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0. Introduction

The problem of the optimal stopping of stochastic processes is well known
and often described in the literature. In [2], problems for discrete-time
processes with arbitrary dependences are dealt with extensively. Shiryayev
([12]) obtained structural results for discrete and continuous-time Markov
processes and applied them to the sequential statistical analysis. Recently,
stopping problems in several respects have been generalized: consideration of
costs which undertake a valuation of the process before stopping, optimal
control and stopping [5], [10], [11], multiple optimal stopping [9] as well
as stopping games [13].

In this paper, the basic stopping problem for arbitrary discrete-time
processes is described as a statistical decision problem. For this purpose we
refer very closely to [7], give a relevant dynamic system (DS) and formulate
the corresponding Bellman optimality equation. Finally, we only briefly refer
to the solution methods of this equation if the components of DS are
Markovian.

1. A stopping system

As in the description of a statistical decision problem by a DS (see [7], 1) we
start from the so-called stopping system StS: (N, €, p, g, W) with the fol-
lowing components:
— end-time point or horizon N, N € ov;
— state space <&, countable (for the purpose of coupling with [7],
S # Q)

— law of motion p =(p,): sequence of probability distributions



416 P. NEUMANN

Pa(15n-1), Sa-1 =(S0,.--»Sq=1)ES", n =1, 2,... In the case of non-stopping,
the transition into s'e S takes place with probability p,(s|s,_);

— reward structure g = (g,): sequence of reward functions g,|S""! > R,
n=0,1,... If it was stopped at time n, dependent on s,, the reward g,(s,)
results;

—set N of admissible stopping times, ie., functions 7|&V*!
— {0, 1,..., N} such that for arbitrary sy =(sq, $;,..) and n =0, 1,... 7(sy)
=n implies t(sy) =n for all sy =(sp, sy,...) with s, =5, v=0,...,n
Whether for a concrete state sequence sy the stopping time t stops at time n
depends only on the first n-part s, =(sg, ..., S,)-

2. Description by a dynamic system

In the following, we give a possibility for fitting a stopping system to a DS
from [7], 1, in a suitable manner. The purpose is to apply immediately the
optimality equation given in [7], 14, to stopping problems. On the one hand,
the components of DS will prove to be simple. Since, however, the process to
be stopped runs a random time, but in a DS only nonrandom horizons are
provided, on the other hand there will be some particularities.

‘Now we have a DS: (N, &, D, py, p, [, @) with

— horizon N and

— state space & as above;

— decision space D = {0, 1}. Here d = 1 denotes stopping, d =0 non-
stopping;

— 1nitial distribution p,: There exists an initial state s = S with pg(s)

— law of motion p= (pn)’ Pn = pn('lhn—l’ dn— l)i -hn—l = (S(ls dO’ S14---
vesySp—1) do_,€D. For pairs (h,_,,d,_,) with dy =... =d,_, =0, at which
no stopping occurred, let p,(s'|h,_;, d,— 1) := Pa(s'|5,-1); otherwise we put

P,.(S’|hn—1, dn— 1) :=6s,,_ 1.5 (l)

(1) means that the DS preserves that state until the end-time which 1t has
been reached at the stopping time;
— cost structure f=(k,), k|9, — R. In particular we put

k,(s0,0,5,,0,...,0,5,) =0, n<N, (2)
km(SOs 0"-" 0! Sps 1, Sp+ 1 dn+1""ldm-1a Sm)
= knt1(50,0,...,0, 5, 1, 5,41} = —g4(50,---,54), n<m<N. 3)
(2) means that before the first stopping decision d = 1 nothing is paid, (3)

means that after the first d = | nothing more is paid. Thus, (—1) times the
quantity in (3) represents a reward resulting once. Moreover, in the case N
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< oo the quantity —ky(so, 0, ..., 0, sy) is the reward paid at the end-time if
the process has never been stopped belore;

— set ® of admussible strategies: One can find (not only in one manner)
strategies 9 = (J,), 0,/9, — T, the decisions of which correspond to a stopp-
ing time t. For the purpose of an appropriate mathematical description,
starting from t we choose that strategy 3 = (8;) which makes a stopping
decision anew at all the following time-points: For sy with 7(sy) = k and
h, = b (a, sy) (see [7], 2) we have

0 if n=0,....,k—=1, k<N,

55 (hy) =
n () L f n=k k+l,...k<N

or
Sih)=0 if n=0,1,..., k=N.

Finally we define @:={%: 3 =9, 1eN}.

