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1. Introduction

In this paper, the sequel to part I [8], we continue our study of the weighted
sifting function

H(, 2, 25) = H(d, P, 2y, z;) = Y. y({a, P(z2)))
aes

in the context of sieve problems of dimension 1, characterized by
(1.1) x=1 f=00)=2.

We maintain the notation of I. (When we refer to a formula from I we shall
prefix its number by I.) Thus

(1.2) ymy={1=Y (1-w(p)}*, {x}* =max(x,0),

pln
pe?®

where, for p| P(z,) = I_I Ds

p<z5,pe®

| log p 14 v
— -E), " <p<yt
T-E (log y ) d p=y

(1.3) wip)=4 1 log p v 1/4

—_— "‘E P g < ]
T—E \log y 0 y P<Yy

L 0, p<y¥;
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recall (I, Section 5) that y is as before, our basic parameter (controlling the
size of the remainder term) — we require y to be large and indicate this by

(1.4) y2Yo—
that
(1.5) 2y =), z3=)

and that the four constants T, U, ¥, E together with
E, = max (E, 3(1-T))

satisfy the conditions

(1.6) E,gsV<l1/4, 12<U<T<],
and
(1.7) U+3v=l, VzV,>0
Remember that, always,
1 log p
: < € ——= — 1, v,
(1.8) 0 <w(p) T—_F (logvy E) < p<y

As usual, we have, whenever d| P(z,),

|.oZ,| = |{ae o/: a =0 mod d} =# X +Ry,

where w(') is a non-negative multiplicative arithmetic function such that
w(p) =0 when p¢ 2,

(Ao) O<w(p)<p, pe?,

and

@) > Piogp-togl<d, 25z <1
7y Sp<z P Z

in what follows, O- and <-constants will depend at most on A (and on U).

Our objective in this paper is to show that the remainder term in the
weighted sieve of Greaves’ type may be given the structure of an Iwaniec
bilinear form (see Theorem A in Section 7 below). Then, in Section 9 we
indicate some applications.

Our method derives from Motohashi’s elegant version [12] of the
original Iwaniec treatment [10] of the remainder term in the unweighted
linear sieve.
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2. The dissection

Let
1) 5= 6(z,) = log log log z,
log log z,

and introduce
(2.2) zg=zZ4*a77
where

log log log z,
2.3 J=|—_"% 572
(23) [ 5log (14 6)
Then

(24)  (log log z;)™ ' log z, < log z, < (1+8)(log log z,)™'/* log z,;

since z, = y¥ > yi/? is large, we may assume that
Zp S .VV

and hence that, by (1.3),

(2.5) w(p) =0 for p|P(zq).

We subdivide the interval [z,, z,) into disjoint intervals
(2.6) L=T24707" 4407 1<yl

Thus, if 1 <v, <v, < J, I, is to the right of I,, and we indicate this by
writing 1, >1, or I,, <1, .
Let

d=py...p, (p1>...>p) d| P(zy, z2).

Particular importance attaches to those divisors d of P(z,, z;) that are well-
separated by our dissection in the sense that the prime factors of d lie in
distinct sub-intervals I,, that is,

. pjelvj (1<j<gr) with v, <...<v,
Accordingly we form the direct product
D= I,
191 !
and write
deD.
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Let 2 = {D} denote the set of all such ‘square-free’ direct products, including
the “empty” singleton set consisting of 1 only, to be denoted by @. Given a
particular direct product D, all integers de D have the same number of prime
factors, and we may speak unambiguously of this common number as v(D).
It is quite natural to introduce also the ‘Mdbius function’ on 2 by

1. D=0,

D): o
H (-1y, D=1 I\,j (vi <...<Vv);
j=1

'

and when it is convenient to speak of ‘non-squarefree’ D = | IVJ_ (I, =1
j=1

for some pair k, ! with k # ) then, of course, we put u(D)=0. One may

observe that &, the set of all direct products D, squarefree and non-

squarefree, is a partially ordered set, even a lattice, with respect to inclusion.

We rzcord here also the obvious fact (cf. (2.6))
(2.7) card @ = 27,

Vk

For any interval I from (2.6), let i denote the right-hand end point of /.
To simplify the notation, write a typical member D of £ in the form

(2.8) bD=1,..1 (U >..>1)

(so that here I,, ..., I, are not necessarily the first » intervals (2.6) counting
from the right), and introduce the notations

4=40D)=ii,...i,
I<D andonlyif I<I,
and

D<I ifandonlyif I, <I.

Clearly, equivalent ways ol writing I < D, D < I are, respectively, i < i, and
i <i.

By analogy with (1.3.5) and (1.3.6) we now introduce on ¢ the Buchstab-
Rosser~Iwaniec functions yxI (D), where
(2.9) x=yzgt, L=log log logz,
(for technical reasons we have to use x in place of the expected y) as follows:
Let x¥(@)=1 and, if D+# @ is as in (2.8), define
(210) X:(D) =1 lf igs-lih—l"'il <X (1 <SS S%(f"f‘l)),

(2.11) eDy=1 i By i...ii<x (1<s<ir),
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and
xE(D)=0

otherwise, :
Furthermore, let ¥X(®) =0 and, if D # @ is as in (2.8), define

i) =y (L. L )=y, ... 1,).
Then
(2.12) Zz(D)=0 if 24v(D); ¥ (D)=0 if 2|v(D),
so that
u(D) it (D) < 0 < u(D) 5 (D).

We record the following simple consequences of these definitions: first, since
xZ (D) is defined in terms of the right-hand endpoints of the intervals making
up D, we see that

(2.13) yI(D)=1 implies that y(d) =1 whenever deD.
Next,
| 3
(2.14) ¥ (Dy=1 if »r=v(D) is positive and even and
Beins_p. oy <x(s=1,...,3r=1), i¥i_,...i; 2 x.
Finally,

(2.15) 1< (D) #0,v(D) =2 together imply that i, 4(D) < x.

With these definitions and basic properties we are in a position to prove
the following combinatorial identity.

LEmMMA 1. For any arithmetic function (') we have

Yo o dyd =73 pD)y; (D)) ¢(d+

d| P(zp.23) De2 deD -

+Y Y uDxs(ID) 3 Y Y wOv(ppd+
I

De@ p',pel deD ¢|P(zp,p")
I<b r<p

+ YDy Y nhd).
De2 deD t|P(z g, p(d))}

Note. We are using here the notation p(d) for the least prime factor of d,
and below we shall use also, when v(d) > 2, p,(d) for the next to least prime
factor of d.

