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Introduction

This paper contains a simple direct approach to the Selberg zeta-function for
cocompact discrete subgroups I' < PSL(2, C). Our approach is based on the
computation of the trace of the iterated resolvent kernel for I

We briefly survey the relevant spectral theory of automorphic functions
in Section 1. There we consider arbitrary discrete subgroups I' < PSL(2, C)
and the action of I' on the upper half-space H — R* equipped with its
hyperbolic metric. The Laplace-Beltrami operator 4 is an essentially self-

(83]
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adjoint linear operator on a suitable dense domain 2 < L*(I'\ H). The
resolvent

Ry=(=d-4"" (leo(-2)

of the unique self-adjoint extension ~4 of —A can be described in terms of
an integral operator of Carleman type, the so-called resolvent kernel; g(— A4)
denotes the resolvent set of — 4. It turns out that R; (leg(— 4)) is compact if
and only if I'\H is compact. In this case the operator —4: 2— L*(I'\ H)
has a complete orthonormal system of eigenfunctions with associated
eigenvalues

0=AO <Al</q.2

A

(counted with multiplicities) such that

[# 3]
Y A< o,
n=|

There are also some results for non-cocompact groups I" of finite covolume
in Section 1.

From the beginning of Section 2 we restrict ourselves to the case of a
cocompact discrete subgroup I' < PSL(2, C). We allow I' to contain elliptic
elements. Section 2 deals with the computation of the trace of the kernel for
the operator R; R,. Following the ideas of Selberg [20] this leads to a trace
formula which is stated in full in Theorem 2.2. Since we restrict ourselves to
the case of discontinuous groups on three-dimensional space, the group
theoretic data required in the course of the computation of the trace can be
described in full detail. The trace formula yields a corresponding version of
Huber’s theorem which says that for cocompact discrete groups, the eigen-
value and length spectra uniquely determine each other.

One side of our trace-formula is determined by the logarithmic deriva-
tive of a certain infinite product analogous to an Euler product, the so-called
Selberg zeta-function Z. The trace-formula implies that the Selberg zeta-
function actually is an entire function with zeros determined by the eigenvalues
of the Laplace-Beltrami operator. The zeros satisfy an analogue of the
Riemann hypothesis, and Z has a simple functional equation (see Theorem 4.4).

Applying to Z the methods of classical analytic number theory, we
obtain Weyl's asymptotic law for the asymptotic distribution of the eigen-
values. This. implies that Z is an entire function of order 3. We can even
write down the canonical factorization of Z rather explicitly.

The Selberg zeta-function has many properties in common with the
usual zeta- and L-functions, and the analogue of the Riemann hypothesis is
true for Z. An up to now unproved conjecture for the Riemann zeta-function
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is the Lindelof hypothesis. It is known that the truth of the Riemann
hypothesis implies the truth of the Lindelsf hypothesis. Since Z satisfies an
analogue of the Riemann hypothesis it is natural to expect that Z also
satisfies an analogue of the Lindel6f hypothesis. We prove this in Section 6.

This work is an elaboration of parts of our previous progress report
[7]. We refer to this report for some applications of the general theory given
here. A detailed exposition of our work on analytical theory and arithmetic
applications of discontinuous groups on three-dimensional hyperbolic space
1s in preparation. — Two of the authors took part in the Semester on
Elementary and Analytic Theory of Numbers held at the Stefan Banach
International Mathematical Center in the autumn of 1982. We want to
express our sincere thanks to our Polish hosts for the stimulating atmosphere
at the conference and for their great hospitality under difficult exterior
conditions.

1. A brief survey of the spectral theory of automorphic functions

We take the upper half-space
(1.1) H:=Cx]0, w[ = {(z, r):zeC, r > 0}
in R* as a model of three-dimensional hyperbolic space. Usually we write

points Pe H in the form
(1.2) P=(z,r)=(x, y, 1) = z+7],

where z = x+iy (x, yeR) and j=(0, O, 1). The hyperbolic metric

dx? +dy* +dr?
(1.3) ds? = /

¥

on H has a corresponding hyperbolic distance d(P, P) (P=z+r],
P’ =z'+r'je H) which is given by

(1.4) coshd(P, P)=4(P, P)

with

|z =22 +rt+r?

(15) S(P, P)=——

Moreover, the hyperbolic metric gives rise to the hyperbolic volume measure
v,
dxdydr

(1.6) dv
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and to the Laplace—Beltrami operator
1.7 4 =r? o + o + il r e
(17 T\ T e or’
The group SL(2,C) acts on H in the following way: Let M

=(a 3)6 SL(2, C) and P =(z, r)e H, and define
c

(1.8) MP =z* +r¥j
by

. _(az+b)(TZ+d)+acr?
T T ez AP I

(1.9)

r

K _
(1.10) ’ lez +d|? +]c|* r?

Then PSL(2, C):=SL(2, C)/{LI} is the group of all orientation preserving
isometries for the hyperbolic metric. Since the hyperbolic metric is
PSL(2, O)-invariant, the hyperbolic distance 4, the hyperbolic volume
measure v and the Laplace-Beltrami operator 4 are invariant as well. In
particular, § {(cf. (1.5)) is a point-pair invariant, i.e.

(L11)  8(P, Q) = d(MP, MQ) for all P, Qe H, MePSL(2, O).

The invariance of 4 means that the action of 4 on C>-functions commutes
with the action of PSL(2, O):

(112)  A(foM)=(4f)oM ‘for all feC*(H), MePSL(2, C),

The invariance of 4 enables us to introduce a self-adjoint linear operator
in the following way: Let I' be an arbitrary discrete subgroup of PSL(2, )
and denote by L*(I'\ H) the Hilbert space of all (equivalence classes of
almost everywhere equal) measurable functions f: H — C such that

(1.13) foM=M for all Mer
and
(1.14) {1f1*dv < co,

F

where # is a fundamental domain for I on H. We equip L*(I'\ H) with the
scalar product

(fyg>=[fgdv (f,gel*(I'\H).
F

For every C*-function f e L*(I'\ H) the function Af is I-invariant by (1.12)
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but possibly Af is not square integrable over #. Hence it is natural to
introduce the dense subspace

(1.15) D:={fel2(T\H)n C*(H): Af e L*(I'\ H)}

of L*(I'\ H) as a domain for A. Then it turns out that —d: & — L2(I'\ H) is
a nonnegative essentially self-adjoint linear operator (see e.g. [17]). This
means that the closure of the graph of 4 in L*(I'\ H)x L*(I'\ H) is the graph
of a self-adjoint linear operator 4: & — L2(I'\ H).

We want to describe the resolvent of the operator —d.: Let .g(—4)
denote the resolvent set of —A: & — L*(I'\ H). By definition, 1eo(—J) if
and only if

(1.16) Ry:=(—d4-})7!

is a bounded linear operator defined on L*(I'\H). For ieg(-J) the
resolvent operator R, is a bounded linear operator mapping L*(I'\H)
bijectively onto Z.

For suitable values of A, the operator R, can be described by a kernel of
Carleman type as follows: Define

1 (848t ‘
(1.17) @s(0) := py O (seC,0>1)
and let
(1.13) F(P,Q,9:=Y o.(6(P, MQ))
Mel

(Res > 1, P, Qe H, P¢ I'Q) where §(-,) is defined by (1.5). The series (1.18)
converges uniformly on compact sets provided that Res > 1, P¢ 'Q. If I' has
a fundamental domain of finite hyperbolic volume, the abscissa. of. conver-
gence of the generalized Dirichlet series (1.18) is equal to 1, and *the “series
diverges at s = 1. Note that F(-, Q, s) has singularities at all points of the
orbit I'Q (cf. (1.5)).

THeOREM 1.1. For Res > 1, the series F(P, Q, s) is a kernel of Carleman
type, ie.

(1.19) IIF(P, 0, s)|?dv(Q) < o

for all PeH, and F(P, -, s)e LZ(F\H) depends continuously on (P, s)e H x
x [seC: Res > 1). Suppose that i =1—s* Res>1. Then deg(- —~4), and

(1.20) R, f(P)=[F(P,Q,s)f(Q)dv(Q)
F
for all feL*(I'\ H).
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The proof of Theorem 1.1 uses the same ideas as the corresponding
proof for the hyperbolic plane (see [18], Teil 11, [5], Teil I). Full details will
be given in a future work by the authors; for a brief outline see [7].

