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LIMIT THEOREMS FOR PARETO-TYPE DISTRIBUTIONS
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Leuven, Belgium

We derive some limit theorems for large order statistics from a Pareto-type
distribution. In a few cases these theorems yield asymptotic confidence
intervals for the index of the Pareto-type distribution.

1. Introduction

Let X,, X,,..., X, be a sample of size n from X with d.f. F on [0, o). The
order statistics of the sample will be denoted by

XF<Xi<..<X;

We denote by #(a) the set of all distributions on [0, c0) for which
1—F(x) ~x"*L"*(x), a>0

where L is slowly varying {s.v.). F 1s then of Pareto-type.

One of the main statistical problems connected with 2 («) i1s the estima-
tion of a; see [3], [4], [6]. Recently the construction of confidence intervals
received some attention as well [3], [4]). Our main goal in this paper is to
derive limit theorems that are useful in the construction of asymptotic

confidence intervals for o !.

2. Limit theorems for one order statistic

Recall from general theory that for any 1 <k<n

, X
Gu() = P (X1 S} = (i fF"**(u)[l—F(u)]*-‘dF(u). (1
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: - I ; s
Choosing la,} as a normalizing sequence and substituting u =F'(1——)
n

(where F' denotes the inverse of F) one obtains easily

atn~* 1 s\ k
fo-1 1 2 k-1
Pla, " X¥ .1 < x| = Rl (k= 1)! J (1 n) s ds

4 p(x}

where A4,(x)=n{l1-F(a,x)}. If Fe®?(a) then it is natural to take n 1
—F(a,)} =4,(1) > 1; since then 4,(x) - x™% We obtain the well-known
result ([10]):

THeOREM 1. If Fe#(a) and n{1—F(a,)) =1 then for fixed k

X
1
(a1 y* <y ~s k-1
P la, X"_‘H’I\XJ_*(I(—I)! je s< tds.
x—a
As is well known from the theory of regular variation ([9]) one can
obtain an asymptotic expression for {a,}, ie.,

a, ~ n''* L*(n'/)
where L* is the conjugate of L.
CoroLLARY 1. If Fe#(a) and n!l—F(a,)} =1 then for fixed k

(logn) ™" -log X¥_,,; > 1/a.
Proof.

71‘ _1 —_
Pl(logn) " log X} ,s1<w)=Pla; ' X* ,,,<n%a, '

However

') if w> 1l/a,

w_—-1 __ ,w—1l/a S 1/a\y— 1
"l ! (L") _’{O if w<1/a.

Since the limit in Theorem 1 is continuous the convergence in Theorem
1 is uniform [5, p. 139]. Hence the result. »

From the statistical point of view Theorem 1 is useless since |a,) is
unknown. The corollary shows that we can get a consistent estimator for x~!
but k plays no role at all.

3. Limit theorems for one order statistic with floating k

We wouid like to make k depending on n. One could assume k/n - A€(0, 1)
as is done in [10]; for A =1 see [2]. For a general treatment see the two
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papers by Balkema and de Haan ([1]). We shall assume A =0 since the

largest order statistics will contain most information on a.

Change 1—F(u) =s in (1) and put then s =gq,+p,x where {p,}; and

'qn) 7 will be determined shortly. Then
a

G,(wy=1, | I,(x)dx
Ap(u)
where

n!
T (n—k)(k=1)!

n—k k-1
Iz(x)=(1— p"—x) (1+&x) ,
1_qn qn
5n = (1 _qu)/pm
A,(u) = py ' 1 =F(0)—q,}.
As shown in [10], [11] a proper choice for {p,} and g, to let I,(x)
converge for n— oc, and k,/n -0 is
' k—1 n—k

—g, =,
n—1 or In n—1

pr = (n—k)(k—1)An—1)>

It then easily follows that for T > 0, fixed, log{,(x) = —%x? uniformly

on [—T, +T]. Stirling’s formula yields then I, —1/./2n while ¢, - + cc.
We only need to find a limit for 4, (u).
Since ¢, = 0, p, — 0 also u — oo. Replace u by ¢,u where 1—-F(c,) ~ k/n.
Given ¢ > 0 pick ng(g) such that for n > n, and u >0
(1—e)k/in<1—F(c,) <(1+¢)k/n,

™ —g) [1=F(c)} S 1=F(cou) S(u"*+8) {1 —-Flcp)j.