Proof. We employ the Fundamental Identity from I, Lemma 2. There let
@(d) =0 if (d, P(zy)) >1 and ¢(d) =y (d) otherwise. Next, choose x in
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Lemma 2 of I in accordance with

0, deD and u(D)=0,
(2.16) x(d) = ¥z (D), deD and u(D)+#0,

so that y(d) is 0 whenever d is not well-separated by our dissection. Clearly
the first sum on the right of (I.3.2) gives exactly the first sum on the right of
the lemma.

In the second sum on the right of (1:3.2) our concern is with ¥(d), and
only integers 4 > 1 need to be considered. Suppose the typical de D with
d/p(dyeD,. If d/p(d) is not well separated, neither is 4 and so ¥(d) = 0.
Suppose then that d/p(d) is well separated. Here ¥(d) = ¥, (D) if u(D) # 0 (i.e.
d is also well separated) and ¥(d) = y; (Dy) if u(D)=0 (ie. d is not well
separated). The second sum on the right of (1.3.2) splits into two sums
according to these two possibilities: the third sum on the right of the lemma
derives from precisely those d > 1 with both d/p(d) and d well separated —
note that u(D) =1 when ¥, (D) # 0 by (2.12) — and the second sum from
those with d/p{(d) but not 4 well separated. These latter divisors d necessarily
have at least two prime factors and the smallest two prime factors of 4 lie in
the same interval I of our dissection. This completes the proof of the lemma.

3. Preparation of the sifting function H(.«7, z,, z;) — a combinatorial

inequality
Recall from (1.3.20) that
(3. Hy (<, 2y, 2) = .ﬂ%n)#(d) Wigd)| o, (g, P(2) =1,
where (cf. (1.3.17)) .
(3.2) Wd) =3 u)y(®), dlP().

tld

The corresponding formula for the classical sifting function § is

(33) S(o,2)=|{acd: (a, P@)=1}|= Y n(@d)l,, (q,P@)=1.
d|Pz)

Let 2' be any number satisfying 2 < z' € z, and, on the right of (3.1), put 4

=d,d, where d,|P(z, z) and d,|P(z’). Then

(3.4) Hy(, 2, 2) = Z p{d,y) Z nu.(dZ)W(qdle)lldqdldz‘

d1|P(z'.z) dzlP(z’)
= z #(d)qu(ds Z1y Z’),
d|P(z',z)

2<7<z (g, P(z)) =1,
By (1.2) and (2.5) we see that y(n) = 0 if (n, P(zy)) > 1, so that, by (3.2),
(3.5) W(d) = W((d, P(z,, 2))),.
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and hence, by (3.1) and (3.3),

Hq(l("/s Zy, ZO) = W(Q)S('dqs 20)’ (qs P(ZO)) =
Therefore (3.4) with 2z’ =z, gives

(36) Hq('c'/’ Zy, z) = Z lu(d)w d)S( qd> ZO) (q’ P(Z)) = 1:

le(zo z)

and, in particular,

(37) H(,_P}/, Zy, 22) = Z # d) W S( dd’ ZO)

d|P(zg.z 3)

We now apply Lemma 1 with ¢ (d) = W(d)S(/,, z5) in (3.7), making
use also of (3.6). We obtain

H(d, 2y, 25} =} p(D)ys (D) Y, W(d)S(o/y, o)+

De% deD

T2 L MDYz (D) 3, 3 Hapyplf, 21, p)

De p pel deD
I<D p'<p

+ Y 72 D)), Hy(o4, z,, p(d)).

De& deD

In the third sum on the right we see from rewriting (3.1) that

Hidt 2, p@d)= 3 L w0W@) = % v P@))

”dd lIﬂ ae.d
11 P(pid)) d

in the notation of (1.3.19) and (1.3.21); since any D counted in that sum has
v(D) = 2 and even, Lemma 7 of I tells us that H,(«/, z,, p(d)) = 0 whenever
deD and y, (D) = 1. Since our aim is a lower bound for H(#, z,, z;) we
may now, and we shall, drop the third sum.

In the second sum we follow an idea of Motohashi [12]: x. (ID) # 0
implies, by (2.11), condition (1.5.10) (obviously v(dpp) > 2 when v(d) = 1) so
that the terms H,, (., z,, p') are non-negative by Lemma 7 of I, as before.
Hence those terms in the second sum with x(D) =1 may also be dropped.
For the remaining terms, with u(D)= —1, we have v(dpp’) > 2 and here we
use (I.5.11) of Lemma 7 of I, together with (1.8) to conclude that

Hdp’p(ﬂs 21, p’) < S(ﬂdp’p) ZO)-
Combining all these remarks we arrive at the lower estimate

(38) H(H, z,,2;)2 Dza@#(D)x; (D) ). W(d)S (44, 20)—

deD

-2 2 x: (D) > Y. S(Aapp, 20)

I De® p' pel deD
I<D p<p
2v(D)
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This is the combinatorial inequality referred to in the section heading. The
dominant term in the eventual lower bound for H(.¢/, z,, z,) (see Theorem A
below) derives entirely from the first sum on the right of (3.8). The second
sum on the right will be absorbed into the remainder term, thanks to the
summation over primes in L.

4. Analysis of the inequality for H(«/, z,, z,)

We replace the functions S(s/,, z;) on the right of (3.8) by means of the
following version of a Fundamental Lemma:

LemMma 2 (Friedlander—Iwaniec [1]). Let
Lz2, z22, u(@#0, (g, P@z))=1.
Then there exist functions B*(') satisfying
(4.1) BE(m) =0or 1

such that

S kB n) Ry < Sy 20)- XT‘” Vizo) (14+0(e™ 1))
"':llp((;o)

Z u(m) B (m) R,

m<z

m|P(zq)
and the O-constant depends at most on the constant A from (Q(1)).

We take z, and L in Lemma 2 to be as given by (2.2) and (2.9)
respectively, and apply the Lemma in (3.8). By (2.13), x; (D) = | implies that
#x (d) =1 when de D, and since x < y this means that also y, (d) =1 when
deD; also, as is shown in Lemmas 7 and 8 of I,

(4.2) d|P(z) and y; (d) =1 imply that W(d) = W, (d) = 0,
so that in these circumstances
(4.3) 12 W(d)=Wyd)=1-Y w(p) =0,

pld '

and therefore

(44) H(./, z,, z,)

d d
> XV(ze) ¥ u(D)ys (D) Y Wo(d)—‘—’w(xwzo) Ly ¥)+
De2 deD le(zD,ZZ)
+ z uDyyz D) Y Wold) 3 p(m) "2 (m) Ry, +
deb m<z{')'

m| P(z )
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O(XV(zo)(m?xzw—gjz) y 20 5 E’L‘l)_

pel zo$p<zz p le(zO,ZZ) d

—2 Y x>y Y ¥ ,u(m)B*(m)RP.Pd,,,.