If '\H is compact, i, if I has a compact fundamental domain #, the
integral of the continuous function (of P) (1.19) over % is finite. Hence R; is
of Hilbert-Schmidt type. The converse is also true but more difficult to
prove. The main part of the proof is based on a careful analysis of the
growth behaviour of (1.19) when P approaches a cusp of I'; for an elabor-
ation on the same idea in the case of the hyperbolic plane see [5], Teil II.
Since we do not use this part of Theorem 1.2, we omit the tedious details
here.

THrOREM 1.2. The resolvent operator Rl (Aeo(—A)) is of Hilbert—Schmidt
type if and only if '\ H is compact.

CoroLLARY 1.3. Suppose that I' is a cocompact discrete subgroup of
PSL(2, ). Then —A: 2~ L*(F'\H) has a complete orthonormal system
(edn=0 Of eigenfunctions with corresponding eigenvalues

0=10<11<}»2<-..

(counted with multiplicites) such that
(1.21) Y At < oo,
n=1

The eigenfunction e, is constant and we may choose

eo = (v(F))

The proof of Corollary 1.3 follows from Theorem 1.2 and from the fact that
the eigenfunctions of —A4: & — L*(I'\ H) are twice continuously differentiable
(and even real analytic) functions on H (compare [18]).

For the rest of Section 1 we assume that '\H is non-compact and of
finite covolume. Then there exists a continuous spectrum of — A. It is equal
to [1, o[ and its multiplicity (in the sense of [18]) coincides with the
number of I-inequivalent cusps of I A complete system of orthogonal
eigenpackets of —A4 is obtained from the analytically continued Eisenstein
series for a maximal system of I'-inequivalent cusps of I" (cf. [18] and [14]).
This means that the continuous part of the spectral decomposition of —A4:
@ — L*(I'\ H) is quite well understood. However, the discrete part of the
spectrum turns out to be much more difficult to handle. None of the
eigenvalues or eigenfunctions is known save for the eigenvalue zero and the
associated constant eigenfunction. Do there exist infinitely many eigenvalues?
This seems to be a difficult open question. In the case of the hyperbolic
plane, the analogous problem has been discussed by A. B. Venkov (see [23],
[24] and the references cited there). In the three-dimensional case we know

-1/2



THE SELBERG ZETA-FUNCTION 89

e.g. that for the Picard group I'=PSL(2, Z{i]) (and hence for all its
subgroups of finite index) infinitely many eigenvalues exist.

Can there exist “too many” eigenvalues so that e.g. the series (1.21)
diverges? This cannot happen. We briefly indicate the idea of proof. The
main point is to show that there are not too many cusp forms, ie,
eigenfunctions of —4 vanishing exponentially at all the cusps of I'. To show
this, one modifies the resolvent kernel F(P, @, s) in such a way that it
becomes a Hilbert—Schmidt kernel and still has all the cusp eigenfunctions of
—A as eigenfunctions. The modification is done in the following way:
Choose # as a Poincaré normal polyhedron for I’ such that (;
=A;'o,..., {,=A4,100 (4;,..., 4,6 PSL(2, ) are all the cusps of &
and such that these are all I'-inequivalent. For v=1, ..., p let I' T be the
stabilizer of {, in I', and let R > 1 be sufficiently large. Then the cusp sector
of & at {, has the form

Sy =A; (R, x[R, ),

where 4, < C is a suitable fundamental domain for the action of A, Iy 4,
on C. We put for P, Qe H

AVP = (ZV’ rV)’ AV Q = (W\U t\')’

and define for s > 1, seR:

F*(P, Q, s)
F(P,Q, S)_28|199v| ri=sil*s  for P,Qe,, r,21,,
:= | F(P,Q, s)—m pltsel=s for P,Qe%,, r, <1,
F(P, @, s) for P,Qe % x % \US/’XS"

and extend F*(P, Q, s) by I-invariance in both variables to all of Hx H.
Then a very tedious chain of estimates yields the following result (compare
[18], Teil II, § 8).

Tueorem 1.4. The function F*(P, Q, s) (P, Qe H, s > 1) is real-valued, I'-
invariant with respect to P and Q, symmetric in P and Q and satisfies

(1.22) [ [IF*(P, @, s)*dv(P)dv(Q) < o0.
F F

For every cusp eigenfunction f of — A, the action of F*(-,+, s) on f is the same
as the action of F(:,-, s), i.e,

(1.23) [F*(P, Q,9) [/ (Qdv(Q) = IF(P Q, 5) f(Q)dv(Q).
¥
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Moreover, equality (1.23) even holds for all f € L*(I'\ H) such that the zeroth
Fourier coefficients of f vanish almost everywhere in the neighbourhood of all
the cusps of I. The function

(1.24) P— [|F*(P, Q, 5)|*dv(Q)
7

is bounded on compact suhsets of H.

CoRroLLARY 1.5. Suppose that —A: @ — L3(I'\H) has an orthonormal
system (®,),», of cusp eigenfunctions of — A with corresponding eigenvalues A,,:

-4 @n = ’ln @p-
Then

(1.25) Z An % < 00,
and for every ge & the contribution

(1.26) Z {g» i) Py

of (@,).=1 10 the expansion of g in eigenfunctions and eigenpackets (of — A)
converges also pointwise absolutely and uniformly on compact sets.

Proof. The system (¢,),=; can be included in a complete orthonormal
system ol eigenfunctions of the symmetric Hilbert-Schmidt kernel F*{(-,-, s)
{(s > 1). This yields (1.25). To prove the assertion on the pointwise conver-
gence properties of (1.26) we put A =1—s? with s > 1. Then we have for
i, veN, u<v and Pe H

L 6, 0.004(P) = T |6, (~T-D) [F(P, 0, 96,()dv(0)

v

= 3. [K(—=4-Ag, <0n>fF* (P, @, 3) 9,{Q) dv(Q)|

n=

<(X K(=4-Ayg, c0n>|2)1’2(5[|F* (P, @, s)*dv(Q))'".

LY

<

Since (1.24) is bounded on compact sets, the assertion follows. m

2. Computation of the trace

For the rest of this work we keep the following assumptions and notations
fixed: Suppose that I < PSL(2, C) is a cocompact discrete group, and let F
be a compact fundamental domain of I' on H. Let (e,),», be a complete
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orthonormal system of eigenfunctions of —4: & -» L2(I"\ H) with associated
eigenvalues
(21) 0=lo<ll</12<...

counted with appropriate multiplicities. Then we know from Corollary 1.3
that

(2.2) T i <.
n=1
We choose
(2.3) eo = (v(#) %
Let
(2.4) N:i=max{n>=20: 1, <1}
and write
(2.5) Ay =1—5}
with
(2.6) s =1,
(2.7) s,€]0,1] for n=0, ..., N,
(2.8) s,=1it,, t,20for nzN+1.

The resolvent set of —A: & — L*(I'\H) is
o(—d)={ieC: A# 4, for all n2 0}.
For Aeg(—4) we have

1
R;e, = P
(cf. (1.16)). Unfortunately, it is impossible to compute the trace of R, since
@
the series ) A, ' diverges (see Corollary 5.6). But if we take another

n=1

peg(—4), the operator R; R, is a product of two Hilbert—Schmidt operators
and hence a trace-class operator (cf. Weidmann [28], p. 167). Since

RiR, e, =(A—A) (A, —p)™ e,
the trace of (A—p)R, R, is given by

= 1 1
A—ptr(R; R,) = - .
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We introduce new variables s, ¢t by

(2.9 A=1-5% pu=1-—¢?
and have

® 1 1
(2.10) (A—utet R, R, ="§0 s’—sﬁ_tz—s,? )

Note that for fixed ¢t the sum on the right-hand side is a meromorphic
function of s with poles +s, (n = 0) (cf. (2.2)).

Computing the trace (2.10) in another way we shall arrive at the
logarithmic derivative of the Selberg zeta-function. The present section is

devoted to the computation of the trace. The final result will be given in
Theorem 2.2.
We start from Hilbert’s resolvent equation

(2.11) (A-wR;R, =R,—R,.
Suppose now for the rest of our computation that

(2.12) Res>1, Retr>1.

Then it follows from Theorem 1.1 that the operator (2.11) is represented by
the kernel

(2.13) H(P, Q):= lim (F(P, Z, s)—F(P, Z, )).
Z-Q

This is a continuous function of (P, Q)e H x H since the singularities cancel
out. In fact,

(2.14) h(9) := @,(8)— ¢, (d)

(c¢f. (1.17)) is continuous for d = 1,

1
(2.15) (1) = —— (s—1),

4
(2.16) h(8)=0("2"% as 6 — oo for some ¢ > 0,
and

H(P, Q)= Y h(6(P, MQ)).

