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1. Introduction

The LQ-optimal control problem is concerned with regulating the linear
time-invariant system

(1) #(t) = Aw(l)+ Bu(?)

in such a way that the quadratic cost function

2

(2) n = [ [& (®)@u(t)+w () Ru(t)]dt +a' (1) Sz (t,)
%

is minimized. In these expressions £ and « are respectively the state and
control vectors, A and B are matrices of appropriate dimensions, @ and S
are positive semi-definite matrices, and R is a positive definite matrix.
In this paper 4, B, Q and R are assumed to be time-invariant. The above
problem statement is a mathematical expression of the fact that one
wants to design a control to drive the state or part of the state of the sy-
stem to zero, without using excessive input energy. Moreover, at the final
time {, the deviation of the state from the zero state has particular impor-
tance; it is therefore penalized separately. In many applications the
penalization of the state has the following aspects:

(i) Some state variables shonld be kept small during the transient
period; they are penalized by &' ()@ ().

(ii) Some state variables are not important during the transient
period, but should be controlled towards zero; they are penalized by
&' (t,)8=(t,), but not by «'(t)Qx(t) in the integral term of 7.

[668]
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(iii) It may also occur that some state variables are not to be con-
trolled; for example, for a machine speed control system the angular
position may not be important. Such state variables are penalized neither
in #’(t)Qz(t), nor in z'(t,) Sz(t,). It should also be pointed out that in many
practical applications the transient interval (I, —1,) is rather artificial.
To avoid this problem, an infinite time interval is considered: f,— oo,
Without loss of generality, ¢, can be taken equal to zero. Then the problem
statement is to control system (1), minimizing

[.]
(3) n = [ [ 1)Qu(t) +u’ (t) Bu(t)]dt
0
with stabilization constraint:
(4) lim Fz(t,) =0,
§y—oo

where F is defined by
S =FF.

Without loss of generality it can be assumed that ¥ has full rank. Hence
if the rank of 8 is 7, then F is a matrix with r rows and » columns, where n
is the dimension of the state # and F has rank r.

If the pair (4, B) is controllable or stabilizable, and if @ = C'C,
with the pair (4, C) observable, or even detectable, then the solution
to the above problem is the standard optimal regulator. The optimal control
is the feedback strategy (Kwakernaak and Sivan [5]):

(5) u(t) = —R™'B Ka(t),

where K is the unique positive semi-definite solution of the algebraic
Riccati equation
(6) A'K+KA-KBR'B'K = —@.

Then the closed loop system is asymptotically stable, i.e., all eigenvalues
of (A -BR™'B’'K) have negative real parts. Moreover, the unique positive
semi-definite solution is the only solution of (6) with the stabilization
property. The optimal regulator is hence the optimal control strategy with
respect to the cost function (3) even without the stabilization constraint
(4).

If (4,C) is an undetectable pair, then the optimal control of (1)
with respect to cost function (3) is also given by (5). However, the algebraic
Riccati equation (6) has now several positive semi-definite solutions. This
set of solutions forms a lattice with a largest element, the stabilizing
golution, and a smallest element, as was pointed out by Kucera ([4]).
The smallest solution yields the optimal control, but it does not stabilize
the system. This control hence does not necessarily satisfy constraint (4).
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In the present paper the solution of the LQ-control with stabilization
constraints is discussed. In Section 2 it is shown that incorrect results
may be obtained by considering the problem as the limiting case of an
optimal control problem over a finite time interval with terminal con-
straints. The correct solution is derived in Section 3 and discussed in Sec-
tion 4. Throughout the paper stabilizability of system (1) is assumed;
this means that system (1) can be made asymptotically stable by linear
time-invariant feedback. It is also supposed that the Hamiltonian matrix

A —BB'
H =[_Gf0 _AI ]

has no imaginary axis eigenvalues. These conditions are necessary and
sufficient for the existence of a stabilizing solution of (6), i.e., a solution K
of (6) such that system (1) with feedback control (5) is asymptotically
stable. This is proved by Kucera [4]. For simplicity we only explicitly
discuss the casec that A has distinet undetectable eigenvalues.

2. Limiting case of a finite time interval problem

To solve the problem formulated in the previous section the limiting
cage of a finite time interval control problem is considered. The optimal
control of system (1) is derived with respect to the cost function

b
(7 n = f (2'Qz +u' Ru)dt
0

with términal constraints
(8) Fe(t,) =0.

