MATHEMATIOAL CONTROL THEORY
BANACH CENTER PUBLICATIONS, VOLUME 14
PWN - POLISH SCIENTIFIC PUBLISHERS
WARSAW 1985

A PENALTY METHOD FOR DERIVING NECESSARY CONDITIONS
IN PROBLEMS OF OPTIMAL CONTROL

LEONARD D, BERKOVITZ
Department of Mathematics, Purdue University, West Lafayette, Ind., U.S. 4.

1. Introduction

Currently, the standard proofs of necessary conditions in problems of
optimal control and mathematical programming are based upon a lineari-
zation of the problem about the optimal solution and upon the separation
of convex sets. In the case of optimal control problems, the proofs involve
detailed studies of the effects of perturbations of the controls and initial
data on an optimal trajectory and utilize the Brower fixed point theorem,
or its equivalent, to justify the neglect of the higher order terms in the
linearized problem. In this paper we shall show how to use a penalty
function technique to obtain the maximum principle for relaxed optimal
control problems, including the relaxed hereditary control problem. In
our opinion, the penalty function proofs are simpler than the standard
proofs, both conceptually and technically. Except for the finite-dimensional
case, we shall only present the outlines of the proofs here. For full details
the reader is referred to [2], [4], [7], [8].

The use of penalty methods was suggested by Courant [5], but was
not fully exploited by him. A penalty method was successfully employed
in optimal control theory by A. V. Balakrishnan [1], who used it to obtain
the maximum principle along particular optimal trajectory-control pairs
that are obtained as limits of solutions to penalized problems. The approach
described here uses some of Balakrishnan’s ideas, and was suggested by
E. J. McShane’s penalty function proof of the multiplier rule for finite-
dimensional problems [9].

2. The finite-dimensional problem

The basic ideas of the penalty function technique are very clear in the
finite-dimensional case, where technical difficulties do not obscure the
procedure. We therefore first derive necessary conditions for the finite-
dimensional programming problem. Our presentation follows McShane [9].

[59]
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Let X, be an open set in R*. Let f be a €' mapping from X, to R’,
let g = (g% ..., ™) be a C* mapping from X, to R™, and let & = (b, ..., k)
be a €' mapping from X, to R*, Let

={x: 1eX,, g(2) <0, h(z) =0},

where ¥ = (¢', ..., ¥™) > 0 means that each component 4’ is nonnegative.
The problem to be considered in this section is the following.

PROBLEM 1. Minimize f over X.

We shall use the following notation. The inner product of two vectors
« and y will be written simply as zy. If 4 is an m X #» matrix and « is an
m-vector, then A will denote the product of the row vector & with the
matrix 4. If ¥ is an n-vector, then Ay will denote the product of A with
the column vector y. For the real valued function f, the symbol Vf(zx)
will denote, as usual, the gradient of f evaluated at x. For the vector
valued function g, the symbol Vg(z) will denote the Jacobian matrix
of g evaluated at «; i.e., the matrix whose entries are (8g‘/é2’) (x). The
ordinary euclidean norm will be denoted by | ||. Thus |z|| = (z =)'

We shall use a penalty technique to prove the following multiplier
rule.

THEOREM 2.1. Let T be a solution of Problem 1. Then there exists a real
number 2* > 0, a vector A € R™, 1> 0, and a vector u in R* such that:

(i) Ag(z) = 0;

(ii) (A% 4, p) # 0; and

(iii) 2° Vf(Z)+ AVg(Z)+uVh(Z) = 0.

Proof. Without loss of generality we may assume that x = 0 and that
f(&) =0. Let I ={i: g/(x) =0} and let J = {i: g'(F) < 0}. Suppose
that the indices are such that I ={1,...,r} and J ={r+1,...,m},
where 0 <r<{m, and J = 0 if r = m. Let gr =(g% ..., g") and Iet gy
= (g'H’ ey g7

For ¢ > 0, let B(c) denote the closed ball with center at the origin
and radius ¢;i.e., B(e) = {z: |z| < ¢}. Since X, is open and g is continuous,
there exists an &, > 0 such that B(e,) = X, and g,(z) < 0 for z € B(g,).