Mel
We now obtain

(2.17) (A-@tr(RR) = [ Y h(8(P, MP))du(P).
F Mel
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To justify the termwise integration of this series we note that for P, Q e H (cf.
(1.4))

5(P, Q) = &P > L pdUQ -ty
Let n:=max {d(P, j): Pe #}. Then we have for all Pe %, QecH
(2.18) 6(P, Q) = 3e "D = 1e715(j, Q).

Looking at (2.15), (2.16), we see that the integrand in (2.17) is majorized
termwise by a constant multiple of the series

(2.19) Z (G, MP)~2"¢,
Mel
Since we have

jz 5, MP)"2*dv(P)
Mell

F
2r 2*edxdydr
= |8(j, P)"* dv(P) =
J‘ (J: ) U( ) J.(xz_l_yz_{_rz_l_l) ,,3
H H

[}

*e J dr 2% dr o
o7 +1 CHE T | P
0

0

=21'[

Ot——

we are permitted to integrate (2.17) termwise. This yields by (2.15)

v()

(2200 (A—p)tr(R,R,) = (s—0)+ Y. [h(5(P, MP))du(P).

Mel' #

M#]
Following Selberg [20] we rearrange the terms of the series on the right-
hand side collecting the terms belonging to the same I'-conjugacy class. Let
! T} run through the set of I'-conjugacy classes of the elements MeI', M # I.
Then M = S~! TS runs through | T} precisely once whenever S runs through
a representative system % (T)\ I of the right cosets of the centralizer ¥(T) of
T in I'. Hence we find

@221) ¥ [h(6(P,MP)do(P)=Y ¥ [h(3(P,S™' TSP))dv(P)

Mel' IT) Se8(TW\T F

M=#I
=Y Y [ h(5(P, TP)du(P)

(T) Se€(T\I" S¥

=Y | h(8(P, TP)dv(P),

(T} F(€(T)

where & (%(T)) denotes a fundamental domain of % (7).
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We have to compute the terms of the sum on the right-hand side of
(2.21). First we consider the case that Tel is a hyperbolic or loxodromic
element. Then T is conjugate in PSL(2, C) to a unique element

a(T) 0O

(2.22) D(T)=( 0 a1y

1) with a(T) > 1.

Following Selberg we call
(2.23) ' N(T):=la(T)?

the norm of T. Note that N(T) = N(T™!). Since T is hyperbolic or loxodrom-
ic, an element of PSL(2, C) commutes with T if and only if it has the same
fixed points in Cu {c0} as T. We determine the structure of % (T): Let &(T)
be the set of elements of finite order in %(T). Then either &(T) contains only
the identity or &(T) is the finite cyclic group generated by the hyperbolic
rotation in I with minimal rotation angle around the axis of T, i.e., around
the hyperbolic line through the fixed points of T in Cu {o0}. Let Toe%(T)
be an element such that N(T;) > 1 is minimal among the set of norms of all
hyperbolic or loxodromic elements of % (7). Note that the elements T, E,
To LE (E€&(T)) are precisely the elements of norm N(T;) contained in
%(T). We call Ty a primitive hyperbolic or loxodromic element for T in I.
T, itself is not uniquely determined by T, but N(Tp) is. €(T) is the direct
product of &(T) with {T;), the cyclic subgroup generated by T,. In particular,
%(T) is abelian,
Now choose VePSL(2, C) such that

(2.24) T=V-'D(T)V.
Then V& (T)V ™! has the fundamental domain
(225) F(T):=10e*+rji: 0>0,0< ¢ <2nford £(T), 1 <r < N(Tp)}

and hence we have

(2.26) f h(8(P, TP))dv(P)

F(E(T)
= | h(8(P. D(T) P))dv(P)
f?'[‘)
N ”h la(T)? —1)?|z|* +(N(T)? +1)r?\ dxdy dr
o) 2N(T)r? r’
F(T)

_log N(To) [, (la(T—1P 2P+ N(TP+1Y |
~ ord &(7) IN(T) xay

C
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@

_ 2nlog N(Ty) J’ L (la(T)2~1|2Q2+N(T)2+I)QdQ

ord &(T) 2N(T)
0

= o]

_ 2nlog N (Tp)
~ord &(T)|a(T)—a(T)" |2 J h(u) du

a(T)

where
a(T):=4(N(T)+N(T)™").
Substituting u = coshx we find from (1.17)

1 1
. s d = —_— T8x C = —— _S'
(2.27) J ¢, (u)du i J e dx . N(T)
a(T) arcosha{T)

Since h = @;— ¢, the contribution of a hyperbolic or loxodromic conjugacy
class of I' to the sum on the right-hand side of (2.21) is finally equal to

(2.28) | h(6(P, TP))dv(P)
FETH
1 log N (Ty) N1 log N(Ty)
" 2s ord £(T) [a(T)—a(T)™ 1|2 2t ord #(T)|a(T)—a(T) "}

Here, T, denotes a primitive hyperbolic or loxodromic element associated
with T. (The same notation will be tacitly used in the sequel)

The contribution of the elliptic conjugacy classes of I' (if any) is
determined in essentially the same way, but the details are more cumber-
some. The final result will be equal to (2.28) once the corresponding concepts
are defined properly. Suppose now that Rel is elliptic. Then R is a
hyperbolic rotation around a hyperbolic line which remains fixed under R
pointwise. This hyperbolic line meets C U {0} in the fixed points of R in
C U {0}. The subgroup of I' containing all the elements of I" with the same
fixed points in Cu {0} as R contains a rotation R, with minimal rotation
angle. R, is uniquely determined up to inversion, and R is a power of R,.
We call R, a primitive elliptic element of I associated with R.

We claim that % (R) is infinite. Assume to the contrary that %(R) is
finite, We know from our discussion above that the integral

(2.29) [ h(5(P, RP)dv(P)

F(€(R)

N(D)™.

converges (absolutely). Since we assume that % (R) is finite we conclude that

[h(3(P, RP)du(P)
H
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converges as well. But this is absurd: Choose VePSL(2, C) such that

(2.30) R=V7'RQQ)V
with
{0 _
(231) R({) = (0 C“l)’ il =1,{# £1,
and note that
(2.32) R(O)(z+1) =2z 47,
Then
(2.33) J.h(é (P, RP))dv(P) = |h(8(P, R({) P))dv(P)
H H
_ Fh |62 =12 |2|*+ 2r2\ dx dydr
) 2r? r3
H
_ Ph (1 +|C2— 1[2|z|2) dxdydr .
2 r
H

The latter integral obviously diverges (look at the dependence on r!). Hence
we arrive at a contradiction and conclude that #(R) must be infinite, i.e.,
% (R) must contain a hyperbolic or loxodromic element. The precise structure
of % (R) is described in the next theorem. )

THEOREM 2.1. Suppose thar Rel is elliptic, and let Ry be a primitive
elliptic element associated with R. Then the centralizer ¥(R) of R in T
contains hyperbolic or loxodromic elements. Let Tye%(R) be hyperbolic or
loxodromic such that N(T,) is minimal in the set of norms of hyperbolic or
loxodromic elements contained in %4 (R). Then there are two possibilities:

(a) Either {Ry)> contains all the elliptic elements of 4 (R). Then * (R) is
abelian,

E(R) = (Ro> x(Tp),

and &(R):= (Ry) is a maximal finite subgroup of %(R), in fact, the unique
maximal finite subgroup of %(R).

(b) Or R is elliptic of order 2, and there exists an elliptic element
S€ @ (R) also of order 2 whose fixed line meets the fixed line of R orthogonally
in a common point. Then for every such S

STIR,S =Ry,
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and
A(R) 1= (Ro) U {Ry)S

is a maximal finite subgroup of ¢ (R). &(R) is of dihedral type. All the maximal
finite subgroups of %(R) are conjugate in PSL(2, C).

%(R)= Ty E: E€c4(R), neZ},

and {Ry» x{Ty> is an abelian subgroup of index 2 in % (R).

Proof. Assume first that {(Ry> contains all the elliptic elements of % (R).
Every hyperbolic or loxodromic element of %(R) commutes with R and
hence has the same fixed points in Cu oo} as R. Thus % (R) is abelian, and
assertion (a) is obvious.