De2 p’,pel deD m<zL
zlrc(?)) p'<p m| P{zq)
Let
(4.5) 6* = 3 u(d)z (0) Y, Wo(d) 22
De2 deD
and
46) R=Y pD)xz(D)Y. Wold) Y u(m) """ (m) Ryp—
De2 deD m<zlo,
m| P(z o)
-2 Y tUD) Y Y Y umB* (mR,
I De® P’ pel deD m<zL
I<Db p<p 0
24vD) m| P{zq)
=X1—2,,

say. We shall devote most of the rest of this section to the ‘leading’ sum G*.
The O-terms are easy to estimate, and the remainder sum R will be

investigated in the next section.
We apply Lemma 1, this time with  (d) = x; (d) Wo(d)# to G*. By

virtue of (2.13) we obtain

47 G*= Y pdx (d)Wo(d)—ﬂ~

d|P{zg.2 2)

=Y ¥ uD)x; (ID)x

I De2
I<D

- (p' o @{p'pdi)
x 3% N p0 (ppdn Wolppdt) =

p' el deD t|P(zq,F")
p'<p

w(dt
~YEDMY Y s @) Woldn Ll.
De%

deD 1| Pz, pld))
By (4.2) and (4.3) the second sum on the right of (4.7) is, in absolute value, at
most

( ) (p)) w(p) w(d) (1)
max ¥ —— — Y — —
I pet zgSp<zy

P 4|Pizgzy) d IPzg.p L
pd)>p

w(p) w_@) @ (d)
<(mape@) p 2B 5 o
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Hence this portion of G*, together with the factor XV(z,), can be absorbed
into the second O-term on the right of (4.4). In the third sum on the right of
(4.7), (4.2) and (4.3) together again imply that 0< W,(dt) €1 whenever
¥z (dt) # 0. Also, by (1.4.8) (with v=1),

(- ) +1

e (A1) = x5 (d) Xz ()
so that the last sum on the right of (4.7) is, in absolute value, at most

48) S n0Yn@2? vy e

De® deD d t|P(z .2 2) t
2|v(D) .

Here let
D=1 .., I, >..>1, reven,

so that any d in D has the form d=p,...p, (pjel;,j=1,...,r). Then, by
(1.3.6) (with v=r and B =2) and (2.14),

3 : N1/(1+4 1/(1+9).
X>py...plz(iy... i) 0z xtihita,

writing d = d, p with p(d,) > p (so that, in fact, d, =p;...p.—1, p = p,), WeE
have
xM¥8/4 < pP < x/d,,

and in any case z, < p < z,, of course. Hence the sum (4.8) is at most
( y w(t))( y w(d,) 5 w(P))
PGy ! d1|P(zg,z2) d, uyEp<uy P

where

u; = u, (d,) = max (2, (xll(l+5)/d1)1l3): u; = u,(d,) = min (z,, (x/d2)1’3).
By (1.24), (29) and (1.6), the innermost sum is no larger than

log u, A <cSIogx A <5logz2
logu, logu, 3logz, logze = logz,’

log
so that the sum (4.8) is at most
3 log z, ( y w(t))z.
lOg Z9 rlP(zo,zz) t
We feed all this information back into (4.7) to obtain

d
G*> Y adg @Wod Y

dIP(zO,z 2) d

2
_(max 2 w_(g)_)( Z (D(p)) Z w(d)—é IOg Zy ( Z w(d)) :
I par P z9$p<zy P JdlPzgzy) d log z d|P(zg.25) d
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and this, in combination with (4.4), (4.5) and (4.6) gives

@9 H(, 2,203 XVe) T uldi @Wold) 22 4R+

d|P(z,27)

+'0(XV(ZD) y e

le(ZO,Zz) d

X%e_l‘-}-(max ZCD_(P_)) Z M{.

I per D z9<p<zy P

+5 log z, Y M})

log z, d|P(zg.27) d

By (1.2.6) (with % =1) we have
2 2
Ve ¥ 29 s(wz")) V(z;)«(l"g "") V(z).

d|P(zg,23) d V(Zz) IOg A

By (I.2.4) (also with x = 1) together with (2.6), (2.1), (2.2) and (2.4),

max Zg)—;@-\{log (1+8)+ <6
I

pel log Zg

and

Y (p) < log log log z,.

g€ p<zy

Hence the error term in (4.9) is at most of order

log z; \? 1 log z; \?
Xv —+6 log |
(22) (log zo) %log log z, +0 log log log 2,49 (log Zg

< XV(zy) Le~ US

by (2.4), so that (4.9) yields
(4.10)  H(, 2y, 2,)
2 XV(zo) ) uld)x; (d)W(d) E;;d)'*'R+0(XV(22)Le‘””)

le(zO.ZZ)

where L is given in (2.9). We simplify (4.10) in one further respect, by means
of the following general observation.

LemMMA 3. Suppose that z, = z > z5. Let y(*) be any arithmetic function
satisfying

(4.11) W (d) =y ((d, P(zo, 2)))

13 — Banach Center, t. 17
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and
(4.12) Wid)=0 when F(d)#0 and (d, P(zo)) = 1.
Then for v=0 and for v=1

10 Ve ¥ @@ 2y

le(zo,z) d

v, @d
(- Y @@ 2 )
d| P(z)
Proof. By (1.3.5) and (1.3.6) we know that (—1)"** p(d) i " (d) > O for
any d|P(z;). Also, if t > 1, q(t) < p(d,) we have, using (1.4.8),

-1y -V _(._)v(dl)+v
f(x "(d )= Xfx ) (‘11)Xx/d1 (n (v=0,1),
Hence, by (4.11) and (4.12),

w(n)

o< Y w0z 2 v (pm)y i
(n P> 1
=0T @D AL @
d|P(z,2)
< Y o002 vpw)
L<1|P(zg) t

on first writing n=d,t, d,|P(zq, z) and t|P(z,), and then dropping the
suffix in d,. We now apply Lemma 2 of I — the Fundamental Identity — to

the inner sum (the sum over #) with z = zy, ¥ = 3" ™" and @(d) = w(d)/d
(so that Y pu(t)e(dt) =w(d)V(p(d)/d in Lemma 2 of I). It is then clear
1IP(p(d))
that the inner sum is equal to
—\V v, W t
Veo- 3w LY
1[P(z) t
and we have
)
0< Ve~ T @AY ya-
d| P(z.2)
w(d) w(t)

—=D7T Y wd" @ =@ Y GO =~
d|P(zg.2) t|P(zg)

But by (14.8), 27" () %" "¥ (1) = 47" (dr). Hence, combining d and ( and
invoking (4.11), again, the lemma follows at once.