I

Pa(1—q,)" % g™,

qn =

Combining these inequalities we obtain

4 %*OO il u>1,
R
G R S
Now take u > 1. Then for a fixed T .
T T
| 1
|Galcu)— 11 < lI, flz(x)dx_ fe_rzlzdx 4

N

-7 -
-T

I, (x)dx+1, J I,(x)dx.

Aplcgu)

2
+— J e_"zlzdx+11
\/2n

T

it___jaen--]



396 A. DE MEYER and J. L. TEUGELS

The last two terms are easily handled ([10], [11]). A similar argument
works for u < 1; we obtain

THeoreM 2. If FeP(a), n—> o0, k >0, k/n—>0 and 1-F(c,) ~ k/n
then |

P
-1 *
3D CIES

One can do better by looking at d, ' {X*_, ., —c,}. The only change in
the argument is the limiting value of 4,(d,u+c,) for |[ul < T We write

Ap(dyu+c))=p, ' 1 =F(du+c)—q,}

= pi ' [1-F(c,)] (1 +i—:u)ﬂ %%%CL)— 1}+

epri —F(c,n{(nﬁu)ﬂ—l}w;‘ (1= Flen—g1)

= In1+I,|2+In3.

It seems natural to assume L to be so-called normalized, 1¢.,

x

L(x) = cexp J‘i;)du (2)

1

where ¢ >0 and e(u) -0 as u —» oo. In particular one can take 1—F(c,)
= k/n ~ q, so that I,; — 0. Further

d, \'*¢ d
I,,2~p,,_1q,,{(l+—1u) —l}«-—a\/l_(—"u
cﬂ n
if d,/c, »0. So pick d, =c,k "2 Finally
dputcy,
I,,l~\/lz{cxp [ oe(w)u'du—1}

1+uk—1/2

~Jklexp | e(car)o ltdv—1}—0

1

since k — o0 and &(c,v) = 0. We have proved

THeOREM 3. Let 1—F(x)=x"*L*(x) where L satisfies (2); take
1—F(c,)=k/mn—0 and d,=k™"?c,. Then for n— 0, k> o

, 1
dy X3 ke 1 —Cn) 57~ U’V(O’ &)
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ExampLE 1. Assume F(x) =exp —x ® Then Fe?(a) and L satisfies
(2) with ¢=1 and e(x)=1+4+x"*{l—expx™?}"'. As in the proof of
Corollary 1 one can write

P{\/l;[a logX:—k+l—log£] < “} =Pld, (X} h1—¢) < @, (u)}

) 1/a
where ¢, (u) = \/l_c {c,,_ 1 (2) exp —uz— 1}. Direct calculation shows that c,

o
1/a
= (%) (1 +0 (S)) Henceforth
l/a 1/a
qo,,(u)=ﬁ{c,,“('—’:) —1}+ kc;'(g) {exp —1}.

The second term tends to u/n; the first tends to zero if we take k = o(n*?).
Hence if k = 0(n*?) then by Theorem 3

\/E[a log X3 i+y —logg] 2’-/1/"(0, 1).

We obtain an asymptotic confidence interval for a. Needless to say that
the same procedure works for a large class of members of 2(a).

u
/k

x

4. Limit theorems for two order statistics
Put

Goh(u, v} = P{X}¥ iy Su, X7\ i) <0}

unv

n! ( .
= (n—m—k)! (k—1)! (m—1)! j dF(")j"F(y)F () -

0

—F)]" '1-F)* !
where u A v = min(u, v).
The analogue of Theorem 1 can be found in [8].

THeoreMm 4. If Fe P(a) and n{1—F(a,)} — 1 then for m and k fixed

s ¢}

1
Gt a"v)_'(k—l)!(m—l)r. J- dx fdye_’(x—y)"_ly““.

(urv)~ ¢

v

Since {a,} norms both order statistics we_get
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CoroLLARY 2. If Fe P(a) then for m and k fixed and we(0, 1)

w

fr"‘l(l - tdr. (3)

0

1
P{log(X:—m—k+l/X:—k+l) < ;lng} - B(m, k)

For every pair (k, m), (3) provides an asymptotic confidence interval
for a.
We make m dependent on n, keeping k fixed. Write

Cokm =M {(n—m—Kk) (k=) (m—1)1] L.