Suppose now that there exists another elliptic element Se% (R)\(Ry).
Transform R to normal form (2.31). Then an elementary computation yields
that R({) commutes with
(* b)EPSL(2, 0
¢ d

(2.34)

if and only if either b = ¢ = 0 (i.e,, if R({) and (2.34) have the fixed points 0
and x in common) or { = +i and ¢ = d = 0. Since we assume that R and §
do not have the same fixed points in Cw | x ], we conclude from the second
case that R is a hyperbolic rotation with rotation angle n, and S # R is an
elliptic element of order 2 commuting with R. The fixed lines of R and §
meet orthogonally in a common point. Transforming R to normal form, we
obtain

(2.35) VRV~ ! = (i 0.),
0 —i
0 b
(2.36) Vsv! = (—b" 0),
where VePSL(2, C) is a suitable element. This yields
S"'R,S=Rj.
Hence
(2.37) B(R):={Ry>U{(Rp>S

is a finite subgroup of % (R) of dihedral type. (The subgroup |1, R, S, RS} of
% (R) is isomorphic to the Klein four group.)

We proceed to show that &(R) is a maximal subgroup of #(R) con-
taining only elements of finite order. To prove this, suppose that # = % (R)
is a subgroup containing only elements of finite order such that &(R) < 5.

7 — Banach Center, L. 17
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Let Ae s, A¢ (Ry>. Then our deduction of (2.36) yields that

2.38 VAV‘I—( 0 ﬁ)
(- ) - _B—l 0

for some B # 0. Hence VASV ™! leaves 0 and oo fixed, and since AS € # is
an element of finite order, we conclude that ASe (R;), i.e, Ae{Ry>S. This
proves that # < &(R), and hence &(R) is a maximal subgroup of %(R)
containing only elements of finite order. In particular, (R) is a maximal
finite subgroup of #(R). v

We proved already that %(R) contains a hyperbolic or loxodromic
element. The fixed line of R is the axis of every hyperbolic or loxodromic
element of ¥ (R). We choose a hyperbolic or loxodromic element T,e % (R)
with N(T,) minimal and claim that

(2.39) %(Ry={T§E: E€cé(R), neZ}.

To prove this assertion, assume first that Te % (R)\(Ry) is elliptic. Then
VTV ™! has the form (2.38), hence VISV ! leaves 0 and oo fixed, i.c. TS has
the same fixed points in Cu {oo} as R. This implies that TS = Tg' R} for
some integers v, n, 0 < v <ordR,, and hence T belongs to the set on the
right-hand side of (2.39). Second, assume that Te%(R) is hyperbolic or
loxodromic. Then T has the same fixed points in Cu {co} as T,. Hence
To " T 1s elliptic for some integer n, and we conclude that T = TJ R} for
some integers n, v. This proves (2.39). Obviously {(T;) x {(Ry) is an abelian
subgroup of index 2 in %(R), and {I, S} is a representative system of the
cosets. :

It remains to prove that all the maximal finite subgroups of ¥(R) are
conjugate in PSL(2, ). Let ¥ be a maximal finite subgroup of ¥(R). We
draw from our discussion above that there exists an elliptic element A& % (R)
of order two such that the fixed lines of A and R meet orthogonally in an
common point and such that

4 = (Royx{Ro)A.

By (2.39),
A=TRyS
for some integers n, v. Choose a hyperbolic or loxodromic element
T, e PSL(2, O) such that T, = T{?*. Then T, commutes with R,, and
Ty "R§ATY = R§™S for all meZ.

This yields

T, "%T" = £(R). =
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Now we compute the contribution of the elliptic conjugacy class 'R! to
the right-hand side of (2.21): If case (a) of Theorem 2.1 occurs, then
V&(R) V™! has the fundamental domain |

(240) F(R):={ge’+rj: 0>0,0< ¢ <2nfordRy, 1 <r < N(Tp))

where Ry, Ty are as in Theorem 2.1. (The same notation will be tacitly used
in the sequel) Hence we find (cf. (2.33) and (2.27))

oo

_ 2nlog N(T) -
(2.41) f h(3(P, RP))dv(P)_Tg(R)Jh(HT az)ade
F(€(R) 0

_ 2nlogN(Ty)
TS ERE-L T J )

1
_ 2nlogN(Tp) 1 _ 1
~ord €(R)|(tr R)2—4| \4ns 4nt

_(_l__i log N(To)
“\2 2t/ ord &(R)[(tr R)*—4|’

where (tr R)? is the square of the trace of R (which makes sense for elements
of PSL(2, Q).

Assume finally that R is such that case (b) of Theorem 2.1 occurs, Then
{Rp> x{Ty> is an abelian subgroup of index 2 in #(R), and (2.40) is a
fundamental domain for this subgroup. This yields by (2.41)

{ h((P, RP)do(P)=4% [ h(3(P, R()P))dv(P)
F#(R)) F(R)
(1 1 log N(T,)
a (E—zr) 2ord R, |(tr R)2—4|

(1 1 log N(Tg)
; (2.5‘ 2t Jord £(R)|(tr R)> —4]

Summing up, we have now proved: If R is elliptic, the contribution of
%(R) to the right-hand side of (2.21) is equal to

(11 log N(Ty)
(242) f h(8(P, RP)dv(P) = (’2?5) ord A (R)[(tr R4

F(%(R)

Note that this result agrees formally with (2.28) if we put N(R):=1 since
la(T)—a(T)"*? = |(tr T)>—4| in (2.28). From (2.21), (2.28), (242) we obtain
the following trace formula.
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THeOREM 2.2. Suppose that I' < PSL(2, C) is a cocompact discrete group
with fundamental domain 7 and eigenvalue spectrum (A)nso, An = 1 —s2, and
let . =1~s% w=1—t% Res>1, Ret > 1. Then

® 1 1
(243) (A—ptrR;R, =Y (2 2‘:2_31)

n=0 \8 —Sh
v(F)
T 4n (s—0)+
1 1 log N(T)
+ (25 2_t) (R)ellipt. ord &£(R)|(tr R)z —4
1 log N (Ty) ]
2s N(T) =
+2‘g(Tﬁx.ord(g(nla(n—a(n-llz (T)
1 log N(Tp) N(TY,

2 S ord &(Da(M)—a(N) 1

where the summation with respect to |R| extends over the finitely many I'-
conjugacy classes of elliptic elements of I' and the summation with respect to
IT} extends over the I'-conjugacy classes of hyperbolic or loxodromic elements
of I'. Moreover, the notation of Theorem 2.1 applies, and a(T), N(T) are as in
(2.22), (2.23). '

It is obvious from the above proof that the same method yields a trace
formula for arbitrary integral operators associated with a Poincaré series
defined by a point-pair invariant provided that suitable growth conditions
are satisfied. However, the iterated resolvent kernel seems to be one of the
most interesting examples since its trace immediately yields the Selberg zeta-
function (see Section 4). Another interesting example is the kernel

O(P,Q,0):= Y e HRAMO  (+ 5 (),
Mel

The eigenvalues of the associated integral operator are computed by means
of the Selberg transform (cf. [7]). This yields the trace formula

(2.44) Q(P P, 1) dv(P)=— Z K, ()
pt
- ZTE _ logN(To)
=p(F)e '+—e
r lR}%ipt. ord & (R)|(tr R)*—4|
27 log N (Tp)

— S (N(T)+N(T) ~ 1

))

+— =
t {TYox. ordﬁ(ﬂ[a(T)_a(T) 1|2
where K, denotes the modified Bessel function.
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The same method applies to the kernel

H(P,0,5):=Y 8(P, MQ)"*"* (Res>1).

Mel

Here the computation of the trace yields

(2.45) (.H(P, P, s)dv(P)

s+1) Z F(S+S") (s;s,,)

M

2n log N(T)
T L SaaRr R4
2n log N(Ty)

+— =

5 o ord (D a(D—a(T)

Obviously, the left-hand sides of (2.43), (2.45) are meromorphic in the

whole s-plane. Hence the right-hand sides of (2.43), (2.45) are meromorphic
functions of seC.

e FN(D+NDY)

3. Huber's theorem

We maintain the assumptions and notations of Section 2 and digress briefly
into uniqueness questions associated with the eigenvalue and length spectra
of I'\ H. Problems of this kind were discussed first by H. Huber [11] in the
case of the hyperbolic plane. L. Bérard-Bergery [2], [3] and H. Riggenbach
[16] extended Huber’s result to the case of hyperbolic spaces of arbitrary
dimension with cocompact discrete groups without fixed points. We choose a
slightly different approach based on Theorem 2.2, and we admit groups with
elliptic elements.