By (4.10) and Lemma 3 (with v = 1, z = z, and ¥ (d) = W (d)), we arrive
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finally at
(4.13) H(o,z;,z)2X Y pldys (d) W(d) %‘i)+R+O(XV(zz)Le“"5)
d| P(z )
= XG+R+0(XV(z,) Le™113),
say, where
(4.14) G= ) u@drx @dW,(d #-

d|P(z5)

5. The remainder sum R

We show in this section that the problem of estimating R may be transmuted
to the estimation of a certain bilinear form.

ProrosiTION 1. Let M and N be any two real numbers satisfying
M>z,, N>1, MN=y.
Then there exist real coefficients a,, (1 < m < M), b, (1 € n < N) satisfying
lanl <1, |b) <1

such that

IRl <(log y)'?| 3> Y. GmbaRp|-
m<M n<N
mn| P(z5)

The proof requires some preparation.

In X, (cf. (4.6), where R = %, —ZX, is defined) we first separate out the
term arising from D = (, when d = 1 is the only integer belonging to D, and
obtain

(5.1) IV =% u(mp~ (MR,
n':ll;(:o)

In the remaining terms of X, we have v(D) > 1. We write each de D uniquely
in the form

(5.2) d=gqd,, q(d=q and q(d)<gq, qel,,

say, where, unambiguously,

(53) D=IoD1, Dl <10.
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Accordingly we may write (after dropping the suffices in D, and 4, at the
last)
(54) 2P=x -2
=Y T wloD)ii D) Y T, Wolad) L #m B ) Ryg;

Iy De2 qelg deD <
0 D<Io m z
m|P(zq)

we note for future reference that, whenever y. (I,D)# 0, (4.3) may be
invoked to give

(5.5) 0<Wgd) <1

In X, (see (4.6) again for the definition) v(D) is always odd and therefore at
least 1. We may therefore apply decompositions (5.2) and (5.3) again, and
when we do we obtain

56) ZZ_ZZ Z Xx (IIOD)Z Z Z Z lu ﬁ+ m)Rppqdrn'

De2 qelg p'.pel deD gy 4L
=D <Io A ) S
2|w(D) 0

To take X'® further we require a combinatorial result characteristic of
the original Iwaniec approach. To state this result we need to recall that
A (D) denotes, for De & and D as given in (2.8), the product of the right hand
end points of I, ..., I,.

Lemma 4 (cf. Iwaniec [10]). Suppose that
(5.7) X« UoD)=1, D <l
and let real numbers Yy, Y, be given to satisfy
(5.8) Y1 > Zy, Yz > 1, }’1 Yz = X.

Then there exists a decomposition
Io D = D1 D2
stich that
ADy) <Y, and 4(D;) <Y,

It follows for every integer qd in Iy D, with q prime and in I, and d in D, that
gd may be written in the form

qd = dl dz, dleDl and dzEDz, dl -'gh Yl and d2 S Y2

Proof. When D = @), we may take D, = I,, D, = @, so that 4(D,) = i,
<z, and 4A(D;) = 1. This is a decomposition of the type required. (Here, if
qdelyD, gel, and is prime, and d =1; put d, =q, d, = 1))
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Now suppose v(D) 2 1. When v(D) = 1, (5.7) implies that
(5.9) A(D)*iy < x.

If A(D)i, < Y,, take D, =1,D, D, =@ (so that d, = gd, d, = 1). Otherwise

take D, =1y, D, =D (so that d, =gq, d, =d); here A(D,) =i, < z,, and
X < X < X .

A(DPiy A(D)ig Yy

A(D,) = 4(D) < Ys,

as required.
Now let v(D)=r, r 2 2, and write
(5.10) D=1 ..1, I,>..>1I.

We proceed by induction on r and assume that the result has already been
proved for all [, D with v(D) =r—1, so that, in particular, one has

(5.11) Inly...l,_; =D1D;, AD)<Y, (i=1,2).
By (5.7) and (2.15) we have
i,4(D)iy < x,
so that by (5.11) and (5.10)
2 A(D\) A(DY) = igiy...i,_ i < x.

Either i,4(D}) < Y;, in which case we put

D, =Dil, D,=Dj;
or i,4(D}) > Y;, in which case i,4(D}) < x/Y, = Y, and so we put

D,=D), D,=DjI,.

In either case the inductive step has been accomplished and the lemma
proved. _

We now apply Lemma 4 to Z{¥, as given in (5.4). For each set IoD
occurring in this sum we may assume (5.7) to be satisfied. In accordance with

Lemma 4, therefore,

(512) 1ZP1< Y Y xx(DyDy)x

Die@ D,e?
_ Dy, Dg)+1
x| XX Woldid) T u(mp (1) Rayaymli
dlE‘Dl dzEDz m<zL
dl <]’1 d2<}'2 m|P(z)
dydy]P(zguz ) 0

note that, by (5.5) (from Lemma 4, gd = d, d,)
(5.13) 0< Wold,dy) €1
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in each term on the right. Now let N,, N, be any two real numbers
satisfying

(514) N]_ > 2y, N2>1, N1N2=y-

Then the innermost triple sum on the right of (5.12) is, in absolute value, at
most 2R'? where R® is given by

(5.15) RO=max| ¥ Y a, b, Ryl
ny <Ny na<N3
rllnzIP(zz)

where the maximum is with respect to all sets of coefficients a,, b,
satisfying

(5.16) Jan| <1, Ibyyl < 1.
To see this we argue as follows. If N, > z§ take
ni——-dl, nz—_—'mdz, }’1=N1, Y1=N226L

in (5.12), so that »n, < N, and n, < N,. Il N, <z§, (5.14) implies that
N, > yzgl > z§ (also N,zg% > z,), and this time we take

n]=dlm, nz-——"dz, Y|=N126L, Y2=N2

2

in (5.12) so that again n; < N, and n, < N,. In both cases note that Y, ¥,
= yzg L = x by (2.9), so that (5.8) in Lemma 4 is satisfied; note also, that the
indicated representations of n;, n, are unique, with m dividing n, or n, and
n n, =d,d,m so that, by construction, n; n,| P(z,). As for the coefficients,

for a given pair D,, D,, v(D, D,) is the same for all the terms in the triple
viDyD9)+1
sum and, depending only on the size of N5, u(m)f™’ 727 (m) is there-

fore associated wholely with n, or with n,. As for W, (5.13) and (2.5) imply
that

0 < Wo(dydy) = Wy(dy dym) = Wy(nyny) < 1,

and since 0 <w(p) < 1 it follows that 0 < Wy(n,) <1 and 0 < Wy(n,) < 1.
The identity

Wa(ny ny) = W, (nl)_(l - I’Vo(nz))

therefore enables us to conclude that the innermost triple sum on the right of
(5.12) is, in absolute value, at most 2R,
It follows at once, from (5.12) and (2.7), that

(5.17) 2] < 22/ +1 RO,

It remains to deal with X, now to be thought of in the form (5.6). For
this we require the following companion to Lemma 4.
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LemMA 5 (cf. Motohashi [12]). Suppose that

(5.18) I<D<l1, 2|v(D), De%,
and
(5.19) 1= Ia D) =1,

Let Y,, Y, be any two given real numbers satisfying
(5.20) Y, >z, Y,>1, Y Y=x
Then there exists a decomposition (1)
1,DI* =D, D,
such that
AD)<Y, and A(D)<Y,.