3. The process to be stopped and the optimal value function

We consider the stopping time T:= N. For the corresponding strategy J:
= 9, by the theorem of Ionescu-Tulcea (see [7], 3) there exists a probability
space [2, &, Py5), @ =S¥, F=(B(S)"* ", P, 5 =:P,, s being the initial
state of the DS, as well as a stochastic process X :=(X,), n=0, 1,... over
[Q, &, P,] describing the state of the DS. We call this process the process to
be stopped or the running process.

It is worth while to note that the corresponding measure P, for every
other strategy 3€ ® can be described uniquely by P,. Furthermore, for every
stopping time 1t one can define by

Y,,(Q)) .= Xmin(r(w).n) (U)), n= 0, 1, ren

a stochastic process X':=(Y,) over the same probability space [Q, &, P,].
We call it the process stopped by 1. We denote §&,:=0d(S,) G,
=(Xo,..., X,). The stopping time 7, first defined purely algebraically, now
proves to be a random variable |[@, &, P,J—{0,1,...,N} for which
fo: t1(w)y=nle &, n=0,1,... holds. Thus, t becomes a stopping time in
the sense of measure theory [1]. If we denote further G,:= g,(Xo,..., X,),
n=0,1,..., G, is defined as

G,(w) on lw:t(w)=n}, n=0,1,...,
0 on |w: t(w)= w}.

G,(w):={

- If we postulate E.g, (X,,...,X,) <o, n=0,1,..., there exists E,G,,
eventually being infinity.

In future, we shall consider the class M, := {1: P,(n <1 < ®)
=1, se S} of stopping times. Let (&) :={s,: P,(S, =5, >0} be the

27 — Banach Center t. 16
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set of all P,-essential state-n-histories. (For such s,, we must necessarily have
5o = s.) Then, the expected reward

va(8) 1= Es(G| S, = 5,),

given s,€(&"* 1) caused by te M,, is called the value relative to ¢ at stage
n, n=0,1,... The function v} defined by

va(s,) 1= sup vp(s),  s5,€(E"M)
ety
is called the optimal value function. Determining this function is the first
object in solving a stopping problem.
We note that vf(s,) 1s a realization of the so-called random optimal value

Sfunction

V¥.=sup E|(G,|&S,), n=0,1,... (4)

e,

It is an interesting fact here that although, in general, M, is a more than
countable set, because of the countability assumption of & V,* is a measur-
able function, 1.e, a random variable on [, &, P,]. Finally we remark that
Vg is a constant.

4. Reactivity of stopping times

DEFINITION. A stopping time t€ I, s called reactive if for all we2
with s, =a,we(S"* )} the inequality t(w)>m implies E(G,|S,)(w)
>Gpw), m=nn+1,...

Remark. If e M, is reactive, for some weQ the first m-part s, = a,
of which is P -essential and for which

Esgr(sm: Xm-#-l"--:Xt)sgm(sm) (5)

holds, the equality t{(w) = m follows. If an essential state-m-history would
result a reward at least as large as the one would expect by continuing the
process, a reactive stopping time stops at time m. The only important case
here is that of equality of (5), in which it seems irrelevant whether we stop or
continue. A reactive stopping time does not make the latter decision.

Let us denote M, := {1eM,, 7 reactive}, n =0, 1,... We now cite a
theorem and a lemma which are due to [2].

THEOREM. From a stopping time te N, we construct a stopping time
o(1). Then we have:

(@ e(@M<r,

(b) e()eM,

(© E(G,n|S,) 2 E(GS,),

(d ele) = elx).
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Lemma. For 1y, 1,9, the stopping time 1 := max(t,, 7,) also belongs
to MM, and we have

E.(G|S,) = max E(GS,), n=01,...
i=1,2

Now we can state the following

THEOREM. The subset @' < @ of strategies of the DS considered above,
the relative stopping times of which form the set My, has the property of
completeness (see [7], 6a), with regard to the stopping problem formulation, <
is to be replaced here by > and min by max.

Proof. Let n=0,1,..., 3@’ and 5,e(S"*!)* (3) be given. For every
34, 3,€0,(3) we have to show the existence of a 3 €@,(9) such that

Ups 1,3’(sm S’) 2 max (Un+ 1,94 (5n= Sl), Upt 1.92(5113 S,))

holds for all s’e @ with p,,,4(s's,) > 0. (For all notation, see [7], 5.)
Obviously we can restrict ourselves to such s, and 3, relative to which until
time n no stopping decision is made. For the stopping times 1; corresponding
to J;, by assumption we have t,e W, ,, i =1, 2, and, because of

U+ 1.3,~(5n+ ) = Vi1 (Sest) = Es(Gr,-|6u+1 = Sp41)s

Sy+1 = (5., 5'), the concluston follows by the lemma. m

5. The optimality equation

THEOREM. For the optimal expected reward V¥ (4) the Bellman optima-
lity equation