The trace formula (2.43) has a geometric meaning if I’ contains no
elliptic elements. Assume for a moment that I' is a cocompact discrete
subgroup of PSL(2, €) without elliptic elements. Then the sum

i | 1
(3.1 ,EO (sz—s,f _tzvsf)

in (2.43) is determined by the sequence (s,),»0, 1., by the eigenvalue
spectrum (A,),so Of the Laplacian on the Riemannian manifold M := '\ H.
The first term on the right-hand side of (2.43) has an obvious geometric
meaning. It is simply given by the volume of M. The norms N(T) in (2.43)
can be interpreted in terms of the lengths of the closed geodesics on M.
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Recall that H is the universal covering of M and that I' is isomorphic to the
fundamental group of M. The conjugacy classes of I’ are in a natural
bijective correspondence with the free homotopy classes of closed continuous
paths on M as follows. Consider a free homotopy class W of closed
continuous paths on M, This class contains a closed oriented geodesic y of
M which is uniquely determined up to the choice of its initial point. A lift of
y to H is a hyperbolic line segment L whose endpoints A, B satisfy A = TB
for some unique Tel. (Remember that I’ has no fixed points on H.) All
images SL (SeT) are also lifts of y to H, and the element of I" matching the
endpoints of SL is equal to STS™'. We associate the I'-conjugacy class | T)
with y, i.e., with the free homotopy class W. This correspondence is bijective.
The length of y can be recovered from { T} as follows. Suppose that y is not
a point. Then T # I, and L is part of the axis of 7, and the length of L is
equal to log N(T). Hence the numbers log N(T), where {T} runs through the
I'~conjugacy classes of elements Tel', T # I, are the lengths of the closed
geodesics on M. The trace formula establishes a quantitative relationship
between the eigenvalue spectrum of the Laplacian on M and between the
volume and the lengths of the closed geodesics on M, ie., between analytical
and geometrical invariants of M.

We now drop our hypothesis that I" acts fixed point freely on H and.
admit that I’ may contain elliptic elements. Suppose that

pi:=logN(T) (=21

are the logarithms of the norms of the hyperbolic or loxodromic elements of
I', arranged in strictly increasing order. Then we call the family of ordered
pairs

' log N(To)
32 .
2 ((#p [T]Zlox. ord é’(ﬂla(ﬂ"a(ﬂ"’l’))jgl

logN(T)=yj

the length spectrum of I'. This notion imitates the corresponding definition in
the fixed-point free case. Our notion of length spectrum really is a group
theoretic concept although we maintain the geometric language from the
fixed-point free case.

The number

log N(Tp)
(3.3) E:=
e, 01d £(R) [(tr R)?> — 4]

is called the elliptic number of I'. (We do not know if this number -has an
interpretation in terms of geometric data of I"\ H.) The following result is our
version of Huber's theorem.
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THeorReM 3.1. Let I'y, I'; be cocompact discrete groups.

(a) Suppose that the eigenvalue spectra for I'y and I, agree up to at most
finitely many terms. Then the eigenvalue spectra, the length spectra, the
volumes and the elliptic numbers for I', and I', are the same.

(b) Suppose that the length spectra for I', and I', agree up to at most
finitely many terms. Then the length spectra, the eigenvalue spectra, the
volumes and the elliptic numbers for I’y and I', coincide.

Proof. (a) By assumption, the sums (3.1) for I", and I'; agree up to at
most finitely many terms. Letting s tend to infinity in the corresponding
equation resulting from the trace formula (2.43), we see that the volumes for
I'y and I'; coincide. Omit the contribution from the volumes and let r — x
in the new equation. This yields an equation of the form

2
B4 YHg—g=E—E+ ¥ co(DND™= T (DND

fin. Sy {T }ox. {T Jlox.

where “fin.” indicates a certain finite sum involving the numbers s, for I,
I'5. and where E,, E, are the elliptic numbers for I'y, I',, and where Zl, Zz
mean summation over the conjugacy classes { T} of hyperbolic or loxodromic
elements of I',, I',, respectively. In addition we put

__ logN(T)
ord £(D)ja(N—a(D "

Letting s — +oc, we obtain E, = E,. Hence (3.4) can be rewritten in the
form

c¢(T)

2
(35) Y5z = X HDNM,

fin. n MT)

where the summation on the right-hand side extends over all the different
norms of hyperbolic or loxodromic elements from I'y I, and where ;(T)
indicates the difference of the associated “weights” for I'; and I'; occurring
in (3.2). We have to show that +(T) =0 for all T. Assume that this is false
and let T*eI'; U I, be such that y(T*) # 0 and N (T%*) is minimal with this

property. Then
N -5
(6  NTYL(Hoog =yT9+ Y ym( (T’) .

4 2 *
fin. $"— 35, N(T) > N(T" N(T¥)

Letting s = o +it with sufficiently large fixed o, we see that for t+ — oc the
left-hand side of (3.6) tends to zero whereas the right-hand side does not.
This contradiction yields y(7T) = 0 for all T, i.e, the length spectra for I'y and
I', are the same. Hence the left-hand side of (3.5) vanishes as wcll. i.e., all the
terms cancel. This means that the eigenvalue spectra for I', and /’, coincide
completely.
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(b) Assume that the length spectra for I'; and I'; agree up to at most
finitely many terms. Then (2.43) yields that the volumes for I'y and I', are
the same. Omit the contribution from the volumes, multiply the correspond-
ing equation by 2s and compare the poles in the s-plane. Then obviously
the eigenvalue spectra for I'; and I'; cotncide (including multiplicities).
Omitting the contribution from the eigenvalues, we finally find that the
elliptic numbers and the length spectra for I'y, I', are the same as well. =

Two cocompact discrete groups 'y, I', are called isospectral if their
eigenvalue or length spectra coincide. Examples are known of nonconjugate
isospectral groups (cf. M.-F. Vignéras [25], [26]). Therefore the following
corollary to Theorem 3.1 is worth mentioning.

CoroLLARY 3.2. If I'y and I, are isospectral cocompact discrete subgroups
of PSL(2, C), then either both I', and I'y contain elliptic elements or none of
them contains elliptic elements.

The following problem (orally communicated to the authors by M.-F.
Vigneras) seems to be open: Suppose that the eigenvalue or- length spectra
for I'y and I'; agree up to a sequence which is of lower density in some
appropriate sense. Are I'; and I', isospectral?

4. The Selberg zeta-function

The right-hand side of our trace-formula (2.43) is for Res > 1 the logarithmic
derivative of an infinite product, the so-called Selberg zera-funcrion, and the
trace formula is the key to the investigation of the amazing analytical
properties of this function (analytic continuation, zeros, functional equation,
growth behaviour, canonical [actorization).

We maintain the hypotheses and notations of Section 2, and we denote
the elliptic number of I by E (see (3.3)). Suppose that TyeI is a primitive
hyperbolic or loxodromic element, and let &(Ty) = (R,>, where R, equals
either the identity or the hyperbolic rotation in I' with minimal rotation
angle around the axis of Ty. Ry is uniquely determined up to inversion. We
claim that all the elements

(4.1) T=T*"'Ry (n=0,0<v<ordRy)

are non-conjugate in I'. To prove this assertion we may assume from the
outset that T, and R, have diagonal form:

a 0
T0=(0 a“l)’ |a|>1a

0
R0=(é 'C_l): |C|=1



THE SELBERG ZETA-FUNCTION 105

a b
For an element X = ( . d)eI‘ not commuting with T the element XTX ™!

has diagonal form if and only if

0 b
X =
(o o)

i.e, if and only if X is a hyperbolic rotation with rotation angle n around a
hyperbolic line meeting the axis of T, orthogonally. For such an X we have

XTX ‘=711

and T~' does not admit a representation of the form T{"* ' R4 with m >0
and 0 < p<ordR,. Hence the elements (4.1) are non-conjugate in I

We now choose a maximal system # of primitive hyperbolic or loxodro-
mic elements of I" such that no two of the elements

42) T=T8"'Ry (TheR &(Ty)=<{Ryd,n=0,0<v<ordRy)

are conjugate in I. We claim that (4.2) automatically is a representative
system of all the I'-conjugacy classes of hyperbolic or loxodromic elements of
I'. To prove this, suppose that SeI is hyperbolic or loxodromic and is not
conjugate to any of the elements (4.2). Choose a primitive hyperbolic or
loxodromic element S, for S in I' in such a way that 5™~ 'S is of finite order.
for some m 2 0, and put £(5,) = (Qy). By assumption, # is maximal and we
proved that no two elements of the form

(4.3) SK*1Q8  (k20,0< pu<ordQ)

are conjugate in I. Hence some element of the form (4.3) is conjugate to
some element occurring in (4.2). Suppose that

M™USEIOEM = TR

for some MeTl', k, n20, 0 u<ordQ,, 0<v<ordR,. Since we can
replace S, S,, Qo by their conjugates with respect to M, we may assume from
the outset that M = I. Then S,, Ty, Ry, Qo have the same fixed points, and
since k > 0, n > 0, we conclude that Q, = R$', k =n, §; = Ty R for some g,
0 < ¢ <ordR,. This implies that we may assume from the outset that S,
= Ty, Qo = Ry. But S itself has the form (4.3) and we see that § itself occurs
among the elements (4.2). This contradicts our hypothesis on S, and our
claim is proved.