Afterwards the limiting behavior for {,—oc is discussed. This control
problem can be solved in two ways: a direct solution procedure leads to
the optimal feedback (Bryson and Ho [2])

(9) u(t) = —RB7'B'[K (1) +H(1)]2(t)

for 0 <t < t,, where K (t) is the solution of the Riccati differential equation
(10) K@) = —A'EWt)+E()A-E()BRB E(1)+Q

with terminal condition

(11) K@) =FF.

The matrix H(¢) is given by

D' (0, ) F' M (1) FD(y, 1),
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where &(t,,1) is the transition matrix of the system

(12) #(t) = [A—BR™'B' K (1)]z(t),
and where
f

M) 1= F[ [ ®(t, 7" BR'B &1, -r)d-:] F.
0

The invertibility of M (t) for t< ¢, is implied by the controllability of
system (1). Actually, the weaker property of output controllability should
only be required; this is the property that there exists a control which
drives Fz(t) to zero at ¢ =t,. Note that H(f) tends to infinity as t1—1,.
The behavior of M () and M (t)~' is discussed in much detail by Bru-
novsky and Komornik [1].

An alternative procedure for deriving the optimal control of (1) with
respect to the cost function (7) and constraint (8) is to consider the optimal
control of (1) with respect to the cost function

tH
7 = f (#' Qo + v’ Ru)dt+ ax’(1,) F' Fo(t,)
1]

and to let the scalar a tend to (4 oc). This algorithm is often called the
penally function method, because the state constraint is replaced by adding
a term in the cost function. The constraint (8) is indeed replaced by
a strong penalization of a non-zero Fz(t!,). The method of solving the
linear-quadratic optimal control problem with terminal condition as the
limiting case of an unconstrained problem is analysed rigorously in a re-
cent paper by Brunovsky and Komornik [1]. The following optimal
control law, equivalent to (9), is obtained:

u(t) = —R™'B'P_(H)z(l),
where
P,(t) =1limP,(t) = H()+H(1).

The matrix P,(t) is the solution of
P,(t) = —A'P,(1)—P,(t)A +P,() BE"'B'P,(1) —Q
with terminal condition
Pa (tl) == G.F'F.
It can easily be shown that P () exists for all 1< ¢,;.
Next the limiting behavior for {,—>oo of the obtained feedback law
is considered. The results can be derived from the criteria developed

by Callier and Willems [3]. Earlier useful results on the limiting behavior
of the solution of the Riccati equation for increasing time interval have
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been obtained by Kucera [4]. In particular, it has been shown that the
limiting behavior of P,(t), for {,—oo, is independent of a for all positive a.
The main conclusions are:

(i) Depending on A, C, and ¥, the matrix P (!) may or may not
converge to a constant matrix as t,—oo.

(ii) If A, C, and F, satisfy the criterion derived by Callier and Willems
[3], then P,(t), and hence also P, (¢}, tends to a constant matrix P, as
(¢ —t)—>o0o. This constant matrix is such that all modes, detectable with
respect to the pair (4, (), are stabilized in the closed loop. Moreover,
some undetectable modes are also stabilized, but some are not. A pro-

cedure has been developed by Callier and Willems [3] to identify the modes
that are stabilized in

A—BR'B'P,.
The number of unstable closed loop modes is the dimension of
NP (C, AYNnA (F),

where 4 denotes the null space, and where 4'2(C, A) is the space span-
ned by the undetectable (generalized) eigenvectors of A, or the unde-
tectable subspace of the system & = A« with output y = Cu.

ExampLE 1. Consider the second-order system (a > b > 0)
@y = awy+u,,

(&, = bwa+ ua

with cost function
4

= [ (6 +uj)at
0

and constraint
@y (1) +a,(t,) = 0.

Then the limiting value for ?,—>oc of the optimal feedback is
# (1) = —2az, (1),
'u'a(t) = 0.

The most unstable mode is stabilized; the least unstablec mode is not
stabilized. Hence this feedback does not yield

‘lim [21(y) +24(t4)] = 0.
g
ExaMpLE 2. The second-order system

& = Ty + @5+ uy,

By = =B+ T+ %,
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has two unstable complex conjugate open loop modes. Consider the cost
function
4

n= [ (ui+ui)dt
o

and the constraint
z,(4) = 0.

