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1. Introduction

Many exciting ideas have appeared in the applied mathematics Wterature
in the last few years concerning chactic motions in dynamical systems.
A somewhat surprising development has been the discovery that the
familiar models used by engineers to design and analyze electric energy
systems and power conversion networks may also exhibit chaos. (See
Baillieul ef al. [1].) In this paper we shall give a detailed description of
a certain class of nonlinear feedback systems displaying chaos. We shall
also determine certain cases in which this class of systems may be studied
using statistical methods. For the purposes of this exposition the follo-
wing is the basic definition.

DEeFINITION 1.1, A difference equation will be said to display chaos if:

(i) there is an infinite family of periodic trajectories such that for
any arbitrarily chosen positive integer N there is a trajectory whose
minimal period exceeds N, and

(ii) there is an uncountable family of bounded aperiodic trajectories
with the property that if «(-) and y(-) are distinct members of the family,
there exists some ¢ > 0 such that |w(k)—y (k)| > & for arbitrarily large
values of %.

2. Symbolic dynamics

Symbolic dynamics provides a mechanism through which it is possible
to “keep track” of trajectories of dynamical systems. Although the main
1deas in this area were around in the nineteenth century, the first occasion
(of which we are aware) on which they werq systematically used was in
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two early works by Morse ([11], [12]). Using this theory Morse was able
to show that geodesic motions on manifolds of negative curvature were
recurrent (i.e., returned infinitely often to an arbitrarily small neighbor-
hood of an initial point) without being periodic.

DeFINITION 2.1. For each positive integer m let 8, = {0,1, ..., m}
This is called the symbol set. Any sequence {y.};., taking values in 8,
will be called a symbol sequence.

To employ this concept in the study of discrete dynmamical systems

z(k+1) = F(z(k)),

where F: R"—>R", we partition R" into m +1 mutually disjoint and exhaus-
tive subsets R,, R,, ..., R,,. We shall say that a trajectory z(-) realizes
a symbol sequence {y,} or equivalently that {y.,} describes & (-) if y, = 3
implies and is implied by z(k) € R,.

In what follows our main interest will be in the two element symbol
set S, = {0, 1}.

DeFINITION 2.2. We shall say a symbol sequence {y;} i8 admissible
if (i) o = 0, (il) ¥;¥44, = 0 for all positive integers ¢, and (iii) there are
arbitrarily large integers ¢ such that y; = 1.

DEFINITION 2.3. A symbol sequence will be said to be of class k if it
is an admigsible sequence and (i) the number of zeros adjacent to any
given zero is even (possibly 0) and (ii) the longest string of adjacent zeros
is 2k+1.

Symbol sequences of class k¥ may be constructed as follows. First,
define a finite set of finite symbol sequences;

a, =01,

a, = 0001,

ak = 00 sse 01-
2k+1 meroa

Then consider the symbol set 8 = {a,, 4,, ..., a,}. A symbol sequence
of class  is any symbol sequence associated to S, viewed as a sequence
of zeros and ones.

3. Nonlinear feedback systems. The scalar case

The main results of this paper will deal with feedback systems of the
form

(1) a(k-+1) = Aa(k)+bf{os(k),
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where A, b, o are real matrices of dimensions # x %, n X1 and 1 X »n, res-
pectively, and f is a (nonlinear) scalar function. To study such systems
we shall partition R" into Ry = {#: cx < 0} and R, = {#: ¢z > 0}, and
to begin we shall consider the special case in which n =1, A = a (some
real number), b = o =1 and f(y) = fly| —1 for some real number g such
that f—a>V2. Under these assumptions it is not difficult to show
that (1) will have a solution trajectory of minimum period 2 if and only
if p*—a’ > —1, and there will be a solution trajectory of minimum period
4 if and only if f*— o® > 1. More generally the following facts are known:

LEMMA 1. Consider the special case
(2) z(k+1) = az(k)+ |z (k)| -1,
where f—a > V2. If

p—at> ¥ (a—p)7™,

k=0

then any symbol sequenoce of class k < m can be realized by a trajectory. More-
over, all suoh irajectories are confined to the set [—1,1)V(r, f—a—1],
where

1=(a—f) ' +(a=f+(a—p*(a+P '+ ... +(a—p)"*(a+p)7?,

r=(a+pf) ' +(a+p " (a=p " +{a+pf T e-HT+
+(a+B)a—p) 4+ ... +(a+B) " (a— )
The interval [—1, B—a—1] is invariant under the molion of this sysiem