It follows for every integer qdpp’ in I, DI?, with q prime and in I,, d in D, and
p, p' in I(p' < p) that qdpp' may be written in the form

qdpp’ =d,d;, dye€D,, dyeD,, di<Y,, d,<Y,,
where D;&'%9 or D;=D;I* with Dje % and 1 < D).

Proof. Since (5.19) implies (5.7) we may take advantage of Lemma 4 and
conclude that there exists a decomposition

(5.21) 1,D =D\ Dj
with
(5.22) 4(D)) <Y, and 4(Dy)<T,.
Also, since 2|v(D), (5.19) implies that
i A(D)i® < x

and hence, by (5.21), that
(5.23) A(D) A (DY) i® < x.
Either 4(D})i* € Y;, in which case choose
D, =DyI>, D,=D, (sothat d, =d,pp with p, p'el, dy =dj)
or A(Dy)i* € Y,, in which case choose

D,=D,, D,=D3I* (sothat d; =d|,d,=dpp’ with p,p'el);

(*) Here I? is to denote only all distinct pairs p/, p of primes in I
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and if neither of these possibilities holds, then, by (5.23), necessarily
A(DY))i< Y, < 4(D})i?

and
4(D5)i < Yy < A(Dh)i2.

In this case choose
D,=DilI, D,=D,I

(so that d, =d; p, d, = dyp’ with p, p'el and p' < p).

The stated decomposition (5.21) together with (5.22) has now been
established in each of the three cases which exhaust all possibilities.

Now apply Lemma 5 to X,, as given by (5.6). Conditions (5.18) and (5.19)
of Lemma 5 are satisfied so that '

< ¥ Y| X L X amBT0mRyam
Dye2* D3e2* dyeDy d3eDy . L
dy <Yy d2<Y2 pip(zq)
dyda|P{z,z2)
where @* = U {DI*: De@, I < D}.
Arguing as before in the case of X{¥ (except that here there is no W to
worry about), we have, by (2.6),

|12, < (J+1)22*7 R,

»

Since z, > z&, IV 1s trivially dominated by R'®, so that, by (5.17), altogether
(5.24) |R| < 2722 R,

The proof of Proposition 1 is all but complete. We have only to
estimate the factor 27222/ on the right of (5.24). For this purpose note first
that, by (1.5) and (1.6), )

yr<n=y'<y

so that (1.4) implies that also z, is sufficiently large. By (2.3) and (2.1) we
have therefore

< log log log z, < log log log z,
= Slog (146) 56

144
(1+6) = % log log z,

and hence
2J% 2% < (log log z5)* (log z,)3*° < (log y)*/3.

This completes the proof of Proposition 1; the coefficients a,, b, in
Proposition 1 are simply taken to be those giving the maximum of R©, with
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6. The main term

We now turn to the main term G on the right of (4.13), given by (4.14). This
term differs from the leading term G of (1.6.2) only in that it involves yx;
rather than y; . The error term induced by this difference is the price we pay
here for having the remainder sum R in a more flexible form. Nevertheless,
the preparatory analysis of I, Section 6 applies here also and leads us in
much the same way to (cf. [.6.15)

61) G=T (xx= ¥ (1-w(p)22 g+(§)+

x1/4Sp<z2 p
w(p) x
* L W(P)——{G*(-)— ) z;(n)“’("’a+(i)}+
Wspexlit p P alP(p* 25) n pn
pn} <xf(pn)

+0(V(x) log™ ' x)

where we have omitted (as we shall continue to do from here on) the
subscript % (= 1 now) from T and ¢* and set f§ = (1) = 2. We apply (1.7.1}
to the first term on the right of (6.1); since A, = A; = 2e” ([9], p. 176), where
y is Euler’s constant, we obtain

(6.2) T~ (x, x'*) = V(x) 2" {log 3+0(log™ '? x)}.

Our O- and <- constants depend [rom now on at most on A and U.

In order to apply (1.7.2) to the second expression on the right of (6.1) we
have first to allow for the difference in the summation conditions. By (1.8),
(14.4) and (1.2.4) we have (remember that z, = yY)

(6.3) ¥ (l—w(p))—Ct)I()—p)a+(§)<V(x)(log logy ! )

log x log x
xU$p<yU g g

log log log y

<V log 1og )

since, by (2.9) and (24),

log y log zo\? L )
(64) log x (1 Lu log zz) (1+0) (log log z,)'/°

so that, by (2.1),

-1

log y logloglogy

(63) log log x * (log log y)I*’
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) X w(p) X
(l—w(p))—(P) ot (—)= Y (l—-w(@)——o0o" (—)+
p X/ pexl p p
log log log y
(log log y)'* /'
We are still not quite ready to apply (I.7.2) to the sum on the right because

the definition of w(-) involves log y. However, the replacement of log y by
log x in this context -yields an error at most of order

log p log p)w(p) ( 1 1 ) .
Vix — £ V(x) - (U—%) log x+ A
( )x1,4£<xu (log x logy/ p log x logy ( ¢ )

+0 (V(x)

log log log y
(log log '/

by (2(1)) and (6.4). Therefore we may modify the sum on the right in this
way and then apply (1.7.2); and we then obtain

(6.6) Y (1-w(p) 3’% ot (f)

< V(x)

.11/4s.p<zz p
4
2e? 1\ dt log log log y
= il el V(x) ———oo
YO TE J (T r) (1 +O( ) {iog tog )7
1jU
2e’ 1 1 4
= V(x) —F {Tlog 3—-Tlog 5—(1—7’) log 1_U+log §+

log log log y
O\ =775 )¢
(log log y)
A similar procedure applies to the third expression on the right of (6.1).