V. = max(G,, E(V;%,1S) (6)
holds; for every s,e(S"*')) therefore we have
() = max(ga(s), T puv (518 0kv (5, 5) (6)
where n=0,1,...
Moreover, in the case N < oo we have
V¥ = Gy; (7)

for every sye(GN*Y)} therefore

vi(sn) = gn(sn)- (7)
Proof. Without loss of generality, in considering (4) we can restrict

ourselves to M, < IN,. Furthermore, we have seen that @ is complete, and
because of

(E(G|S,)” < E(G/|&) <o, 1M,
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a condition analogous to condition (V) of [7], 14, holds. Then, by [7], 14, we
have the optimality equation
v\:ln(sn) = Sllp Z pn+1,q (S’IEn)(cn-f l,n(sm S’)+U;i,,+1 (5m S'))
ne@n_ 1(3) s'eE
for every 3€® for which @,_,(9) = 6,_,(9) holds. However, the decision

function 6, of every ne®,_,(9) has the values d =1 (stopping) and d =0

(non stopping) only, and sup reduces to a maximization over two terms.
ne8,_ (8
Finally, for d =1 we have

Pn+ l.q(sllsn) = 5511-5" Cn+ l.n(sm Sl) = gu(su) and v:lu+ 1 (5", S’) = O,
whereas for d = 0 we have Cpt1,9(50, 5) = 0, so that (6), (6') follow. (7), (7) are
trivial. .

A numerical calculation of the optimal value v&(s) of a stopping
problem by means of the optimality equation succeeds — il at all — at most
for N < oc. In this case Bellman’s well-known backward induction technique
is applicable. Under additional assumptions the optimal value function of an
infinite horizon stopping problem is approximated by a sequence of optimal
value functions of finite ones. A greater chance for the practical solvability of
a stopping problem, however, can be found at most in the so-called Markov
case.

6. The Markov case

We shall say that we have the Markov case for the stopping system StS if

(@) p,(-|s,-y) for all s,_; =(sg,...,5,-1)€(S"), depends on s,_, only,

(b) g, (s, for all s, =(sq,...,5,)e(S" ") depends on s, only, (we shall
write shortly g,(s,)),

(c) every stopping time t€ R has the property that t(sy) = n implies
t(sy) = n for all sy =(sp, s}, ...) with s, =5,.

We note that in the Markov case the stochastic process X to be stopped
as well as the process X® stopped by a stopping time te 9t are Markov
chains.

Now we want to fit the StS to a DS with Markov components. In
particular, we suppose that the set & of admissible strategies consists of all
Markov strategies, i.e., the decision functions depend on the last state only.

We have the following particularity here: Whereas in a DS rewards (or
costs) will occur at every step, in a stopping problem a payment is provided
only once. If we do not register whether a stopping decision is already made
or not, an immediate description of a stopping system as a DS is not
possible.

The first step in overcoming this difficulty consists in marking every
state se€ & according to whether before reaching se € a stopping decision 4
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= 1 is made or not. This leads to a definition of new states of the form (s, d),
seS, del0, 1}

However, because of the fact that after a stopping decision the DS must
remain in the state reached and that in every state (s, 1) the same reward,
namely 0, is paid at every step, the description can further be simplified by
clustering all states (s, 1), se S, into a state o, the so-called cemetery. The
states (s, 0), se &, will be denoted by s, as before.

Now, a stopping system in the Markov case can be described as a DS:
(N, &, D, po. (p), (c,), @) with step costs ¢, instead of cumulative costs k,
(see [7], 5), where in detail we have the following:

— N, D, p, as before;

- &=6Guls), 6¢6G;

— pa(s'ls, 0y = p,(575), s5,5€€; pyals,1)=1, se&; pylolo,d)=1,
de®, n=1,2,...;

- ¢,(5,0=0, 5€C; cp(s, 1) = —g,(s), s€S; ¢,(0,d)=0,deD, n
=0,1,...;

— 0O, set of all Markov strategies.

We note that v} depends on the last reached state s only. Since v} (o)
=0 is known, the state ¢ does not disturb practical calculations.

For a finite state space &, in the Markov case we have the following
procedures for practical calculations: .

— value iteration procedure (for instance, see [12]);

— linear programming (for instance, see [4]);

— stopping set enlargement procedure (for instance, see [3], [6]).

A comparison of all three methods is outlined in [8]. There is a
reference to an ALGOL program package which by numerical experience
automatically switches to the most favourable solving routine.
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