Proof. Define a sequence of intervals inductively by meansof a, = —1,
b, =0, 0, =f—a—1 and (a—pa;,,—1 =a;, (a—f)b,,—1 =b; and
(a=p)e;,,—1 = ¢,. Let I, denote the interval with endpoints b, and ¢,.
Letting
9(2) = av+fla| -1,

we find that for k> 1 ¢ maps the interval I, bijectively onto I,_, (via
the affine formula s(a— f)z —1. The function g also maps the interval
I, bijectively onto [ -1, g(e,)] via the affine formula a++{a+ f)@ —1. Thus
for each Kk =1,2,... g defines an affine mapping g,: I,.—»[—1, g(c)],
which we write explicitly as

(@) =(a—p)*(a+p)z—(a—pY**(a+B)—... — (a—P)a+H) —(a+p) 1.

Note that if % is even and k < 2m 42, then under the hypothesis of the
lemma we have I, c [—1, g(c,)).

Let {y;} be a symbol sequence of class k < j, and let n; denote the
location in this sequence of the ¢th “1”. Let n, = 0 and for each positive
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integer ¢ define m; = n;—n,;_,. Note that since {y,} is of class k, m, < 2k +1,
For each positive integer j define

Iy = Gy Imge - Imy [—1, 9(c1) ].
Since for any even positive integer », such that » < 2m 42, g;'[—1, g(¢,)]
< [—1, g(a)], it follows that J; = J;_, = [ —1, g(¢,)] for j > 2. Moreover,
it follows by direct calculation using the explicit formula given above
for g;, that the length of J, is

)
(B—a)a+p) "' (B—a—1), where &= 3 (m—1).
=1
(Note that a4 f, p — a—1 are positive.) Now, from the assumed properties
of the sequence {y;} it follows that m;> 2 for each positive integer f.
Hence h > j and the length of J; is less than or equal to

(B—a)(a+p) " (f—a-1) = (=) (a+p) (F—a-1).

Since 0 < (8*—a®)~! < 1, the length of J,; approaches zero as j approaches
infinity. Hence there is precisely one point z(0) common to all the nested
subintervals. Taking this as our initial condition for (2) we obtain a tra-
jectory, all of whose points lie in [ -1, §—a—1], and which realizes the
given symbol sequence.
To prove the second part of the lemma, let ¢; = f—a—1 and let d

satisfy

2k+1

(a+pd—1= ) (a—p)7.

i=1
First, we verify that d < ¢,. To do this, note that it follows from the
hypothesis that

k
p—a é‘“ B

This implies

k
a+f> — Y (a—f™" > 0.

§=0

From this inequality we find

(e+p)oy—=1 = (a+p)(f—a—1)—1

k 2k+1
> - D@—p " B-a-1)-1 = } (a—f) = (a+pd-L.
j=0 f=1

Comparing the first and last terms verifies the claim.
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Next we claim that no point on the trajectory we have constructed
lies in [d, ¢,]. Recall the above construction of subintervals I;. Two
features of this construction are (1) the right-hand endpoint of I,; coin-
cides with the left-hand endpoint of I,;,, for j = 1,2,..., and (2) the
left-hand endpoint of each odd numbered interval lies to the right of the
right-hand endpoint of every even numbered interval. Now suppose
2(+) is our trajectory constructed above, and consider the consequences
of assuming x(j) e [d, ¢,] for some j. Then

2k41
2(j+1) = (a+p)z()—1> (a+h)d—-1 = D' (a—p)~".
i=1
But this last quantity is just the right-hand endpoint of I,;,,. There
are exactly three possible cases in which z(j+1) can lie to the right of
Iz(k+1)-

I. 2(7+1) > 0. In this case the associated symbol sequence would
have y; = y;,;, = 1, which violates the hypothesis that {y;} is an admissible
symbel sequence of class k.

II. ©(j+1) € I,,,, for some positive integer i. In this case there would
have to be an even number of adjacent zeros in the associated symbol
sequence, again violating our a priori restrictions.

I, z(j+1) e I,; for ¢ = k+1. In this case the number of consecutive
zeros exceeds 2k-+1 which also violates our original assumption that
{y;} is a symbol sequence of class k.