We want to alter the range of summation to [x¥, x'/%), and this we may do,
by virtue of (I.4.4) and (1.8), at a cost of an error at most of order

w(p){ w(n)} log log log y
Vv —=<1+ — & V(x)—"-
(X) Z an(%’:.yU) (X) (IOg lOg y)1/5

by (1.2.6) and {6.5). Then, as before, we must replace log y in the definition of
w(p) by log x, and this costs us an error of order at most

Vo ¥ (logp_logp)w(p){1+ 5 w_(y)}

Yp<y¥ P

Wsp<ylld logx logy/ p PV gty
. 1 log log log y
Vv - 1—V) 1 A) <€ V(x) ————=
< (x)(logx log y)((z ) log y+4) <V (log log y)'/*



A WEIGHTED SIEVE OF GREAVES' TYPE 1I 203

by (6.4). With the third expression on the right of (6.1) modified in these
ways, and invoking also the remark that follows (I.7.3) — this allows us now
to replace the condition n|P(p*, z,) in the inner sum by p(n) >p and
insertion in the term being summed a factor u*(n) — we have by (6.1), (6.2),
(6.6) and (I.4.4) that (cf. (1.7.7))

1 lo4E13
U g3 og 3+

‘log log log y
o(=_2"%71
(log log y)*’®

2¢" 1
(67) G2V {Tlog = +(1-T) log

—E U 1-

log p Eo) @(p)

+ ( X
< pexlid log x P
log x 3 2rnee, @(n)  logx
8 (log (x/p) p<p(n)z<x/(pn)“ ()2 () n log (x/(Pn)))}

For the moment let X denote the innermost sum on the right, so that

! _
68) I= Y i) m,(f) log‘zf/(’;n)f Y X0 ),
rz21

n
p <p(n} <x{(pn)

say, where

)Y - (=) OJ(Pl pk) logé
Zk €. p z & P pi...px log (f/(P1---PkP)).

pP<pr<... <P
P <x/{ppy---PK)

By (1.4.8) (see also the beginning of the proof of Lemma 3 above) we have
)V"‘l

B0 pd =27 ()2, (P2---PY)

so that

(69) z;""(ﬁ,p)=z“’£’l’" W () T ( ) k> 1.

P1

This recursion formula enables us to proceed by induction on k via the use
of Lemma 6 of 1 for converting sums to integrals. In each application of
Lemma 6 the quantity B in that result is <1, and X contains only finitely
many terms since the condition p < p(n) < x/(pn) implies that

(6.10) X > p2Him o (2 +umy

so that for each n counted in X, v(n) < V~!—2. A straightforward calcu-
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lation leads to

- dt,...dt log x 1
>, p) = jJ. ! 2r +O( )
g 7y log 1y ...y, log 73, log (x/(pry ... 72,)) log x

P<rg,.<... <t1

T2r <x/(Pty...T3;)
‘lil....l‘l <x(i<r)

t;r...tl Zx

where all but the first two sets of integration conditions derive from the
inequalities implicit in ¥; . The change of variables

p=x, 1.',=yr'., 1<i< 2,

leads directly to

_ log p 1
(6.11) 2, (5 ) = by, (log x)+ 0 (log y)’
where
dt,...dt,, 1
(612) th(t)— J‘J. ty...ty l—r_tl_---—tlr.

l<tzr(...<ll
3!2‘-+...+!1<1(l'=1 ..... r-1)
319, ..+ 21
tgp<l—t1—f1—." 19
We write

(6.13) h(t) = ). ha (1),

rz1

s=n(28P) o1 )
log x log y
Hence

614 ¥ (l"g P Eo) @(p) ( log x )

so that, by (6.8),

A <pexlid log x p \log (x/P)_
I 1 - (1
- e )5 o) o s )
&< pextia \IOB X P l_log p \logx log y
log x

by (€(1)). The function

(6.15) Y (1) =%—h(t), 0<t<1/4,
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is, as Greaves [2] proved, increasing and has a unique zero V, given by
(Greaves [2], p. 331)

(6.16) Vo =0074368... (=1/13446..)
so that
()20 for t2V,.
Hence Lemma 6 of I may be applied to the sum (6.14). We have Vrnaz:l(/4 Y (t)
<<

= (1/4) = 4/3 since h(1/4) = 0 by (6.10). Thus the quantity B in Lemma 6 is
<1, and the sum (6.14) is equal to

1/4
(6.17) J 1= £ n,l/(t)dr+0( : )
t log y
v
Following Greaves [2], we put
1/4 1/4
d
(6.18) a(V) = J w(nd, B(V)= J (1) TI
|4 4

so that the sum (6.14) is equal to
: 1
a(Vy—EoB(V)+0 (—)
log y
It follows from (6.7) and (6.14) that

2e?
T-E

(6.19) G2 V(x) %Tlog %+(1 —~T) log —(log $—a(V)) -

log log log y
—Elog 3_E°ﬁ(V)+O((log oz ' /("

1-U

It seems at first, from the form (6.17) of the sum (6.14), that the right choice
of V is V,, the point where /(1) changes from being negative as ¥ increases.
However, it turns out that the optimal choice of V depends on the appli-
cation in view; for example, in the problem of P,’s in short intervals the best
choice of V lies closer to 1/6. Obviously the pairs a(V), B(V) require
tabulation. We record here only the values

a(Vy) =0.1505528..., B(V,) =087695...,

(Greaves [2], pp. 301, 331) and
(1/6) = 0.098 580030..., B(1/6) = 0.474533776...
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(Grupp—Richert [4]). The choice ¥V > 1/6 is interesting because here, by
(6.10), h(r) reduces to the single term h,(t) and it is not hard to derive from
(6.12) that (cf. (1.7.12) and (1.7.13))

1/t—2

620 k() =hy() =1 f

2

log (u—1)
2—(u+dt

du, 1/6<t<1/4.

7. A lower bound for the sifting function
For convenience and quotation later on we summarize our results so far in
the form of a theorem.

THEOREM A. We postulate conditions (A,) and (€2(1)). The constants T, U,
V. E and

E,=max (E,4(1-T))
are to satisfy
(71) E,<sV<1/4, 12<U<T<l, U+3V=21l, V2

where Vy is given in (6.16). Then, as y — o0 we have

2e? t
v U : —
(1.2) H(.p/,y,y)?XV(y)T_E{TlogU+(1 1}logl_U

—(log $—a(V))—E log 3—Ef(V)+

(BB L EN g | 3 T bt

(lOg log y)lls m<M n<N
mn| P(yV)

where a(V) and B(V) are defined in (6.18), M and N are any two real
numbers satisfying

(7.3) M>y', N>1, MN=y,

3

and a,, b, are certain real numbers satisfying

lan] <1, |, < 1.

