, the process X*(1) is expressed by

X(t) =@+ fm f 2 N*(dsdz)

—o0 0

with a Poisson random measure N* of EN“(dsdz) = n*(dsdz). Let ¢(x, )
= 0 and let f(z, ) be bounded and smooth on R x I". Assume that

(31) K =supn*(R)< o0 and K =sup [ jsin"(de)< 0,

uel’ uel _

and P“(t)p(x) is continuous in (¢, x, ). Then
(3.2) Ap(a) = f (p(@+y)— o(a)) n"(dy)

and D(4*%) = C. Moreover, from (3.1) conditions (A1)-(Ab) are satisfied.
The operator G: Gp = sup(A®p+S*) and ®: (5(;) = Ovsup (A"tp +r¥) sat-

uel

isfy the Lipschitz conditions, that is, ||Gp—Gy| < 2k{lp — yzl] and similarly

for ®. According to Propositions 1 and 2, the optimization problems
(1.3) and (1.4) provide semigroups S§(?) or V(t), respectively. Moreover,
D(@) and D(®) are equal to (. Therefore we have

+ +
M:és(n(p ama Ve

7 a0 =6V(t)p.

Since @ and G are Lipschitz continuous, we can derive that S(t)p and
V(t)@. are continunously differentiable.

We show (1.15). Let d ey and 0 = s{¥ < s < ... < ¥ = ¢, such
that max j6) — s 150 as k}oo and for large k {s¥, ..., s} o {27F j,

j=0, 1, ooy [2VTJ s, (L, sF-D) where [a] is the largest integer
not greater than a. Then

(3.2) Ei(sup| X () — ol) < im B2 ( 31X (s}) —X (s]_,)]).
s<t ktoo i ‘

On the other hand, if 277 <8< 6 < 27Y(j+1), then
BL(|1X (0)—X (s)|/F,) = EED)X (6) -X (s)]
< (t—39) fm 2| n%® (d2) < (t—s) k.
Therefore
(3.3) EYsup| X (8) — x|} < tK".
)

This implies (1.15). Hence V (t)p is a unique solution of (1.16).
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