In any case we have shown that no point on the trajectory can lie
in the interval [d,¢,]. But [I,r] = ¢~*[d, ¢,], and hence no point on
our trajectory can lie within [I, r]. This completes the proof of our lemma.

In analyzing the stability of the constructed family of trajectories
it will be useful to have estimates of the closest possible approach of any
trajectory to zero and also the maximum distance from zero attained
by any trajectory. (Recall zero is the corner point of the nonlinear function
g.) Hence we let

7o = min{|1], 7}
and
7, = max{l, f—a—1}.
Closed-form expressions for 7, and 7, in terms of a and § may be easily
calculated. In the next section we shall be interested in the function

S/ LI
No+217

Consider a trajectory of period k% from the family constructed in
the proof of the above lemma, and define a mapping I from the space

ky(a, B) =
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of periodic sequences of period % to itself by means of the input-output
relation

(3) o(k+1) = az(k)+ple (k)] -1 +u(k).

LeMMA 2. The tncremental 1, gain of the mapping L computed about
any periodic trajectory construocted in the proof of Lemma 1 ts bounded by (*)

”L” < kz (as 5)1
where

(B—a) (B—a+1) n 1
pr—a*—1 p—a—1"

ky(a, B) =

Moreover, if T 18 a period k sequence generated by (3) with 4 = 0 and u ¢s
a period I input with |u| < no/k.(a, B), then the corresponding period k
oultput x has the property that

sgneo(j) =sgnz(j) for j=0,1,...,k—1.

Proof. The period k solutions to (3) (for 4 = 0) in the proof of Lemma 1
may also be obtained as solutions to the affine equation # = Dz — &,
where £ is a k-vector of 1’s and D is the k x k matrix with a-} g in the
{1, k) entry, a— g and ¢ + # alternating according to the associated symbol
sequence down the subdiagonal and 0’s elsewhere. The mapping L is
given by (I —D)"'. To show that this L satisfies the stated bounds we
consider separately the two cases a-+f>1 and a+f<1.

In the former case we find (D7 = max{1/(f—a), 1/(e+8)} < 1.
From this we estimate ||L| from the following sequence of inequalities:

1L = (I —=D)~ = (D~ =I)"* D7

Y 1

—D~1=1 -1
< T =D=)TU DT < 1I— D S f=a=1"

The next to last inequality is a standard result from operator theory.
Since k;(a, f) > 1/(f —a—1), the corollary is proved in this case. One
may establish the same result when a+ § <1 by explicitly computing
the inverse of I —D. The calculations involved here are somewhat tedious
and we omit the details.

Finally, let Z be the (unique!) solution of the equation # = Do —¢£.
Let v = (u(k—1), u(0), ..., u(k—2))T and suppose & satisfies & = Dr—
—&4u. Then o—Z = Lu. Since |z—Z| < Ll ful, if llull < no/ka(a, B),
then sgnx(j) = sgnz(j) for j =0,1, ..., k—1.

(1) All vector norms in this paper are I, norms, and norms of matrices and linear
operators are the associated operator norms.
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Intuitive insight into the quantities n,, 5, and %, (a, §) may be gleaned
from the graph of F(x) = ar+ f|z|—1 displayed in Figure 1 (where e

2m+-1
= ) (e—p)~7andl,r,dand ¢, are described in Lemma 1 and its proof).
i=1
ky(a, ) gauges how sensitive our family of periodic trajectories is to
perturbations in the parameters of the system. One would expect that
in cases where k,(a, f) is small the equation (3) could be changed by a re-
latively large amount and still have the qualitative properties of our
family of periodic trajectories preserved.

-?‘:..,. !
]

s statad

Fig. 1

4. Nonlinear feedback systems in R". Main results

The theory of chaotic behavior of difference equations in higher dimensions
is not as completely developed as in the one-dimensional case. In [9]
a characterization of chaotic dynamics has been given in terms of “snap-
back repellers”, but since snap-back repellers can be found easily only
in very special cases, these results at present remain difficult to apply.
In this section we present more easily verified conditions which imply
the existence of an infinite family of periodic trajectories as well as a certain
uncountable family of aperiodic trajectories. Our main result in this regard
is a frequency domain characterization of the existence of chaotic solutions
to vecotor difference equations of the form (1), where fis a nonlinear function
satisfying a certain Lipschitz-type condition.