The O-constant depends at most on A (from (2(1))) and on U.
This result is merely a matter of combining (4.13), (6.19) and Proposition
1; recall that z; =y, z, = y¥, L =log log log z,, that

_ log log log y
V(x)=V(y) (1 +0 ((10g log _1‘)”5))
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by (1.2.2) (with % = 1) and (6.5), and that

log log log y

V(z,) Le 15 < V(y) (log log )

by (1.2.2) (with % = 1) and (7.1).

In the leading term on the right of (7.2), when it comes to applications,
T U, V, E and E, are numerical constants and only the expression «(V)—
—Eo B(V) presents a computational problem.

Greaves [3] has developed a method for computing these numbers via
certain moments (for a more direct approach see Grupp—Richert [4]), but it
comes as a very pleasant surprise that heavy computing may after all be
avoided at the cost of only a slight loss in accuracy. Let (cf. (6.15) and (6.13))

|
(74) () =T —h (= .. —hu (), O<t<1/4,
so that
(7.5) vz, 0=...2¢y(00=20 for V,<tr<1/4

and, by (6.10) or (6.12) (cf. (6.20))
(7.6) W=y (D), Vos1)2k+4) <r<1/4.

For each k=1, 2, 3, 4 we may view V,({}) as an approximation to y¥(t) on
the whole interval [V, 1], and (cl. (6.18)) the functions

1/4 1/4

(1.7 (V) = f n(0)dt, BV = f o
14 4
as approximations to «(F) and f(V). Define the error functions
(7.8) (V) =g (V)=a(V), B(V)=hV)-pW),
and let
(79) 4,(V) =8, (V)- VB (V),
(7.10) g (V)= 4(V)+(V=Eq) B (V),
so that
(7.11) a(V)—Eo B(V) = o, (V)= Eo B (V) — & (V).

It is clear from (7.5) that each of &, (V), B.(V) is non-negative and non-
increasing on [V, 4] and is actually O for 1/(2k+4) < V < 1/4. In particular,
for each k=1, .... 4,
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1

1
(112) B (V) =0, EmQVS%; B(V) < B (Vo), - O\Vﬁm.

We now establish the following companion result.

LEMMA 6. For each k=1, ..., 4, 4,(V)=0 for 1/2k+4) <V < 1/4 and

1 —(2k+4)V
4,(V) < Z0k+4) Y, 4, (Vo)  for 0 2k+4

Proof. The first statement is obvious from what was said earlier. As for
the second statement, it is easy to check from (7.8) and (7.7) that

1
G(V)=y(V)—¥(¥V) and Bi(V)= f,(!//(V)—%(V))-

Hence, by (7.9),
4, (V) =& (V)= VB, (V)= B (V) = =B (V)

and

4/ (V)= B(I/)——(Wk(v)—dl(v))>0

by (7.5). This means that A4,(V) is convex, and the inequality now follows

1
since 4, (2k+4) =

It follows from (7.10), (7.12) and Lemma 6 that, for each k=1, ..., 4,
& (V)=0 when 1/(2k+4) <V < 1/4 and

(713) 6N < (1-2k+4 V)8 +(V—Ep) 8, Vo<V <1/(2k+4),
where

4, (Vo)

Tkt ¥, and & =B (Vo).

(7.14) 8, =

It turns out that the simplest case k = 1 already gives very small values
of & (V) for Vo < V < 1/6. By (7.7), (7.4) with k = 1, and (6.20) a straightfor-
ward calculation leads to

1jv-2

(118) (V) = log § (1~ )~ JM

u+1

(1-V(u+2)

2
x{u+2 log (2—(u+2)V)+log %du, 0< V< 1/4,
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and
13yv-2
1-V log (u—~1)
16 V)= - - = 7
(7.16) B,(V)=log 1% _f " X
2
u+1
y L V< 1/4,
x{log( (u+2)V)+log(1_m(u+2)}du,0< 1/4

and from these formulae o, (V) and B, (V) are easily computed by numerical
integration. It turns out that, in (7.14), using (6.16),

8, <0.000706, &, < 0.026756,
5, < 0.00000244, 55 < 0.00016975.

In practice, these bounds show ¢ (V) to be very small indeed; for the first
term on the right of (7.13) is obviously small since 6, is so small, and the
second term is controlled less by 6, than by V—E, being small in appli-
cations and often actually 0. By way of a simple numerical illustration, take
V =0.1 and E, = 0.09. Here

g, (0.1) < 0.00031, &,(0.1) < 0.0000022.

8. An arithmetical interpretation

Let # denote the complement of 2. In any sieve problem it is reasonable
(but not essential) to choose £ so that the primes making up the elements a
of & come exclusively from £; and when £ is so chosen we indicate this by
the symbolic requirement

(A1) (o, #)=1.
To simplify matters, choose U = T in (7.1)(%). Also, define, for a in

(8.1) via, y)=v(@+ ) 1.
mz22
p'";;a.p?yT
Then

THEOREM B. Suppose that conditions (A,), (A,) and (2(1)) hold, and that
there exist numerical constants T, V, E and E,=max(E, }(1-T))

satisfying
(8.2) E,SV<<1/4, 12T<l, V=V,

(?) Note that then (1.6) implies that T+3V 2 1.

14 — Banach Center, t. 17
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where V, is given in (6.16), such that
H(o, 2,7, y") >0.

Suppose r is a positive integer such that
(8.3) max la| <y TE.
acsd

Then there exists an a in o such that v(a, y) <r.

Proof. By (I.1.4) and (A ), the fact that H(«, 2, y*, y7) > 0 implies the
existence of an element a in o having no prime factor less than y* such that

0<{l— ¥ (1-w(@)}*.

plo
p<y

Then, since E, > E and T—log p/log y <0 when p > y”, we have by (1.3)

0<T-E- Y (T_IOS P)S T—E—Z(T—log p)_ 5 (T_log p)

Pla log y pla Iog y pmz2 lOg y
p<yT pMa.p=y

log |d|
< T-E-P(a, y)+-——
T-E—T(a y)+10gy

!

T

< T-E-T(a, y)+rT+E

= T(r—v(a, yN),

whence the result.

We use Theorem A to show that, subject to a suitable choice of
parameters, H(, 2, y¥, y7) > 0; but, of course, that theorem will tell us
even that then H(ef, 2, y", ¥y} » XV(y). If, as is so often the case, the
number

(84) T st
Wep<yT

of elements of o that are not squarefree with respect to the primes between
y¥ and y7, is small compared with H(=/, 2, y¥, y7), then Theorem B leads
in the usual way to the stronger conclusion that s/ contains elements having
at most r prime factors counted according to multiplicity.

The best results (at least in some applications) derive from taking U and
T different; but then the method of Iwaniec—Laborde [11], or some analog-
ous idea will have to be incorporated.