The first step in the proof is to define a penalty function on the
cartesian product of B(¢,) and the positive integers as follows. Let o be
any real valued (! function defined on (— oo, o) such that w(u) =0
for u < 0, w(u) > 0 for v > 0, and w is increasing on [0, o). The penalty
function F is defined as follows:

r 3
21)  F(z,N) =f@)+llt+¥{ Y ofd @)+ Y (1@},

fo=1 fm=1

The second step is to establish the following result.
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LEMMA 2.1. For every 0 < € < g, there exisis an integer N (&) such that
the minimum of F (-, N (e)) on the closed ball B(c) is attained at a point x,
tn the interior of B(e).

To prove Lemma 2.1 let us suppose for the moment that we have
proved the following fact.

LEMMA 2.2. For every 0 < ¢ < ¢, there exists an integer N (e) such that
F(v, N(e)) > 0 for all & such that |v)| = e.

Since F{-, N (e)) is continuous on the compact set B(e), it attains
its minimum at some point z, in B(e). From the definition of F we see
that F{0, N(¢)) = 0 and from Lemma 2.2 we have that F(z, N(e)) > 0
for |z = &. Hence we must have |z, < e.

Thus to complete the proof of Lemma 2.1 we need to prove Lemma 2.2,
To this end, suppose that Lemma 2.2 were false. Then there would exist
a sequence of integers {N,} with N,—oo and a sequence of points {z,}
with {lr,| = ¢ such that F(z,, N,) < 0. Hence

r k
(2.2) fla) +laalt < =N, { Y ofg'(@,) + D) (#(z,))?}.
i=l fw]
Since for each p, |7, = ¢, there cxists a subsequence, which we again
label as {z,}, and a point z* with ||z*| = ¢ such that x,—z". If in (2.2)
we divide through by —XN, and let p—oo we get, since f, g, h and w are
continuous, that

r k

0> D wlg'(@)+ Y (K (a").
iml i=1

Hence for each ¢ =1,...,r, (") < 0 and for each ¢ =1, ..., &, k(2%

— 0. Since ||p*]| < £< ¢, g;(5*) < 0. Thus #* € X. Hence

(2.3) 0 = f(0) < f(2").

On the other hand, from (2.2) we have that f(z,) < — &% Since f(2,)—>

—f(z"), we have that f(z*) < —e?, which contradicts (2.3) and Lemma 2.2
is established.

It is clear from the above proof that if {¢,} is a sequence tending to
zero, then we may suppose that the integers N (e,)—oc.

The third step is to derive necessary conditions that are satisfied

at a point », at which the unconstrained function F(-, N(¢)) attains its
minimum on the set B(e).

Since x, is an interior point of B(e),

oF .
W(a:,,N(e)) =0, j=1,...,m,
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or
(2.4)
i{, (@) +22]+ Z Norlg'(@) 5 o @)+ ZzNh‘(m.) () =0,
j=1,..,n
Define

Ley = {1+ 2 [¥o' (g (z))]* + 2 [2NK (=)},

fum]
A’(e) = 1/L{e),
i) = No'lg*(z,))/L(e)y, ¢=1,...,7r,
Ae) =0, i=r+1,...,m,
,u‘(s) = 2Nh(2,)|L(s), t=1,...,k

Note that (1°(e), A(¢), u(¢)) is a unit vector and that i°(e) > 0, A(e)
> 0. If we divide through by L(¢) in (2.4), we obtain:

U
@5 Pl @)t +Z‘A‘()a""’+2 w0 o,

j=1,..,n

This is our desired necessary condition, which we call the e-multiplier
rule.

The final step is to let ¢—0 and let the e-multiplier rule tend to the
multiplier rule of Theorem 2.1. Thus, let {¢,} be a decreasing sequence
converging to zero. Then the corresponding minimum points «, —>0 Since
the vectors (J.°( 2)r A(g), u(e,)) are unit vectors, there exists a subsequence,
which we again label as {¢;}, and a unit vector (1°, 1, u) such that

(lo(sq)a J-(5'};)3 ‘u(aq))_*()'o: Ay p).
Clearly,

20, 4=04..,N=20, 2., =0,

and Ag(0) = 0. Also note that L(e,) > 1. Hence, if we let ¢,—0 in (2.5),
we obtain the conclusion of Theorem 2.1.