THEOREM 1. Suppose the transfer function of the minimal iriple (4, b, o)
has the evpression
1

9le) = olTz—A)™b = — s,
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where h(:) 18 a proper rational function having all its poles in the interior
of the unit disk and a, f are numbers which satisfy f—a> Y2 and

ﬂz_az > Z’nl(a—ﬁ)-zk.

Suppose also that f(y) = Blyl—1+¢(y), where ¢ satisfies a uniform
Lipschitz condition with constant u > 0. Then if(%)

ke(a, B) (p+ lhlle) < Ky{a, B),

any symbol sequence of class k (for 0 < k < m) may be realized by a tra-
jectory of (1). If m > 0, then there are infinitely many periodio trajectories
together with an uncountably infinite family of aperiodioc trajectories with
the property that if x'(:) and x*(-) are distinct members of this family,

I (5) ~ &* (I = 1o
for arbitrarily large values of j.

Remark. Recall we are considering the symbol set § = {0, 1} and the
corresponding partition of R" is into

Ry = {w: cx <0}, R, = {x: cx > 0}.
Proof. Pick a minimal triple (4, I;, ¢) to realize h(z) so that

1
—a+z—c(le—A)"b

g(2) =

One possible choice of A, b, and ¢ having this transfer function is

.
(@) a=[5 3] »-

One easily checks that this is minimal, and by the state space isomorphism
theorem it can differ from the original triple defining (1) only by a linear
change of basis, given, say, by a nonsingular matrix P. Since the system (4)
will satisfy the conclusion of the theorem if and only if the corresponding
system defined by PAP~!, Pb and oP~! does (with possibly a different
value of 7,), we may as well assume from the start that 4, b and ¢ have
the form (4).

(3) k() defines & linear transformation from the space of all bounded input
sequences to the space of output sequences. [|h|l, i8 used to denote the Iy operator
norm of this mapping.
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Let %(') be any period » trajectory of the scalar system (2) corres-
ponding to a symbol sequence (of the same period) of class &k < m. Represent
y as a »-vector and let %(') be the corresponding periodic solution of

w(j+1) = dw( j)+l3y( j). Write the equations for these period v solutions
in extensive form

(8)

where D and ¢ have been defined in the proof of Lemma 2, and

0 0 0 0 b
b 0 0 0 0
5_|o b o 0 0
0 0 b 0 0
0 0 0 b 0]
and
_0_00 0 A
Ao o 0 0
o 4o 0 0
A“ooi 0 0
o000 . . 4o

To find a period % solution to (1) we consider the related equation
y] _[Pisqr¥]_ E]+ D (y)
s bid]llw] o (I ¢

where

B((¥(0), ¥(1), v-rs y(r—1))7) = p(y (»—1)}, @(¥(0)), ..., @[y (»—2)))",
and where

(6)

0 0 0 0 o |
¢c 0 O 0 0
6=0&0 0 0
0 0 ¢ 0 0

| 0 0 0 i 0

The hypothesis of the theorem implies that I —A4 is invertible and this in
turn implies the invertibility of I — 4. Hence we may write w = (I —4)~'by,
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and we obtain an equation for ¥ from (6)
[I—-D—&I—A4A)bly = O(y)—¢&.

We rewrite this equation as

) LI —-Lo(I—-4)'bly = ®(y)—¢&.

We know that if |L|| |§( —4)'d|| < 1, then the matrix I—Lé(I —4)~'d
has_an inverse. By Lemma 2 || L} < k;(a, f), and from the definitions of
A, band éit is a straightforward calculation to show that

r—1
16(I—4)="5ll = Y164/ (I—A")"b|
J=0
but
r—=1 . . r—1 00 . [ ] .
D 164/ (I—A) b = Z]aAfZA'b < 3|6 4%).
=0 =0 =0 Jj=0

This last quentity is just the I, gain of h(:) and it follows from the hy-
pothesis that it, and a fortiori ||¢(I ——E.)“b”, are less than &, (a, B)/ky(a, f).
Thus we may invert the coefficient of ¥ on the left-hand side of (7) to
obtain

(8) y = [I—-Lé(I—-4A)'6] 'L (y) — [I-L&(I -A)"'b] L.

This is an equation of the form y = ¥(y), where a straightforward cal-
culation shows that F' satisfies 2 uniform Lipschitz condition with constant

ka(e, B)u/[1 —ki(a, B) +ky(a, B)-p].

Since this is less than 1, it tollows from the Banach fixed-point theorem
that (8) has a unique solution, and from this we obtain a solution to (6).