9. An application to almost-primes in short intervals

From now on let x denote a sufficiently large positive real number. We shall
try out Theorem B on the problem of almost-primes in short intervals, where



A WEIGHTED SIEVE OF GREAVES' TYPE Il 211

the technical difficulties are least and the result of Halberstam, Heath-Brown
and Richert [5] affords a basis for comparison. Let

o ={n x-x* <n<x}.

Then the problem is to show that, for a suitable # =6, (r > 2) and x > x,,
there exist almost-primes P, of order r in .«#. Here 2 is the set of all primes,
so that # is empty and (A,) is automatically true. Here also X = x® and
w(p) = 1 for all primes p, so that (A) is trivially true and (£2(1)) follows from
Mertens prime number theory. Finally, we have

a
XV (y)2e" = = (1+o( ! ))
log y log y
X x—x?] xf
=[S

To deal with the remainder sum in Theorem A, (7.2) we quote Lemma 3 of
[5]:
LemMma 7. Let A and B be positive numbers satisfying

9.1) AB? < x,

and

and, given an absolute constant ¢, > 2, let A' and B’ satisfy
A< A <cgA, B< B <c¢yB.

Then

©) Y T amb®R,,

A<m<A" B<nsh
<& x0—2n+(A1/2 x0[2+Alj.—x+1)/2 Bxx(l—ﬂ)/Z) x6"

where lam) <1 (A<m<A), b <1(B<n<B), (x, 4} is an exponent
pair in the sense of van der Corput—Phillips, and n = c,/log log x with some
positive numerical constant c,.

The remainder sum in (7.2) is clearly the sum of < (log M) (log N)
expressions such as on the left of (9.2) and therefore, if we require M and N
to satisfy

(9.3) MN? < x,
we deduce from Lemma 7 that

049 Y ¥ a,b,R,, <x1+(M? X012 p MO A= 02 NoH (1= 8/2) T
m<M n<N
mn| PyU)
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We write
0=(3+2—2)0—3)2,
and require that
(9.5) 0 <po<(1+6)/2.
We choose
M=x"11 N =x8

so that (9.3) holds by virtue of (9.5); and with this choice of M and N the
expression on the right of (9.4) is < x*~" Our choice of M and N has also to
satisfy {7.3), if Theorem A is to be invoked: therefore we require that

(9.6) y=xemton
and that
(9.7) U < 08/o.
To summarize,

LEmMA 8. If

0=(B3+2x-21)0—x)2

and (9.5), (9.6) and (9.7) are satisfied, then there exist numbers M and N
satisfying (7.3) such that

Y Y anbyRp, <x°70.
m<M n<N
mn| PyU)
We now apply Theorem A with a view to an application of Theorem B.

Taking U = T, we deduce from (7.2) and Lemma § that
H(d, ", y")
¥ 2
; -
logy T-E
where y is given by (9.6) and (9.5), (9.7) hold, the latter with U = T here

(1+0(1)) {®(T)—(log $—a(V))—E log 3~ Ey B(V))}

?(T) =Tlog -1:;,+(1—- T) log T
It follows that if T, V, E and E, satisfy (8.2) and also
O(T)>log 3—a(V)+E log 3+E, B(V),
then
H(s,y", y7) » x%og x
and, in particular, H(«/, y, y7) > 0. Therefore Theorem B yields
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THeoreM C. Suppose that T, V, E and E, = max (E, (1 — T)) are numeric-
al constants satisfying
9.8) E,<V<I4, 12<T<1, ViV,

where V, is given in (6.16), and

1
(99) Tlog ?+(1—T)log >log $—a(V)+E log 3+EyB(V)

1-T

where a(V), B(V) are defined in (6.18) (in association with (6.15), (6.13) and
(6.12)).
For any exponent pair (%, A) define

e=000)=(3+2x—-A)0-x)2, 0<8<l,
and require of it that it satisfy

(9.10) 0<o(f)<i(1+8), T<8/p(H).
Suppose r is a positive integer such that
(9.11) 1/0(0) < rT+E.

Then if x = x,, the interval (x— x°, x] contains » x*/log x almost-primes P, of
order r.

Proof. We have only to check that the conclusion of Theorem C, which
is slightly stronger than that of Theorem B, is justified; and, following the
- discussion towards the end of Section 8, it suffices to check that the sum (8.4)
is small compared with x%/log x. But this sum is at most

o
Y 1 ¥ (x—2+1)<x"y"v+yT<x°"’
x—x":::pls:: stP(yT
yWep<yT
since, by (9.8), V 2 V, and, by (9.6) and (9.10), y™ = x®7 16T < x77 81,
We illustrate the quality of Theorem C with some specific results.
(i) r = 2: Take Eq=E, V =0.1672, (», A) as in [5], equation (8.19).
One can then show that

0 =0, < 0.4545.
(i) r = 3: Take E, = E, V = V,, and (%), (x, 1) = AC,C, C;(3, ). Then

§ =8, < 0.3257.
(i) r = 4: Take E,=(1—-T)3, V="V, (x, 1) = A2C,(4,4). Then
8 =0, < 0.2496.

(®) C,:=BA" and A, B are the usual Weyl and Van der Corput steps respectively.
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(iv) r =5: Take Eo =(1=T)/3, V=V,, (%, ) = A*C,(4, §). Then
6 = 6 < 0.202.

The improvement (over [5]) in the case r =2 is not impressive.
However, it so happens that the Fourier analysis of the remainder sum in [5]
was subsequently improved by Iwaniec and Laborde [11]. It is implicit in
their argument that the conclusion of Lemma 8 above holds with ¢ replaced
by the superior

@' ={(6454—3%) 04 % —34)/4.

When ¢ in Theorem C is replaced by ¢, and (x, ) = C,C3C;(4, 3) then
Theorem C (with V = 0.1742) yields

6, < 0.4523.

As we remarked at the end of Section 8, the choice U = T is, sometimes
at least, not the best, and for the case r = 2 of Theorem C (probably also for
r=3) U < T is superior. In this case we use the inequality (see [7], (3.7))

H(sdt, ',y 2 H(o, Y, )= T (1-w®)S(, ")
wWep<yT
Theorem A is then applied to H(«, y¥, y") and the method of Iwaniec-
Laborde [11] to the second expression on the right. In this way

0, < 0.4476

can be reached, which is a little better than the result of [11]. These and
other applications will be discussed elsewhere. To make our objectives clear,
we remark in conclusion that we search above all for superior sieve methods,
and list applications such as those described earlier merely to test the quality
of these methods. It is clear that the estimations of the remainder sum in
various applications pose problems of independent interest and of great
importance.
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