If T, is a primitive hyperbolic or loxodromic element of I', the element
Ty ! is also primitive and &(Ty) = &(Ty !). It is easy to draw from our above
remarks that if T, is I'-conjugate to (Ty"')"** Ry (n 2 0, 0 < v <ord R,), then
n=v=0,ie, Ty is I-conjugate to Ty '. In this case, there exists an elliptic
element XelI of order two whose rotation axis meets the axis of T
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orthogonally such that XTy X > = Ty !, and T, T, ! cannot simultaneously
be included in #. The system £ can be chosen in such way that for all
T, € % which are not I'-conjugate their inverse the element Ty ! also belongs
to 4.

DerinmioN 4.1, For Res > 1, the Selberg zeta-function for I' is defined

by
(44) z@:= J1 (1-a(T) *a(T) > N(T)™""),

T e

k120

k = lmodord (T )

where the product with respect to T, extends over a maximal system # of
primitive hyperbolic or loxodromic elements of I such that no two of the
elements (4.2) are conjugate in I'. (For a(T7,), N(T,) see (2.22), (2.23).) The
associated Selberg xi-function is defined by
’ 9—)33+ES)Z(S)
6n

(4.5) Z(s):=-exp (—

(cf. (3.3)). :
The Selberg xi-function is defined in such a way that the right-hand side
of (2.43) is equal to

2s
(see Lemma 4.3). First we have to check that (4.4) converges.

Lemma 4.2. The number n(x) of I'-conjugacy classes |T) of hyperbolic or
loxodromic elements of I' with N(T) < x (x > 0) satisfies

(4.6) n(x)=0(x?) for x- .
Proof. I Te PSL(2, C) is hyperbolic or loxodromic, then
log N(T) =inf{d(P, TP): Pe H,

and the equation log N(T) = d (P, TP) holds if and only if P lies on the axis
of T (cf. (1.4)).

Let TerI be hyperbolic or loxodromic and assume that Pe H lies on the
axis of T. Then there exists an Sel” such that Q:=SPe % and hence

logN(T)=d(P, TP)=d(Q,STS" Q)

where V:=STS 'e|T}. We denote the hyperbolic minimal distance of two
non-empty subsets 4, B < H by d(4, B) and the hyperbolic diameter of F#
by do. Choose a point Pye #, and let B(P,, g) be the open hyperbolic ball
with centre P, and hyperbolic radius g. Then we have for x > 1
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= % {IT‘ Tel' hyperbolic or loxodromic, N(T) < }
< # [Vel: d(#F, VF) < logx)
< # {Vel: d(Py, VPy) < logx+2d,)

< # {Vel: V.# < B(P,, log x+3dy)}

v(B (P, log x+3dy))
< v(F)

and hence
n(x) =0(x?) for x- o

since

v(B(Py, Q))=2n(sinhgcoshg—g)~ge2" forr p—> . =

Lemma 4.3. The product (4.4) for the Selberg zeta-function converges
absolutely for Res > 1 and satisfies

z log N(To)
47 —(s) =
@7 Z= & (D) a(T)-a(l)

Proof. We have for ¢ = Res > 1

1|2 N(T)—S.

(48) ¥ la(Ty) *a(Ty) “N(Ty Y= ¥ (1-la(Te)~?) IN(Tp) "~ L.
I

Applying (4.6) and partial summation we see that
(4.9) Y N1

[T)lox.

converges absolutely for Res > 1. Hence (4.8) converges (absolutely and)
uniformly on compact sets in Res > 1. This imphes that Z(s) is holomorphic
in the half-plane Res > 1 and that the logarithmic derivative of Z may be
computed termwise. Remember that the elements (4.2) run through a repre-
sentative system of the I'-conjugacy classes {T} of hyperbolic or loxodromic
elements of I" precisely once. For Tye & let &(Ty) = {(Ry), let {(Ty), {(Tp)~?
be the eigenvalues of Ry, and put m(T,):= ord Ry. Then {(Ty) is a primitive
(2m(Tp))-th root of unity, and {(Ty) is uniquely determined up to inversion
and change of sign. Hence we obtain for the sum on the right-hand side
of (4.7)
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log N(Ty)

N -$
o ordd (DT —a(m 7
log N(Tp) )
" N(T,
rozea m(To) I (To) a(Ty)"™ ' ={(To) " a(To) "' (%)
Oﬁvﬂzn?(To)
= Y log N(Tp) y
o m(To)(1—{(T) "> a(To)™ 2" V) (1-{(Ty) " a(T) ™2 )

0L v<m(Tq)

% N(Tb)-(s+1)(n+l)

) z m(lT) logN(To)C(To)—zv(k—‘)a(%)'mﬁ1)a(T0)—21(n+1)x
ToeR
’l-l.c:l?O 0
osv<m(T )

X N('IB)_(S+ 1y(n4+1)

log N(To)a(Tp)™ *a(Ty) > N(Tp) “*V 2
= . == =—(5). m
LS 1—a(T) *a(Tp) " ¥ N(Tp) " Z
ksrﬁ{éfne(ro)

THEOREM 4.4. The Selberg zeta-function and the Selberg xi-function
defined for Res > 1 by (4.4), (4.5), are entire functions of s and satisfy

1 E-l :I [+ ] 1 1 .
(4.10) EE(S)_—Z—I —E—.(t) = z ( 3 2 )

n=0 \§ —§, fz—Sf

for all s, teC\!+s,: n=20}. The zeros of Z and = are the numbers +s,,
nz 0. For i, # 1, the numbers s, and —s, both are zeros of multiplicity equal
to the multiplicity of the eigenvalue A, of —A: @ > L*(F'\H). If A, =1 is an
eigenvalue of —4: 7 — L*(I'\ H) of multiplicity k, then s,, = 0 is a zero of Z
and Z of multiplicity 2k. B and Z satisfy the functional equations

(4.11) E(=s)=E(s),

4.12) Z(—$) = exp (—”(3?

s3+2Es)Z(s).

Proof. 1t follows from (2.43), (4.5) and (4.7) that (4.10) is valid for
Res > 1, Rer > 1. Keep ¢ fixed, Ret > 1. Then the right-hand side of (4.10) is
a meromorphic function of se C with simple poles at the points +s,. Hence
Z'/Z is a meromorphic function with simple poles at +s, (n = 0). The
multiplicity of the poles s,, —s, equals the multiplicity of the eigenvalue A, if
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A, # 1; if A, =1 is an eigenvalue of multiplicity k, then s, = 0 is a pole of
Z'/E of multiplicity 2k. This implies that Z and Z are entire functions whose
zeros are as described in Theorem 4.4 and that (4.10) holds as stated.

In view of (4.5) we are left to prove (4.11). We see immediately from
(4.10) that Z'/Z is an odd function whence Z itself is either even or odd.
Observe now that for Z(0) #£ 0 the order of = at 0 is even, and our above
discussion of the zeros of = shows that for Z(0) = 0 the order of = at 0 is
even as well. Hence Z itself is even which proves (4.11). =

The Selberg zeta-function in its properties closely resembles the usual
zeta- or L-functions of number theory. The primitive elements of I' can be
thought of as some kind of substitutes of prime numbers, and (4.4) is an
analogue of the Euler product expansion. Theorem 4.4 says that Z has an
analytic continuation to the whole s-plane and satisfies a simple functional
equation which takes its most convenient form in terms of the function E.
The notations Z and = are analogous to the usual notations {, ¢ for the
Riemann zeta-function and its associated function

$(s) =3s(s=1)n™ 2T (s/2){(s).