It is easy to see that A° > 0, and hence may be assumed to equal
one, whenever the following constraint qualification holds [6]. The matrix
Vh(Z) has rank k and the system Vg;(Z)z > 0, VA(Z)z = 0 has a solution
z in R",
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3. The optimal control problem

The first control problem to be considered is the following. Minimize

(3.1) I(,w) = [ 1°(t, p(2), u(t)at

over all pairs of functions (¢, «), defined on [0, 1] such that ¢ is absolutely
continuous and « is measurable, and such that the following hold:

(3.2) ¢’ (1) = f(t, (1), u(¥) a.e.,
(3.3) u(t) € 2(t) a.e.,
(3.4) (#(0), ¢(1)) eB.

Such pairs (¢, ) will be called admissible pairs. The function ¢ will be
called an admissible trajectory and the function 4 an admissible control.

The following assumptions are made about the data of the problem.
The function f°: (¢, 2, 2)—>f°(t, z,2) is & mapping from I, xR" xR™ to
R, where I, is a fixed open interval containing [0,1]. The function f:
(t, ¢, 2)—>f(1, ,2) is a mapping from I, xR"xR™ to R". The functions
f° and f are (i) differentiable on R™ for fixed (¢, #); (ii) continuous on
R™ x R™ for fixed t in I,; and are (iii) measurable on I, for fixed (#, 2).
Let f,(t, #, 2) denote the matrix of partial derivatives of f with respect
to z evaluated at (¢, z,2) and let f}(t, z, 2) have similar meaning. Let
I = [0,1). For every compact subset I of R x R™ there is a function u
in Lg[I] such that, for every (¢,,2) in I xTI,

I1F(t, @, 2)Il < (1),
If1(t, 2, 2)Il < p(?),

where f = (f°, f) = (f% f', ..., f"). For each ¢ in I the set (1) is a subset
of BR™. The set B is a fixed set in R*™.

We further assume that B is compact and that the sets (i) are
independent of t; i.e., 2(t) = £, a fixed set in B™.

There is no loss of generality in assuming that the initial time and
terminal time are fixed, since this can always be achieved by a suitable
transformation (see [3], pp. 27-28). The condition that (i) is constant
can be replaced by the condition that the union of the sets £2(¢) as ¢ ranges
over I is contained in a compact set £,.

If one were to apply the penalty function procedure of Section 2
to this control problem, one would be tempted to proceed as follows.
The role of # is now played by a pair (¢, %) with ¢ in W"*(I) and % in
L, [I] with values «(t) € 2 a.e. The role of the equality constraint A (z)=0
is played by the differential equation (3.2). Thus if (¥, %) were a solution

(3.5)
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of the optimal control problem, one would consider a penalty function
of the form

1

Fp,u, N) = [ £°(t, 9(t), u(t) &+ (@, w)— (@, D)%+
+ o' (1) —£(t, o(t), w ()3,

where || ||, denotes the L,-norm and || ||, denotes “an appropriate norm”
on pairs (@, #).

The first step in the penalty procedure would require that under
some norm on (¢, ) the closed ball B(¢) be compact in some topology,
and that for fixed N, the function #(-, -, N) be continuous — or at least
lower semicontinuous — on B(e) with respect to the chosen topology
on B(e). If one attempts to proceed in this direction, it soon becomes
apparent that none of the usual norms or notions of weak or weak-star
convergence will suffice, It turns out that the appropriate procedure is
to consider the relaxed control problem in place of the original one. For
the relaxed control problem we shall have the requisite compactness and
lower semicontinuity. We devote the next section to the formulation
of the relaxed control problem. '

The relaxed problem should not be thought of as an artificial device
introduced merely to permit the use of a penalty method to derive neces-
sary conditions. A case can be made for the assertion that the relaxed
problem is the proper context in which to consider the optimal control
problem since under reasonable assumptions on the data the relaxed
problem has a solution. The ordinary control problem requires convexity
conditions to guarantee the existence of a solution. This requirement
severely limits the class of problems for which a solution can be guaranteed.
If relaxed controls are introduced, the existence of a solution is guaranteed
for a much broader class of problems.