For t,—>o0, the optimal control strategy tends to the feedback strategy

uy (0)] [ 2cos(t—1,) —2sin (t —t,)cos(t — ;)] [#4(?)
u,(t)]_ —2sin(t—1t,)cos(t—1t,)  2sin2(t—1t,) w,(t)]’

where the feedback matrix is periodic.
Both examples show that the feedback

u(t) = —R-fB’Pom(t)

obtained by letting #,-»oco in the problem statement (1), (7), and (8), is
not always the solution of the infinite time control problem (1), (3), and (4)
since the stabilization constraint is th necessarily satisfied. In the next
section a correct solution procedure is developed. In the remainder of the
present section an interpretation is given of the fact that the constraint

Fz(t,)) =0

for t,—>oo does not imply stabilization of all system modes which are
present in Fx. The reason is that stabilization is not equivalent to having
Fz zero at some very distant instant of time.

For Example 1 consider an initial condition

z,(0) =0

such that, without control, only the least unstable mode is excited. Hence
the optimal feedback derived above is zero for that initial condition.
To explain this phenomenon, consider the trajectories of the uncontrolled
system equations; one readily obtains

oy (4) + @, (1) = exp(at,)2,(0) +exp(bt,)z,(0).
This expression may be made zero by only using a control which transfers
the state from
2,(0) =0, 5,(0) =8
to
#,(0+) = exp[(b—a)]8, @,(0+) =§8.

As t,—> o0, the control required to realize this transfer tends to zero.
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In Example 2 the evolution of z,(?) for the uncontrolled system is
2,(%) = [2:(0)cos(t,) +2,(0)sin(t,)]exp(t,).
For a given initial state the uncontrolled system state satisfies
z.(t) =0

for periodic values of t;; for other values of t,, a control is necessary to
satisfy the constraint. The limit of the finite time interval control problem
obviously does not lead to the solution of the infinite time interval control
problem, because it can easily be seen that the optimal eontrol for problem
statement (1), (3), and (4), is time-invariant.

Brunovsky and Komornik [1] also analyse the limit of the linear-
quadratic optimal control problem for increasing time interval. However,
their approach is different; they consider a finite time problem without
final state penalty and without terminal constraints. Then they consider
the limit for infinite interval, and afterwards they analyse the stability
properties of the obtained closed loop system; for time-invariant problems
the limit always equals the smallest positive semi-definite solution of the
Riccati equation, as is pointed out by Callier and Willems [3], such that
no undetectable modes are stabilized. However, Brunovsky and Komor-
nik’s analysis is more general since they also consider non-stationary
systems which are not necessarily stabilizable.

3. Alternative solution procedure

The praoblem of the optimal control of (1) with respect to the cost function
(3) and constraint (4) can be solved by associating it with an infinite time
LQ-problem without stabilization constraint in the following way. Consider
the optimal control of (1) with respect to the cost function

Ny =f [#'Qx + px' Sz + v’ Ruldt,
1]

where p is a positive parameter., The optimal control is the feedback
strategy

#(t) = —R'B'K,x(1),

where K, is the smallest positive semi-definite solution of the algebraic
Riccati equation

(13) A'K,+K,A-K,BR'BK,+Q =0.
It follows from the structural properties of the algebraic Riccati equation

that, as u—0, the matrix K, tends to a limiting value, which is denoted
by K,. This matrix K, satisfies equation (6), but it is not necessarily its
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smallest positive-definite solution. It is straightforward to conclode tha
the control

(14) %(t) = —R'B'K,a(t)

is the optimal control of (1) with respect to cost function (3) and with
the stabilization constraint (4). This feedback control exactly stabilizes
these modes of (1) which are detectable from the output

+[]-

Hence K, is that solution of (6) which is supported, in the sense discussed
by Molinari (6], by the invariant subspace spanned by the eigenvectors
of A which are undetectable from the output which consists of the output
9, = Cz which appears in the cost function and the output y, = Fz
which is to be stabilized. For the examples considered in the previous
section, the results are:

ExamprLE 1. The optimal control of the system of this example with
stabilization constraint

lim [@, () +24(f)] =0

t—0o
and cost function

n=[ (u+uddt
0
is the feedback strategy
%y (1) = —2amy(t), uy(t) = —2ba,(t).
The minimum cosat equals
fimin = 2, (0)2 +2b2,(0)2.