In a similar fashion as in Section 3 we write
Jﬂ

n—k—m m+k—1
GO (u, v) =1, J(lv Pn x) (l+&x) dx x
l_qn qn

A4

' m—1
X J (l—i) ¢ ldz
m

ap

where

11 = Cn,k,mm_kpn(l ___qn)n—k—-mqt;ﬁk— l,

bn=pn ' (1-4,),
4, = 4,0, v) = py {1 =F(u A v)—q,],
4, = 4,00, x) = |, +pax} " m {1~ F(v);.
A good choice of {p,} and {gq,} is now
g, =(—1)"1m+k—1), pi=n-1)" 3 m+k—)(n—k—m).
If we replace v by a,v then 4,(a,v, x) - v~ ". Replace u by d,u where

1-F(d,) ~ m/n— 0 then

if 1,
A,,(d,.u,anv)wn(d,,u,a,u)a{”o s
-0 if u>1.
We obtain:
THeoreM 5. Let Fe #(a), n[1—F(a,)] =1, 1 =F(d,) ~m/n >0 as m

— o0, n > ao. Then

o

U, (w) j e 7z 1 dz
0 if u<e,
1 if u=zc.

1
(k—1)!

P{X:—m—k+1 g dnui X:—k+1 S a,,v} -

where U.(u= {



PARETO-TYPE DISTRIBUTION 399

Comparison with Theorem 2 for the first and with Theorem 1 for the
second component yields asymptotic independence of the normalized order
statistics.

CoroLLARY 3. Let 1 —F(x) ~c¢x % (c > 0). Then for m — oo, m/n -0 as
n—x

el,‘
J e 't N dr.

0

1
(k—1)!

Plalog (X3 m_x+1/X5-k+1)+logm <) -

Proof. The left side equals
J PIXymiier Saym ey, X3 o a, e[y, y+dy)].
0

However d, ~ (nc/m)'® while a, ~ (nc)'’* so that d;'a,m™'* - 1. By
Theorem 4 and easy reduction, the result {ollows. ]

Corollary 3 for k =1 leads to the double exponential law, known in
extreme value theory. In this form the corollary was derived by different
methods by de Haan and Resnick ([3]) for the case where F is stable.

ExampLE 2. Let
1 -F(x) =exp —ay(x)
where ¥ (x) = log x +(log x)? for x > 1 where {0, 1/2). Then it easily shown
([9]) that
L*{x) ~ exp(log x)’.
Hence in Theorem 4

a, n'® L* (n''®)

d,  (n/m)" L* [(n/m)'"]’

Choose m = \& then

gﬂ ~ m'"exp {(logn* ) [1-27F]}.

Hence m'™ is not a norming constant for the ratio of X* ,_,., and
X* ,+1. This implies that some condition on F is necessary in Corollary 3.
Nevertheless it would be sufficient to require that m — oo, m/n — 0 in such
a way that

L* (n)/L* (n/m) — 1. .
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Finally we generalize Theorem 3:

THEOREM 6. Assume Fe P(a) where L satisfies (2). Define 1—F (b))

=k/n and ad, = k™''*b,. Assume k — 00, m— o0, kfn -0, m/n - 0 and k/m

- 0.

Then

(X,T_,,,_,,+1 _bm+h X:—h+1_bk

@2
. U,V
duir 4 )( )

where (U, V) is bivariate normal with standard marginals and ¢ = {0/(1+6)}'/2,

We omit the proof which is somewhat lengthy but follows the same

pattern as the proof of Theorem 3, [7].

ExampLE 3. For the situations discussed in Example 1 one obtains that

if k+m = o(n??) then with the conditions as in Theorem 6

(, /m+kl:t:zlogX,’:'_,,,_,L+1 _IOgmik:" \/l—c[alog D, G AT —log;])g (U, V).

(-

(2]
(3]
4]
- [8]
(6]
(7]
[8]
[%]
(10]
(1]
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