4, The relaxed problem
A relaxed conirol is a mapping
v: t>v(t) = u(t, )

from I to the probability measures on £ such that for every polynomial p
the function P defined by

P(t) = [ p(2)du(t, 2)

n
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is Lebesgue measurable on I. An arbitrary ordinary control » can be
identified with the relaxed control v, that assigns to ¢ the atomic measure
concentrated at w(t).

We shall use the letter v for relaxed controls and the letter u for
ordinary controls.

A relaxed admissible pair (¢, v) is an absolutely continuous function

@ defined on I and satisfying (3.4) and a relaxed control » such that for
ae tin I

o' (1) = [ f(t, o(1), Ddp(t, 2).
2
To simplify notation we define

flty e, o) = [ f(t, @(1), 2)dult, 2),
Q2

and similarly for f°(2, (), v(¢)). Thus, an admissible relaxed pair (g, v)
satisfies

o' (1) =f(t, p(1), v(2)).

A relaxed pair (g, v,) i1s a solution of the relaxed problem, or a relared
optimal pair, if

[t 9o(t), va() @t < [ £[t, 9(1), v(0)) e

for all relaxed admissible pairs (g, v).

We now summarize some important facts concerning relaxed controls;
for details see Warga ([10], pp. 264-273).

Let £ denote the set of real-valued functions ¢ defined on I x 2 such
that (-, 2) is measurable on I for each z in 2 and y(¢, *) is continuous
on 2 for each ¢ in I and such that the function t—max{|y(¢, 2)|: 2z € 2}
is in L,[I]. The set £ is a Banach space with norm

lpll = [ (max|y(t, 2)))dt.
I 2

Let 9 be a mapping from I to the set of finite Radon measures on Q.
Thus: ©: t->»(t; -). Let | denote the set of such mappings with the follo-
wing two properties: (i) For every polynomial p the function ¢— f p(z)dv(i,2)

2

i8 measurable; (ii) If |v(t)] denotes the total variation measure of »(f),
then ess sup{|»(t)| (R2): t eI} is finite. Then N can be identified with
the dual space £* of £, where each » in R is identified with the functional

§ — Banach Center t. 14
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which we also denote by », as follows:
v(p) = f(fw(t,z)dv(t, z)) at, wvyel.
I 2

The norm of an element of N, viewed as an element of £*, will be denoted
by ll»llp and is defined by

(4.1) vl = sup{i»(y)l: liwll =1}.
It is also given by
Ivll, = ess sup{|»()|(Q): teI}.

Let R* denote the set of relaxed controls. Then R* is a convex subset
of £°* and is compact and sequentially compact in the weak star topology
of £*. ([10], Theorem IV, 2.1 p. 272.)

Let € > 0, let v, be a relaxed control and let

B(vyy &) = {veM: [v—1,ll. < €}.

Then B (v,, &) is weak star compact. Moreover, since £ is separable, B(v,, £)
is sequentially weak star compact.

Since the set of relaxed controls is weak star compact, it is weak
star closed. Thus the following statement holds.

LEMyMaA 4.1. For every e > 0, the set of relaxed controls v suck that
v € B(v,, £) 18 weak star compact and weak star sequentially compact.

The next lemma will permit us to carry out passages to the limit
at several points in our penalty arguments.

LEmMA 4.2. Let ¢ be a mapping from I xB® X R™ to R', r > 1, having
the properties of the functions f° and f listed in Section 3. Let {p,} be a se-
quence of continuous functions converging uniformly on I to a function ¢,.
Let {v,} be a sequence of relaxed controls converging weak-star to v,. Then,
for any function X in L,[I],

1 1
m [ X()g{t, galt), va(®)dt— [ X(D)g(t, @(1), v(t)dt.
n—+00 0

The conclusion of the lemma can be restated as follows. Let g,(2)
= g{t, @a(t), 0,()) and let Fo(t) = g(t, @o(t), vo(t)). Then 7,—g, weakly
in L,[I]. For a proof of Lemma 4.2 the reader is referred to [4].