It remains only to check that this solution we have obtained to (6)
actually represents a solution to (1). That is, we must check that sgny(j)
= sgny(j) for j =0,1,...,»—=1. To see this we write

y—¥ = D(y—§ +a(I—4) by +9(y)

= [I-D—4(I—-4A)"'b]7' [P(y) —0(F) +6(I —4)~' b7 +P(H)].

From this it follows that

ky(a, B)

——— (ully — g+ 16 (T —=A) " bl gl + p i) -
1—kala, B IGI—A) D] e

ly — 3l <

Hence
ky(ay B) (s + 16(I —A)*bIl)
1—ky(a, B) (u+16(I —4) b))

ly —gll < 7l
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But we have seen that ||e(I —A)h) = 12 ()l and it then follows from
the hypothesis of the theorem that

ky(a, B)

lly —yll< m

7l < %

From the definition of 7, this implies that sgny(j) = sgny(j) forj = 0,
1,...,v—1.

We shall next show that to each of the aperiodic trajectories for the
scalar system ¥(j+1) = ay(j)+B81ly(j)|—1 constructed in the proof of
Lemma 1 there corresponds an aperiodic trajectory for (1) having the
stated properties. Let {y;} be a symbol sequence of class k¥ (k< m). As
before, for each positive integer ¢ let n, denote the position of the {th “1”
in the sequence {y;}. Let (y(-),w;(:)) denote the periodic sequence of
period 7; constructed above with periodie symbol sequence defined by
Yo¥1 -+ Yn—1- Then (y:(0), w;(0)) is a bounded sequence in R and by
the Bolzano-Weierstrass Theorem there is an accumulation point, (y(0),
w(0)), and a subsequence converging to it. Suppcse we write, by renum-
bering if necessary, lim (y,(0), w;(0)) = (y(0),%(0)). Then by continui-

00

ty and a simple induetion argument lim (y;(%), w;(k)) = (y (k), w(k)), where
§—a0

{y(k), w(k)) is defined in terms of (y(0),w(0)) by (1). It is now not
difficult to see that (1) and the initial condition (y(0), w(0)) define
a bounded aperiodic trajectory which realizes the symbol sequence {y,}.

It remains only to prove the final statement of the theorem. If m > 0,
then any symbol sequence formed by concatenating 01 and 0001 in any
order may be realized by a trajectory. Clearly there are infinitely many
trajectories (both periodic and apeciodic) of this type. Define an equival-
ence relation on symbol sequences of class m by saying that {y;} ~ {4;}
if and only if there exist integers N > 0 and M such that y;, = J; when-
ever j > N. We shall show how to explicitly construct the equivalence
clagses for this equivalence relation, and in the process prove that each
equivalence class is a countable set. Let {y,} be an arbitrary symbol sequence
of class m. For each positive integer » define an equivalent sequence
{y;} by writing y; = y;,,forj = 0,1, ... From this collection of sequences
discard all those which are not admissible. (i.e., discard all those which
initiate with a “1”.) Let % denote the set of all finite symbol sequences
of class m. (The elements of & consist of finite concatenations of symbol
sequences of the form

ao = 01, a, = 0001, ..., a, = 00...01.)
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% is a countable set. For each positive integer » let %" denote the set of
sequences formed by the concatenation of members of ¥ with the sequence
{yi}. Le., & is the set of all sequences of the form g, q ... g, VoViVz -
Then it is clear that the equivalence class of the symbol sequence {y;}
which we started with is the union of all sets of sequences % such that
{77} is an admissible sequence of class m. Clearly this is a countable set
(it is the countable union of countable sets), and this proves our claim.
Now choose a representative from each equivalence class we have
just constructed and let the set of these representatives be denoted by 7,
One may show that  is an uncountably infinite set by observing that
the set  of all symbol sequences of class m is uncountably infinite, that
@ = \_J[t] (where [t] = equivalence class of t) and that if I~ were coun-
e

table, this would be a representation of 4 as the countable union of coun-
table sets. The uncountable set to which we referred in the statement
of the theorem is the set of trajectories corresponding to 7.

