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1. Introduction

In some recent papers [4}-[8] the author stated a new duality principle
for the usual problems of optimal control. In their standard form as
parametric variational problems the said duality has the following con-
dition.

Let the primary problem be of the type

T
(1) Jo(@) = [ r(z,)dt—~ inf subject to z e Wi*(0, T)
0
with state constraints #(1) € G Vt € [0, T], decision constraints &(t) e V (a:(t))
a.e. on [0, T], and boundary conditions #(0) € M,, #(T) € M.
We denote the set of its feasible elements = by X.
The terms occurring in it are stated and restricted by the following
basic assumption:
G is a strongly Lipschitz domain of E";
¥ (') is a normal set-valued mapping on @G (in the sense of [3]) and
V (¢) are cones of E™ with the vertex at the origin 0 V¢ e @
r(-, -) is continuous on G x E", positive homogeneous of degree one
with respect to the secohd argument, and r(£,v)>0 VEe@, v #0;
M, and M, are subsets of intG;
X #= 0.

Then with reference to [5] the corresponding dual problem of (1)
congists in the goal )

(2a) L(8) := S8p—8,—>sup subject to § € WL (@),

[255]
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which satisfies additionally a.e. on G the constraints

(2b) VS(&) eF(E) :={zeE" #v<r(&v) Voe V(§)}
as well as
(2¢) =const on M, and M,.

8, and Sz are abbreviations of the expressions §|g, and S|y, respectively.
& denotes the set of all feasible elements S of (2). F(£) is said to be the
figuratriz set of problem (1) at the point ¢ € @G. From our basic assumption
it immediately follows that 0 € int §(&). The duality between (1) and (2)
i3 expressed by the characteristic condition

(3) infJ, > supL.
x e

An important question is the validity of strong duality between (1) and (2)
i.e., equality in (3). For one-point sets I, and W, this question was
answered in [8] under some additional weak assumptions. Under stronger
requirements, namely the convexity of », V(£) and @, this strong duality
can be guaranteed also by Rockafellar’s duality theory [9].

Naturally we cannot always expect strong duality in (3).

This is due to the circumstance that often some “relaxed problems”
of (1) have a smaller infimum but the same dual problem (2). On this
account for a further elucidation of strong duality properties between (1)
and (2), it is useful to begin with duality discussions of relaxed problems.
This practice was already explained in paper [10] by R. V. Vinter, in
which it is shown that very strong relaxed problems of (1) have the same
dual problem (2). Further, he proved for constant V(-) that one obtains
even strong duality if (1) is replaced by its sufficient general relaxed
problem. This result is very important from the theoretical point of view.
But the above-mentioned strong relaxed problems, based on L. C. Young’s
theory of gemeralized flows [11], can hardly be considered from the geo-
metrical point of view. Thereforc we prefer another approach to genera-
lized primary problems by means of weaker relaxed problems, which
we call flow problems of the first kind and of the second kind.

2. Flow problems of the first kind

As a preliminary for the statement of a “reasonable” relaxed problem
of (1) let us consider oncé more our primary problem (1). It implies the
question of finding an optimal trajectory within @ from M, to My as an
infinitesimal thin line. For our eyes it is sufficient to construet in G,
= G\ (M, UM,) approximately the cheapest thin flow p drawing a chalk
line on the blackboard from M, to M, with a constant pressure and
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velocity of the writing hand. We understand “cheapest” here in respect
of the given cost rate . The direction of the vector n({) characterizes
the direction of the writing motion at the point £, and |v(£)| is the density
of chalk at that point. In consequence of the constant pressure and velocity
the divergence V-p of this vector field p is equal to zero in G,. If we assume
henceforth M, and W, to be strongly Lipschitz domains, then furthermore
we have the condition
f vdo = — f vdo,

By a suitable choice of the pressure and velocity we can obtain
f vdo = 1.
am,

Finally, if we omit the inconvenient attribute “thin”, then our real problem
has precisely the following structure:

(4a) J,(0) = f r(&, 0(&))d&—~inf

Gy

subject to the following conditions:

(4D) D(E)eV(E) on G,

(4¢) Vip=0 on G,

(4d) [ovdo =1,  [vdo = —1(") (T, = oWy, Iy = 8WYy),
To Iy

and

(4e) vde =0 on o@.

Problem (4) is called a flow problem of the first kind. Its admissible elements
v are said to be flows and the set of all flows is denoted by B.

THEOREM 1. The optimization problem (2) i3 a dual problem of the flow
problem (4).

Proof. For any v € B and § € S we have

(5) J1(0) = [ [r(&, v(&)+8(&) V-n(£)]dé
Go

in consequence of property (4c). Since

V- (S(&)n(£)) = (VS(&)p(&)+8(&)V-v(¥),

(1) Here the surface element “do” is oriented in the direction of the outer normal
of Po and I‘T.
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equation (5) can be formulated as

(6) Ji() = [[r(&,0(&)—V8(E)v(H]dE+ [S8(&)n(8)de
G oGy

by means of Gauss’ Theorem. From (6), (4d) and (4e) we conclude, using
the abbreviations 8, = S|m°, 87 = 8|gm,, that

Jy(0) = [ [r(€,0(&)—V8(&)-0(8)] 4 +8,—8,.
Go

Therefore, in virtue of (2b), we obtain
(7) J1(0) = L(8) = 8p—8,,
and this property characterizes the duality between problems (2) and (4).

3. Flow problems of the second kind
Now we introduce an extension of problem (4). Namely, we define

(8) I ={veLi(@) [VS(&)v(£)dE = 8, —8,V8e&,
Gy

v(§) € V() V& € Gy,
and study

(9) Ja(0) = [r(&,0(£))dé~>inf on .
Gy

This problem is called a flow problem of the second kind.