The line Res = 0 is the critical line for Z, and with the only exception of
So=1,...,5% —So=—~1,..., —sye[—1, 1] (cf. (2.4)—(2.8)) all the zeros of Z
are on the critical line. This means that the analogue of the Riemann
hypothesis is valid for Z save for the zeros in [—1, 1] just mentioned. Note
that the proof of this fact is based on the trace formula (2.43). We do not
have a particular example of a cocompact discrete group I' < PSL(2, C)
where a zero of Z actually occurs in ]0, 1[ nor do we have an example
where Z(0) = 0. There exists no series of trivial zeros of Z and £ in contrast
to the zeta- or L-functions of analytic number theory and in contrast to the
properties of the Selberg zeta-function for cocompact discrete subgroups of
PSL(2, R) (cf. Selberg [20], Hejhal [9], [10], Venkov [24], Elstrodt [6]). The
reason for the absence of trivial zeros is explained in Gangolli [8] The
Selberg zeta-function for cocompact discrete subgroups of PSL(2, C) without
elliptic elements was also introduced by Vishik [27] in different notations.
The present approach was suggested by Elstrodt [6], Section 10.

There are difficult open questions connected with the eigenvalues 4,.
Apart from A, = 0 not a single eigenvalue is explicitly known not even for a
particular group. In the case of the hyperbolic plane it is known that for
every hyperbolic area of the quotient of the hyperbolic plane modulo a fixed
point free cocompact discrete group of orientation preserving hyperbolic
motions arbitrarily small positive eigenvalues can exist. (For a list of
references see Elstrodt [6], Section 9.) Contrarily, in the case of dimension > 3,
Schoen [19] has shown that 1, is bounded below by a positive constant
depending only on the volume of M = TI'\H.

It is well known that & is an entire function of order one and that the
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Selberg zeta-function for a cocompact discrete subgroup of PSL(2, R) is an
entire function of order 2 (see [10]). We shall prove in the next section that
in the case of dimension 3, Z is an entire function of order 3 (cf. Gangolli

[81).

5. Weyl’s asymptotic law and the canonical factorization
of the Selberg zeta-function

It follows from (4.4) that
(5.1) Z(s)>0 for real s > 1.

Since the zeros of Z are known from Theorem 4.4 we infer that there exists a
unique holomorphic logarithm logZ of Z in the region

(5.2) G:=C\(]-o0, 1Ju U {x*ir,: x<0})
n=N
such that logZ(s)e R for real s > 1. Imitating the well-established notation
for the Riemann zeta-function we put
(5.3) argZ(s):=1Im(logZ(s)) for seG.
We want to investigate the asymptotic behaviour of the number of

eigenvalues less than T as T tends to infinity. This problem is equivalent to
the asymptotic analysis of the function

(5.4) AM:=#m n=N+1,1,<T
for T — co. The argument principle relates A(T) with argZ(iT) in a simple
way.

THEOREM 5.1. Suppose that T > 0, T#t, for al n> N+1. Then -
v(%F)

6n?

(5.5) A(T) =

E 1

T+~ T+—argZ(iT)-N.
T X

Proof. Theorem 4.4 and the argument principle yield

1 z
2AM+N) =5~ f Z(s)ds,

OR(T)

where OR(T) is the positively oriented boundary of the rectangle with the
vertices 2+iT, —2+iT, —2—iT, 2—iT. 8R(T) splits into two parts, R* (T),
R™(T), situated in the half-planes Res > 0 and Res < 0, respectively. The
map s— —s maps R™(T) onto R* (T) such that the orientation is preserved.
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Hence the functional equation (4.12) yields

Z' [ ' '
= f—(s)ds=i Z () ds—— JE(_M

Z 2ni ) Z 2mi VA
OR(T) R*(T) rRH(T)
1 v(F) , 1 VA
=— - — | Z(94d
| ( - +2E)ds+m_ f Z(s) S
RY(T) RY(T)
v(F) . 2E

2
=32 T3+—n—T+;[-argZ(iT)
since Z(5) = Z(s). This proves (5.5).
We want to estimate the growth of the error term arg Z(iT) for T — oo.
For this we need the following Lemma 5.2 which is a preliminary result
only since we show in Theorem 5.7 that Z is an entire function of order
precisely 3.

LemMa 5.2. Z is an entire function of order at most 4.
Proof. Let pe{0, 1, 2, 3} be the minimal integer such that

mf
Y s TP <,
n=0

where the prime indicates that all terms with s, = 0 (if any) must be omitted
(cf. (2.2)). Let k>0 be the multiplicity of the eigenvalue 1 of —4: 2
— L*(I'\ H). Then the canonical product

(5.6) @(s):=s>* ﬁ;(l—;—)exp{s—+ +%(si)p} x

o2l ()

is an entire function of order equal to the exponent of convergence of the
series

mI
> Isd ™"
n=0

which is at most equal to 4 (§ec Titchmarsh [21], Sections 8.23 and 8.25).
Formula (4.10) yields that Z’/Z—@'/® is a polynomial of degree at most 2
whence

(5.7 Z(s) = P(s) et

with some polynomial g of degree at most 3. It ensues that Z is an entire
function of order at most 4. m
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CoROLLARY S5.3. For all a, be R, a < b there exists a constant C > 0 such
that

(5.8) Z(g+i) = 0()  for |t =

uniformly with respect to c€la, b].

Proof. 1t is obvious from the functional equation (4.12) that for every
fixed 0 <0 and all reR

(5.9) Z(o+it) = [, (1) exp (” (%)

)16 tz)Z(—a—it),

i

where f,: R— C is a bounded function. For the proof of (5.8) we may assume
from the outset that a < —1 <1 < b. Then (5.8) is trivially true for o = b,
and (5.9) yields that (5.8) is also true for ¢ = a. Since Z is an entire function
of finite order, the Phragmén—Lindelsf theorem implies our assertion. =

Imitating a classical method of reasoning for the Riemann zeta-function
based on Jensen’s formula (cf. Titchmarsh [22], p. 180-181), we obtain the
following basic estimate for arg Z(iT).

THEOREM 5.4. Suppose that T >0, T#t, for all n>2 N+1. Then
(5.10) arg Z(iT)=0(T? for T - co.
Proof. Let L(T) be the line segment from 2+iT to iT. Then

]

Zz
(5.11) argZ(iT)=argZ(2+iT)+Im ff(s)ds.

L(T)
Computing log Z (o + it) for fixed o > 1 and te R from (4.4) by means of the
power series for log(1+z) one easily finds that

argZ(2+iT)=0(1) for T—-ox

(compare (4.8), (4.9)). We now prove that the second term on the right-hand
side of (5.11) is O(T?) for T — x. Note that

e
I —
"1z

o

L(T)

(s)ds

is the increment of the argument of Z (s) as s runs on L(T) from 2+iT to iT.
Each time the argument of Z(s) changes by a quantity of absolute value at
least m, the real part of Z(s) undergoes a change of sign. Let ¢(7T) denote the
number of changes of sign of the function Re Z(¢+iT) as ¢ decreases from 2
to 0. Then it ensues that

‘lm J%(s)ds

L(T)

<(2+e¢(D)r.
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Since Z(5) = Z(s), we conclude that ¢(T) equals the number n(T) of zeros of
or(w):i=Z(w+iT)+Z(w—iT)

in the interval [0, 2] up to an error term not exceeding 2 due to the possible
zeros at 0 and 2. (Here the zeros are counted only simply; no multiplicities
are taken into account) We estimate n(7T) by means of an application of
Jensen's formula to the disc of centre 0 and radius 3. If 0 is not a zero of ¢,
we find

2r

1 .
n(T)log3 < o f log|er (3¢"%) d9—log | (0)],
0
and (5.8) yields
n(l=0(T* for T- .

If 0 is a zero of ¢, a slight move of the centre of our disc leads to the same
conclusion. =

CoroLLARY 5.5 (Weyl's Asymptotic Law). Suppose that T >0, T # t, for
all n2 N+1. Then

v(#)

3 T*+0(TY for T- .

(5.12) A(T) =

The proof is obvious from (5.5) and (5.10). We add some remarks on the
sharpness of the error estimate (5.12). The asymptotic law (5.12) coincides
with the corresponding result for compact Riemannian manifolds. This
means that the elliptic elements of I' (if any) basically cause no deviation
from the usual eigenvalue asymptotics. In the case of the hyperbolic plane,
Hejhal [10], p. 119 et seq. and Randol [15] proved that a term log T can be
introduced in the denominator of the error term. The same improvement is
actually possible in much greater generality. This was shown by Bérard [1],
Kolk [12], [13], and Duistermaat, Kolk and Varadarajan [4], p. 89, Theo-
rem 9.1. The same improvement will without doubt be possible in (5.12).

CoROLLARY 5.6. (3) The series
ﬂ)’
Y, Isd™% aeR
n=0

converges if and only if a > 3.
(b)

D |3n|_3=02(f? logT+0(1) for T - 0.