Let {y;} and {y]} now denote any two distinct symbol sequences in
7, and let o'(") = (y'("), w'(")) and &*(-) = (¥°(’), w’(-)) denote the
corresponding trajectories. We claim that |y*(j)| > 7,/2 for ¢ =1, 2 and
j=0,1,... To prove this, recall that we showed that any trajectory
corresponding to a class m symbol sequence could be approximated point-
wise by a family of periodic trajectories. Thus, let Z(-) = (#(-), @*("))
denote a family of periodic trajectories whose symbol sequences are of
class m and such that lim%* (j) = #'(j) for each j = 0,1, ... By our con-

{00

struction of periodic sequences corresponding to symbol sequences of class
m we know |§(j)| > 7 for all § =0,1,2,... and j =0,1,2,... Since
lim 7 (j)] = |¥*(j)], we may for each j choose ¢ sufficiently large that
7 — 4*(j)| < 1,/2. From thia it follows that |y'(j)] > #,/2. Now from
our construction of the set 7 it follows that there are arbitrarily large
values of j such that y; = 0 and y; = 1 or vice versa. Hence there are
arbitrarily large values of § such that y'(j) < 7,/2 and %(§) > ,/2 or
vice versa. Hence for arbitrarily large values of j

Iz (5) — 2* ()1 = ly* () = ¥* (D] > 7.
This completes the proof of the theorem.

Remark. Viewing 4 = §*—d® a8 a parameter in these models, it is
apparent that as A increases the set of symbol sequences which can be
realized becomes increasingly rich. Indeed, when §*—a® > a4+ +1 (note

that under the stated assumptions that f—a> 1/2—, a+f >0 we have
a+f+1> 3 (a—p)~* for all integers m > 0) it was shown in [1] than

k=0

any admissible symbol sequence can be realized by a bounded frajectory
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of (1). Surprisingly, if g2 — o is sufficiently large, despite the existence of
this rich family of bounded trajectories, almost all trajectories of (1) do
not in general remain bounded. This observation is made precise in the
following theorem.

THEOREM 2.: Under the:hypothesea of Theorem 1, if in addition we assume

ﬂ<’0+ﬂ, pz_az<2p,
2max{a+t-f+u, f—a+p}lble < a®—f2—pu*—28u+2(8+p),

then there is a set of positive but finite Lebesgue measure ¢n R" which is
positively invariant under the motion of (1). If p*—a® > 28, there will not
generally exist an invariani sel of positive bui finite Lebesgue measure.

Remarks. (1) This theorem is proved in [1].

(2) Alsoin [1]itis shown that when f* — a® > 28 the maximal bounded
subset of R which is positively invariant under the motion of the scalar
svstem (2), is a subset of a Cantor set. Thus no finite invariant interval
exists in this case.

3. A statistical approach to chaotic feedback systems

Much attention in the dynamical systems literature has been devoted
to the development of statistical characterizations of deterministic chaotic
motion. (See, for instance, [2], [6], [6], [7], [8], [13], and [14], to list
but a few.) In this section we shall discuss the feasibility of such character-
izations for systems of the form (1), and in certain special scalar cases
we shall write down invariant densities explicitly. The evolution equations
(1) in these cases turn out to be related to the so-called Markov maps
defined by Bowen (see [3]). We point out that in our development these
maps are not assumed to be almost everywhere expanding.
Suppose U = R” and F: U—U defines a dynamical system by

(9) e(k+1) = Flz(k)).

We shall say that a function g: U—{0, 1} is a density for the process F at
if for each measurable set F = U

k—1 "
1 .
lim - E 2e(F (7))

=m0
exists and equals

fg(s)ds.

E
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Such a density will be called invariant under F if

(10) Jerds = [ o(a)de
E

FrYg)

for every measurable E. Let g: U—R. It follows from the Birkhoff ergodic
theorem that if there exists a unique density g, invariant under ¥, then
for almost all (Lebesgue measure) z € U

k-1
.1 0
lim — 3 g(F(a)) = J 9(s) e(6)ds

3=0

whenever the integral exists.

In many cases it is possible to determine an invariant density by
explicitly solving the integral equation (10). Suppose, for instance, that
F is a k-to-one mapping and U is partitioned into &k disjoint subsets,

k
U = \J U, such that F| . is a diffeomorphism of U™ onto U™, Let
1

J=1
T‘: U‘lnt_*U':.nt

be the inverse of this restriction of F. If a piecewise continuous invariant
density o exists on U, it must then satisfy the functional equation

k

e{z) = 2

where |0T;/0x| denotes the Jacobian determinant of 7,. In the special
case of the system (1), where f(y) = |y|—1, this implies the following

oT,
_3_2;“- Q(T{(w))7

PROPOSITION. Let f(y) = ly| —1 and suppose the determinants |A — be|
# 0 and |4 +be| # 0. Then in any rectangular set E = U such that F~'(E)
c U, a piecewise conttnuous tnvariant density for (1) must satisfy the func-
ttonal equation

1
e(®) = ————el(4—bo)™ (z +b)]+

-1
|4 — be| el(4 +be)~ (z+b)].