Remark. As we already observed in connection with (2b), the origin
is an interior point of the figuratrix set F(¢) V& € G,. Therefore the defi-
nition of I according to (8) remains unchanged if we replace in it the
set S of trial functions 8 by the set (Banach space)

(10) S, = {8 e W, (G,)| 8 =const on I', and I'y}.
LEMMA 1. B c 1.
Proof. If v € B, then by Gauss’ Theorem

W) VS (s = — [SEOV-DEEE+ [S(E)(8)do
dy Gy 8Gy

for every § € S. Since p fulfils (4c)-(4e) and § fulfils condition (2¢), we
conclude from equation (11) that

J V8(&)n(£)dE = 8p—5,.
Go

Finally, this together with (4b) gives v € T3 and B < IB.
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LEMMA 2. Every v € WNC™(G,) s an element of B.

Proof. If v € WNCT(G,), then formula (11) holds again, even for
every 8 €S, in view of the Remark from above.

In the first step we consider (11) for arbitrary § e W’ (@). Since
p € W and according to (8), we have

(12) [B(EV-D(E)AE =0 VS e WL(G,).
Go

Since fV;(Go) is dense in L,(@,), this variational equation (12) leads to
the result Vo = 0 in @,, which means that v satisfies (4¢).

In the second step we consider (11) by using result (12). Because of
p € I equation (11) implies

(13)  8p—8, = [ 8(&)o(£)do— fsmn(s)do— fsw)n(ndo

V8 eG,.

Under the additional restriction 8, = 8, the variational equality (13)
brings about nde = 0 in 0@, i.e., condition (4e). On the other hand, under
the additional requirement 8),; = 0, we obtain from (13) by the arbitra-
riness of 8, and S, the condltlons fn(E)do =1, fn(E)do = -1, i.e.,

property (4d). All these results together confirm the statement v € .

THEOREM 2. The optimizalion problem (2) is a dual problem of the flow
problem (9).

Proof. For any v € W and 8§ €S according to (8) we find

Ja(0) = [[r(&,0(£)—VS8(&)-v(£)] A6 +8,—
&

and by (2b) immediately J,(v) = L(8) = Sy —8,. This proves the duality
between (2) and (9).

4. Flow problems and Rockafellar’s duality

We shall prove that, also in Rockafellar’s special sense of duality, problem
(2) is a dual problem of the flow problem (9). This acknowledgement will
enable us to use Rockafellar’s stability theory [9] for getting strong
duality criteria. We base this conception on the ideas of Ekeland and
Temam [1] in Ch. IIL.2.

LeMMA 3. Fenchel-Rockafellar’s duality conception generates in respect
of problem (9) the same dual problem (2) as that which we constructed above.
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Proof. We begin by describing W. Fenchel's and R. T. Rockafellar’s
method of constructions dual optimization problems. Let X and Y be
two topological vector spaces with the duals X* and Y*, respectively.
Assume that @ is a real functional on X XY and |

(14) ®(v,0)—inf on X

is the primary problem in question.
We denote by ®* the conjugate functional of @ in the sense of Fenchel
and Rockafellar; it is defined by the declaration

(15) ?*(g*, p*) := sup [{g* o)+ <{p*% P> —D(v,p)]

veX,peY

for every (g% p*) € X* x ¥*. Then it appears that
(16) —@*(0, p*)>sup on Y*

is a dual problem of the introduced primary problem (14). In order to
apply this coneception, we first transform problem (9) into a problem of
the shape (14). For this purpose we realize X = L¥(G@,), ¥ = &; and
cquip Y with the weak topology of G;. Hence ¥* = &;* = &,. Further
we define a linear continuous mapping 4 from X into Y by

(17) (S, Ap) = — fVS(e)-n(e)ds V8 e G,.
Gy

Since the right-hand side of (17) is equal to —(V&8, o>, the operator 4
is equal to —V*. Finally, for (v, p) e X x ¥, we put

Jy(v) if vo(&) e V() a.e. on G, and
(18) @(v,p) := (8, Ao —p> +87—8, =0 holds VS e ¥*,
oo otherwise.

Because of the remark concerning problem (9) the first case in definition
(18) occurs for p = 0 iff v € I8 in the sense of (8). Hence the primary
problem (14) in the described realization with (18) is equivalent to the
optimization problem (9).

Now we shall compute @*(0, p*) by means of definitions (15) and
(18). Obviously for each v € X the condition

(19) (8, A0 —p>+8p—8, =0 VS8eX"

which is used in (18), defines uniquely a solution p € Y of this variational
cquation. This solution depends on v, which authorizes ns to write p = Av.
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This together with (18) immediately implies
(20) 2*(0,p*) = sup [{p*% P> —P (v, p)]

veX, pe¥

= sup [<p* p)—P(v, P)].

veX,p=dv
Since p = Ap satisfies equation (19), we obtain, for 8§ = —p*, the result
p* P> = {P" D) +Ppr— s,
which we substitute in expression (20). Thus we obtain

¢‘(09 p*) = sup [p;-—-p:—}— {p* Av) —&(v, p)],

PeX, pm 4D
and by (17) and (18)
@) 9%0,p") —sup[pr—pi— [(Varn(e)+r(e, 0 ())de]
slt)eF(Ha.e. o
=lp;—p: if  —Vp*(§) e §(§) a.e. on G,
oo otherwise.

This equation proves the equivalence of the optimization problem (16)
to the problem

(22) L(—p") = p; —pr—sup sybject to all p* €&,
which satisfy — Vp*(¢) € F(£) a.e. on G,.

With reference to (10) and replacing —p*® by S, we find that problem (22)
is evidently identical with (2). This is what Lemma 3 asserts.
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