3. A penalty function proof of the maximum principle for
the relaxed control problem

In this section we sketch the use of the penalty function technique
to derive the maximum principle for the relaxed problem with fixed end
points. For full details and for the problem with variable end points
see [4].
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The problem that we consider is to minimize

(5.1) I(p,0) = [ f(t, 9(8), (1) &t
over elements (¢, ) in W"*(I) xR* subject to
(5.2) ¢’ (1) = f(t, @(1), v(t)),
(5.3) ¢(0) =, (1) =a,

where z, and x, are fixed points in R" and the notation is as established
in the preceding section. The functions f° and f are assumed to satisfy the
hypotheses set out in Section 3.

Let (p,, vo) be a solution gf the problem. Without loss of generality
we may assume that J(ge, v,) = 0.

The first step in the proof is to define a penalty function F on the

cartesian product of W'?*(I) xR* xZ, where Z denotes the positive inte-
gers, as follows:

(5.4) F(p, v, N) =dJ(p, )+’ —@ollz + lp(0) — 2o’ + e llv — voll. +
+N {l¢’ =1t @(2), v(@)[[3,

where || ||, denotes the L, norm and | |, is the norm defined in (4.1).

The pair (¢, ») corresponds to « in (2.1), the functional J corresponds to

fin (2.1), the sum |ip’ —@yil3 + lip(0) — @ol* + ellv — v ll, corresponds to

lol* = lz— 0| in (2.1), and the term N ||¢’—f(t, ¢(t), v(?))|3 corresponds
k

to N3 (k' (2)) in (2.1).
{m]

The role of the set B(¢) in Section 2 is now played by the set D(e)
which is defined to be the set of pairs (p, v) where ¢ is in W"*(I) and »
is in R* such that

(6.5) lo—vll, <&, le0)—=all<e g —@ll.<e.

Note that the set D(e) is compact with respeet to sequential weak star
convergence of relaxed controls v and weak convergence of functions ¢
in Wh*(I) — or what is the same, weak convergence in L,(I) of the
derivatives ¢'.

We also note that as a consequence of Lemma 4.2 and of the lower semi-
continuity of a norm in the dual space of a Banach space with respect to
weak star convergence, the following statement is true:

LemMA B.1. Let {(g,, v,)} be a sequence such that v, —v, weak star, p,—p,
weakly in L,, and @,—p, uniformly. Then, for fized N,

lim inf F gy, Vs, N) = F (po, 0o, N).

f—»00
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We also point out that as a consequence of the relation

¢
(5.6) ?(t) = @(0)+ [ ¢'(9)ds,

it @, >g, weakly in L? and ¢,(0)—>z,, then there is a subsequence of {p,}
that converges uniformly to g,(t), where

¢
Polt) = w4 [ 4(s)ds.

Keeping in mind the observation of the last pa.ragrdph, Lemma 5.1,
and the compactness of D(¢), it is not difficult to establish the following
analogue of Lemma 2.1.

LeEMMA 5.2, For every € > 0 there exists an inieger N (&) such that the
minimum of F(-, -, N(e)) over the set D(e) defined by (5.5) is attained at
a point (p,,v,) tn W"*(I) xR* satisfying

W, — el < &,  [9,(0) =Tl < &, P, —Pylls < &.

We note that N (¢) is to be chosen so that N (e)-—>oc as e—0. The next
step in the procedure is to derive an e-maximum principle, which is the
analogue of the e-multiplier rule of Section 2.

Let n be any function of class C' that vanishes outside a compact
interval I, contained in the interior of I. Then since |p,(0) — 2/l < ¢ and
lg. — @ollz < &, for all real 6 with |0| sufficiently small, (¢, 89, 0,) is in
D(e) and the function &, defined by the formula

¢0(6) = F(‘P.+ 6”) T) N(E))

bas a minimum at § = 0. This function is also differentiable with respect
to 6 at & = 0, and therefore ®,(0) = 0 for all .