0<t,<T

8 ~ Banach Center, t. 17
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Proof. By partial summation we find for n>m2>2N+1,¢,#0,t,<T
<lpti:

n T
2 s =[x AW +o [ x4 A(x)dx.
k=m

'm

Weyl's asymptotic law (5.12) now implies both assertions. m

THEOREM 5.7. Z and E are entire functions of order three.

Proof. Repeat the proof of Lemma 5.2. We now know from Corollary
5.6 that we must choose p = 3. Then the canonical product (5.6) is an entire
function of order 3, and we have the representation (5.7), where g is a
polynomial of degree at most 3. Hence Z and = are entire functions of order
at most 3. But the order of these functions is greater than or equal to the
abscissa of convergence for the sequence of zeros for Z or E, respectively,
which is precisely equal to 3 by Corollary 5.6. Hence Z and Z are entire

functions of order precisely 3. m

CoOROLLARY 5.8. Let
@ ’ s 2 2
(513) @(s) = SZk l—[ (1 — (_) )e(-?/sn)

(cf. (5.6)) be the canonical product for the sequence of zeros of Z (or Z). Then
there exist real constants a, f such that = and Z have canonical factorizations
of the form

(5.14) Z(s) = ae®> & (s),

(5.15) Z(s) =aexp (E%?ss+ﬂsz—Es)¢(s).

Progf. Since p =3, the canonical product (5.6) has the form (5.13). An
application of (4.10) yields that
= 1 ¢ 1 = 1 ¢

=) =) =5 E(f)—z g(f)

(s, t # x5, for all n > 0). Hence (5.14) follows, and since s> R for all n, we
even see that o and f are real numbers. The factorization (5.15) is now trivial
from (4.5). =

The constants «, f§ in (5.14) have obvious expressions in terms of certain
Taylor coefficients of =, It would be interesting to know if « and B are
connected with other data of I' or —4: 2 - L*(I'\H), but we have no
results in this direction.
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6. Analogue of the Lindelof hypothesis

This section is motivated by the remarkable analogy between the Riemann
zeta-function and the Selberg zeta-function. We briefly recall some relevant
facts from Titchmarsh [22], pp. 81-82 and p. 276 et seq. The Riemann zeta-
function is of polynomial growth in vertical strips. This implies that the
function

p(o):=inf{ye R: {{o+it) = O(jt") for |t| - o0}

is a well-defined, non-negative, convex downwards, monotonically decreasing
function of oce R (cf. [21], sect. 9.41). Since {(oc+ir) (te R) is bounded for
every fixed o > 1, we have u(g) = 0 for all ¢ > 1, and the functional equation
of { yields u(¢) =4—o for all ¢ < 0. These equations hold by continuity also
for o =1 and o = 0, respectively. The precise value of u(o) is unknown for
any value o]0, 1[. The simplest possible hypothesis is that

0 for o = 3,

i-0 for 6 <4,

(6.1) (o) = {

since the function on the right-hand side of (6.1) has all the properties
mentioned above. Conjecture (6.1) is known as the Lindeldf hypothesis. 1t is
still unknown if the LindelSf hypothesis is true, but it is known that the truth
of the Lindelsf hypothesis follows from that of the Riemann hypothesis ([22],
p. 283).

We now turn to the analogous problem for the Selberg zeta-function.
Since we know that the analogue of the Riemann hypothesis is true for Z we
expect the truth of an analogue of the Lindelsf hypothesis to be true as well.
It is known that many estimates for the Selberg zeta-function of a fixed-
point free cocompact discrete subgroup of PSL(2, R) are formally equal to
corresponding estimates for { if one replaces logt by t in the estimates for {
(see [9], [10]). In the case of dimension 3 we have to replace logt by %
Hence, in view of (5.8), (5.9) we introduce

M(a):=inf{'yeR: Z(o+it) = O(exp (yv(? tz)) for t - oo}

as a natural analogue for u(o). Since Z is of finite order, the Phragmén-
Lindelsf theorem may be applied to Z, and the methods employed by
Titchmarsh [21], sect. 9.41 yield the following general result.

LemMA 6.1. The function M is a real-valued non-negative, convex down-
wards and monotonically decreasing function of ceR.

Obviously we have

(6.2) M(@)=0 for o021
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and hence by the functional equation for Z
(6.3) M(o)=lo] for o< -1.

The natural analogue of the Lindelsf hypothesis for the Selberg zeta-function
now is

(6.4) M(a) = {

This is actually true and will be stated in Corollary 6.3. Adapting Little-
wood’s proof ([22], pp. 282-283) we can even prove the following sharper
result.

THEOREM 6.2. The estimate

(6.5) log Z (o +it) = 0> " loglt])  for | — 0

holds ‘uniformly with respect to o, (loglt|}"! <o < 1.
Proof. The function Z(s) is bounded for Res>2 and satisfies (5.8)
uniformly for o€[0, 1]. Hence there exists a constant C > O such that

(6.6) log|Z (u+iv)) < Cv?*  for all u>0, v = 1.

In order to estimate Z(w) for Rew>=3Jd >0, we apply the Borel-
Carathéodory theorem ([21], sect. 5.5) to the circles with centre 2+it and
with the radii R =2—~46, r=2—46 (0 < < 1), Then (6.6) yields

42— Y
llog Z(w)| < (—25—‘5) C (|t} +2)* +§—32 llog Z (2 + it)|
for |t| 2 3, |w—(2+it)| < r. Hence there exists some constant A > 0, independ-

ent of 8, such that

(6.7) log Z (u+iv) < —v® for all u> 6, v = 3.

|

Now let 0<d<o <1, s=c+ir, |23 and put a:=6"" Let C,
denote the circle of radius r; and centre o +it, where

ryi=a—1-96, ryi=a—ag, ry:=a—-4,
and

M;:=max|logZ(w) (j=1,2,73).

weC j
Then Hadamard’s three-circles theorem gives

(6.8) M, < M{™* Mj



THE SELBERG ZETA-FUNCTION 117

where
log(1+1+5—0')
1 —1-
_log(ry/ry) _ « 0 =1-6+4+0(5) for &-—-0

_log(r3/r1) B 1
log 1+cx—1—5

uniformly with respect to . Now we obtain from (6.7)

(6.9)

A
(6.10) My <Z(+a)? for —a>3

whereas M, is estimated as follows. Employing the notations of the proof of
Lemma 4.3 we have for w =u+iv with u > 1

1 _
logZ(W) = — Z _a(To)—ana(Tb)—2nlN(To)—n(w+1)
ToeR n
k1Z0,n21
k=lmodm(Tq)
1 1 _ - = 2n —nlw
=T L, amag LT e a(T) TN (T T
k.t;%,nzl °
osv<m(Tg)
B I SO S [
Toer nm(Tp) |1—a(Ty) ™ "{{(Ty)™ >
os\ungnln(ro)
and hence

1 N(To)—n(u+1)
“ng(w)l < TEQ h (1 _N(To)—n)z

nz1
—log(1—-N(Tp)~®*1)
Toed 0

<n Y N(T)™!
T

where # > 0 is such that (1—N(7)"!)"% < 7 for all hyperbolic or loxodromic
elements TeI'. A partial summation based on the estimate (4.6) now yields

B
(6.11) logZ(w) <n ), N(T)™1 <-—

{T)lox.

for some constant B > 0.
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Choosing the constant 4 > B, we deduce from (6.11) that

A
(6.12) M <%

Plugging (6.10) and (6.12) into (6.8) and using (6.9) we finally arrive at

A
(6.13) |Z(g+it) € M, < E(ltl_-l-a)z‘l‘”"""”

where A is some absolute constant and where the O-constant is independent
of ¢ and ¢. Hence we are free to choose x =671 =loglt], where || is
sufficiently large. Then (| +a)°® = O(1) for |t} - oo, and (6.5) follows from
(6.13). =

CoroLLARY 6.3. Z satisfies the analogue of the Lindeldf hypothesis, i.e.,

0 for =0,
M(g) =
() { la| for 0 €0.

The proof is an immediate consequence of Lemma 6.1 and Theorem 6.2.
Note that (6.5) yields in particular that for fixed 6, 0 <o <1 and ¢ > 0 and
for all |t > to(e, o)

lloglz(a+it)|l < Elt[2(1-0)+c-
This means that we have both
IZ(O"f‘i()I < Cxp(5|[|2(1-01+2)

and

_—.g r2(1_6)+8
Zerin SCxPEN )

O<o<l1,e>0 [t >ty(e 0).
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