1
|A —be|

For the scalar system (2) this functional equation becomes

1 z4+1 1 z+1
(1) o) =53 "[a—ﬁ]+ ath e[a+ﬂ]




OHAOTIC DYNAMICS AND NONLINEAR FEEDBACE OONTROL 31

f f—a*> 28, and

(12)  o(a)

{ 1 Fm_*_l' $+1

\ ﬁ}.a e ::i;? ’tf .Bz—az—a—'ﬂ_]_<w<ﬁ_a_1
if p—a*<28.

The possibility of studying a deterministic system from a statistical
point of view will require, at least, the existence of an invariant density.
This existence is by no means assured for systems of the form (1). In the
case of the scalar system (2), for example, we have remarked that when
p? —a® > 20 the set of initial conditions leading to bounded trajectories
has measure zero. The following result thus comes as no surprise.

THEOREM 3. Suppose B —a* > 28. Then
(i) there 18 no finite interval which t8 posttively invariant for (2).
(ii) If o(-) t8 a piecewise continuous tnvariant density for (2) i1 must
satisfy (11) on [—-1,8—a—1].
(iii) There 18 no bounded nontrivial non-negative solution to (11) defined
on [-1,f—a—-1].

Proof. (i) is proved in [1] (Theorem 4.1). (ii) follows from the above
proposition.

(iii): Suppose g(-) is a solution of (11) and z,e[—1,8—a—1] is
such that o(wx,) > 0. There are two values (zr,41)/(a—pf) and (z,+1)/
f{{a+pg)in [ -1, 8—a—1] which are “antecedents” of z, under the motion
of (2). p must take on a value > (82 —a*)/28 o(®,) > o(z,) at one of these
antecedents, which we label #,. (Otherwise,

1 T, +1 To+1
T e =)

1 p-ad 1 pF-a B
<p—a 25 o(xo) + atp 28 o(x,) = o(@),

which is obviously impossible.) Now a simple induction argument shows
there is 2 sequence of points z,, z,, ... in [—1, §—a—1] such that

aZqy,+B1@,| —1 = a; (sic)  and  o(a;) > [(F*—a®)/28] o(,)-
Since (8*—a®)/2p > 1, this proves (iii).
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It is easy to verify that when f°—qa® = 28 the uniform density on
[—-1,B—a—1] solves (11). When g°>—a*< 28, there may exist limit
cycles for (2) (i.e., stable periodic trajectories). It can be shown that
limit cycles provide severe restrictions on the form of any invariant density.
(See the work of Misiurewicz [10], or [4], on this point.) Nevertheless,
we may determine explicit solutions to (12) in a number of interesting
cases meeting the hypotheses of Lemma 1.

THEOREM 4. Suppose thal f —a > V2 and let
k-1

F—a* = D (a—p)".

=0

Then there 18 an invariamt density o for the system (2), and this <8 given
explicitly by

e()

a if —l<o<(a-p7",
k-1 2]-8 2l-1

[ ~a) 3 (a=p¥]a f Ya—p<o< 3 a—py!
J=0 =-1 =1

for 1=2,...,k,
2(1-1) 2(1-2)

(-0 @ - Y a—pHa if 3 (@-p7<o< 3 (a—p
=1 I

J=0 1

for 1 =?3!"'!k’

k=2
[(B—a (- 3 a—B)¥]|a if (a—p) ' +(a—p) <z <0,
j=0
a
if 0<r<f—-a-1,
B—a
0 elsewhere,

where a 18 a normalization factor chosen so that

8—-a-—1

[ el@)de =1.
-1
Proof. While this result severely taxes the notation, its proof is
a straightforward verification that (12) is satisfied.