This solution is different from the solution obtained by means of the
limiting procedure of Section 2. The present solution is the correct one
since the stabilization constraint is satisfied.

ExampLE 2. The optimal control of the system:of the second example,
with stabilization constraint

[ .Y
and with cost function
n=[ (u}+ud)at
0
is the feedback strategy
u(t) = —22,(1), U(t) = —2m,(1).
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The corresponding minimum cost is
Nmin = 2[2,(0)? +2,(0)*].

4. Discussion

4.1, The limiting procedure discussed in Section 2 leads to the exact
solution if and only if
K, =lim P(1).
i—+—00

A necessary and sufficient condition is that the subspace

N D(C, AynN'(F)

is8 A-invariant. A particular case occurs when ¥ is the identity matrix,
Then the correct solution is obtained by considering the limiting case
of the finite time problem.

4.2, The invariant subspace supporting the solution K, of (6) is the
largest A-invariant subspace contained in

AD(C, A)nA (F).
It is the invariant subspace

(514)

This is the undetectable subspace of the system & — Az with respect
to the putput consisting of Ox and Fz. The optimal control stabilizes all
modes except those which are at the same time undetectable with respect
to Cr, and contained in A4 (F). Hence, if F' is the identity matrix, then the
optimal control stabilizes all modes. Then K, is the largest posgitive semi-
definite solution of (6). As was pointed out in 4.1, it is also the limiting
case of the finite time problem. These results are equivalent with Theorem 4
of Brunovsky and Komornik [1].

4.3, The solution of problem statement (1), (3), and (4), leads to an
asymptotically stable closed loop system if and only if system (1) with

output
Y=|r

is detectable. Then the largest solution of (6) should be used (Kucera [4]).
Hence, as far as stabilization is concerned, penalization of an output in the
cost function or a stabilization constraint with respect to that output
are cquivalent.

37 — Banach Center t. 14
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4.4. The stabilization constraint (4) does not affect the solution
of the optimal control problem if and only if
N D(C, A) ¢ ¥ (F)
or, equivalenty, if

ND(C, A) = D ([g,], A).

Then no eigenvalues of A which are undetectable from the output Cz
are stabilized by the control strategy (14). The solution K, of (6) which
should be used here is its smallest positive semi-definite solution (Kucera
[4]). This corresponds to Theorem 2 of Brunovsky and Komornik [1]
for the time-invariant case.

4.5. The solution of the optimal control problem (1), (3), and (4)
can always be derived as the limiting case of the following finite time
interval problem where the time interval tends to infinity, provided
appropriate terminal state constraints are introduced. The finite interval
problem consists of optimally controlling system (1) with cost function (7)
and with terminal constraint

Wa(t) =0,
where
W:=FF+A'FFA+ ... +(A'F'FA.

The optimal feedback control strategy can hence be derived from the
solution of the Riccati differential equation (10) with
K{t)=W
and {,—oo. Note that W has been constructed in such a way that
A (W)nA/2D(C, A)

is A-invariant since A (W) is A-invariant.

4.6. Intuitively one might expect that the introduction of a final
state penalization in (2) may represent the stabilization constraint for

large time intervals. The question thus arises whether the cost function
(2) leads to the stabilization

limSz(t) = 0

{00

when the control interval (f, —¢,) tends to infinity. Here again the answer
is that this is the case if and only if

N (8) NN D(C, A)

is an A-invariant subspace. In particular, the final state penalization leads
to an asymptotically stable closed loop system iff

A (8)NH#2(C,A) = {0}1
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a8 is shown by Kucera [4] or Callier and Willems [3], The stabilization
constraint (4), however, leads to an asymptotically stable closed loop
system iff the largest A-invariant subspace contained in

N (8)NHD(C, A)

is {0}. To ensure a stabilization constraint by means of final state penali-
zation the procedure of 4.5 should hence be used.

5. Conclusion

In this paper the optimal control of a linear system with respect to a quad-
ratic cost function and stabilization constraints has been analysed. It
was shown that incorrect results may be obtained by considering the limit-
ing solution of a finite time interval control problem with terminal state
constraint. The correct solution was derived; that solution of the algebraic
Riccati equation should be selected which exactly stabilizes the modes
in the stabilization constraint.
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