Remarks. (1) An interesting feature of this result is that the systems
which satisfy the hypothesis of Theorem 4 do not meet the hypotheses
of the general existence result of Lasota and Yorke [8)]. Specifically, if
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F(y) = ay+ 8y} —1, then |F'(y)| = a+p<1 for #> 0 and thus F is
not almost everywhere expanding. (Misiurewicz has pointed out that
if F(—a—1) = p*—a*—a—p—1< 0, then the second iterate of F is
everywhere expanding, and the Lasota—Yorke existence result applies
to F2.)

(2) If we let § = {®,, 2y, ..., Ty} be the discontinuity points of 0y
then F(8) = §, and ¥ is monotonic on each (@, #,,,). Such funections
are called Markov maps, and these have been studied by Bowen, [3].

(3) Note that the density is nonzero almost everywhereon[ -1, f —a—
—1] except on the subinterval (a, b), where

2k--1 2k--2
a=2 (a=f~, b=) (@a-p.
J=1 Jml

One can show that any point in this subinterval is mapped into (-1, a)V
u(b, # —a—1) by a suitable iterate of . Moreover, (—1, a)U(b, § —a—1)
is positively invariant, so that all trajectories initiating in {a, b) leave
and never return.

ExAmMpLE. Suppose &k =2, a = —11/16, f§ = 21/16. Then according
to Lemma 1, (2) displays chaos. From Theorem 4 we have

(5/6, —-1l<r<1/2,

2/3, —12<x< --3/8,
a(z) ={ 1/3, —-1/4<2<0,

5/12, O0<w<l1,

\ 0 elsewhere.

The fact that g(z) =0 on (—3/8, —1/4) reflects the fact that almost
all trajectories initiating in this set sooner or later enter the set (—1, —3/8)u
U(—1/4,1).

Acknowledgements

Many of the results included in this paper were developed with the aid
of conversations with Professor R. W. Brockett, and it is a pleasure to
acknowledge his valuable input. I would also like to thank Professor
J. Zabezyk for the opportunity to speak about some related material at
the XVI Semester on Mathematical Control Theory at the Banach Center
in Warsaw. Finally, I wish to acknowledge the support of this research
by the Basic Energy Sciences Division of the U.8. Department of Energy
under Qontract DE-AC05-80ER10778.

3 — Banach Center t. 14



34 J. BAILLIEUL

References

[1] J. Baillieul, R. W. Brookett and R. B. Washburn, Chaotic motions in non-
linear feedback systems, IEEE Trans. Circuits Systems CAS-27 (1980), 890-997.

[2] G. D. Birkhoff and B. 0. Koopman, Recent contribulions to the ergodio theory,
in: Colleoted Mathematical Papers of George David Birkhoff, vol. 2, Dover, New
York 1068, 462-465.

[3] R. Bowen, On Aziom A diffeomorphisms, Regional Conf. Series in Math. 35,
CBMS: Amer. Math. Soc. Providence, R.I. 1978.

[4] P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical
Systems, Progress in Physics Series, Birkh&user, Boston 1980.

[6] T. Erben, P. Everett and P. Johnson, The simulation of random processes
on digital computers with Cebyfev mizing transformations, J. Computational Phys.
32 (1079). 168-211. ,

[6] R. E. Kalman, Nonlinear aspects of sampled-data conirol systems, in: Proceed-
ings of Sympesium on Nonlinear Circuit Analysis, Polytechnic Institute of
Brooklyn, 1956, 273-313.

[7] A. Lasota, Invariant measures and functional equations, Aequationes Math. 9
(1973), 193-200.

[8] A. Lasota and J. A. Yorke, On the ezistence of invariant measures for pieccwise
monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488.

[9] A. Marotto, Snap-back repellers imply chaos in R™, J. Math. Anal. Appl. 63
(1978), 199-223.

[10] M. Misiurewicz, Absolulely continuous measures for cerlain maps of an interval,
Publ. Math. IHES, 1980.

[11] M. Morse, A one-to-one representatton of geodesics on a surface of negative curva-
ture, Amer. J. Math. 43 (1921), 33-61.

[12] —, Recurrent geodesics on a surface of negalive curvature, Trans. Amer. Math.
Soe. 22 (1921), 84-110.

[13] B. Schweizer and A. Sklar, Probabiléistic metric spaces determined by measure
preserving transformations, Z. Wahrscheinlichkeitstheorie verw. Gebiete 26 (1973),
235-239.

[14] J. von Neumann, Proof of the Quasi-Ergodic Hypothesis, Proc. National Acad.
Sei. TSA 18 (1932), 70-82.