Let ff(b‘,t) =ﬂ(t19’c(t))”-(t)) and let f,(e,1), fo(es t), f(e,t) have
similar meanings. Let

(8.7) (e t) = 2 [p.(t) — g (8) +N (&) (pa(t) — f (=, )]
and let
(5.8)  Lig,, v.) (1) = [[{£e, 1)+ (2(00(0) — (1)) — w(e, 1)) fule, D} (8) +

+v(e, tin’ (1)) dt.
Then a straightforward calculation shows that for all 5

¢:(0) = L(¢u 2,) ('3)-
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From this relation and from &'(0) = 0 it follows that

4
(6.9)  w(e, ) = [ fi(e, 8)+ (2(0i(8) — po(8)) — (e, 8)) fu(e, 8)Yds +o(e),

where c(¢) depends on e.

Let M(e) =1+ |lp(e, 0))) and let A(e,t) = p(e, t)/M(s). Then from
(6.9) we conclude the following. There exists an absolutely continuous
function A(e, -) defined on I with range in R" such that for a.e. t in I

1(&5 : 1) — o (i
6100 #e,t) =L g, 07200, -+ 00, o7 BB,

where M (¢) is a constant greater than one, |i(¢, 0)[| <1, and T denotes
transpose.

Let v be an arbitrary relaxed control, and for —oo < 8 < oo define
v(0) =v,+6(v—1,).

Then for 0 < 0 <1, v(0) is a relaxed control. Since jjv, — v,z < &, there
exists a 6, > 0 such that if 0 < 6 < 6,, then |[v(8) — 2,/ < e. Thus

e(6) = F(p,, v(6), N (e))

i8 defined for all 0 < 6 < 6, and has 2 minimum at 6 = 0. It is not difficult
to show that p has a right-hand derivative ¢'(0+) at 6 = 0, and hence
0'(04+) = 0. The only term in the definition of p¢(8) that causes difficulty
is the term y(e, 0), defined by the formula

y(€y 0) = |Iv(6) — vyl = l(v,—vg) + O (v —0,)lL-

The function y(e, ') is convex in § and therefore has a right-hand deriva-
tive y'(e, 0+) at 6 = 0. Bounds on y’(¢, 0 +), which show that y'(e, 0+)
is uniformly bounded for all ¢, ean be obtained using the chord property
of convex functions.

A straightforward computation of g’ (0 +) and the use of the inequality
o'(0+) >0 give:

1
(8.11) [ H{e;t, 0,(t), v.(t), Ae, ) dt+ ey’ (e, 0+)

>le(e;t, (1), 0(1), A(e, 1)) dt,
where 0
(6.12) H(e,1, (1), v.(t), A(e, 1)) = —f°(t; @u(2), 0. (1)) / M () +
+ A2, DF(t, 2a(2), 2. () + 2 (9a(t) — o () (25 @u (1), 0.(2)) | M (£)
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and H(e,t,qa,(t),v(t),l(s,t)) is defined similarly with o(t) replacing
,(1).

Relations (5.10)—(5.12) constitute the “e-maximum principle”.

We next let e—»>0 and pass to the limit in (5.10)—(5.12) to obtain the
necessary conditions satisfied by the optimal pair (g, v,).

Let

2 =1lim inf(1/M(s)).

Then since M (¢) > 1, A° is finite and 2° > 0. Let {¢,} be a sequence tending
to zero such that (1/M({e,))—>A’. Since (g,,v,) satisfies (5.5), it follows
from this relation and from (5.6) that lp:n—Hp:, strongly in I, v, —%, strongly
in £* and ¢, —¢, uniformly on I.

We obtain the convergence of a subsequence of the functions A(e, *)
a8 follows. The homogeneous equation corresponding to (5.10) is

Mgy 1) = —file, t)T}*(Ey t).

Let A(e,t) denote the matrix of fundamental solutions of this system
with A(e,0) = I, where I is the n X n identity matrix. Then ||A(s, )|
is uniformly bounded for all 0 < e<{1 and 0 < ¢t < 1. Since |lA(e, 0)| < 1,
it then follows that ||i(e, ?)]| is uniformly bounded. From this we can con-
clude that the functions ||A’ (¢, t)|| have equiabsolutely continuous integrals.
This then enables us to extract a subsequence of {¢,}, which we again
label {¢,}, and an absolutely continuous function 1 such that A(e,, )—A(1)
uniformly on [0, 1].

Passage to the limit in (5.10)—(5.12) can now easily be justified and
we obtain the maximum principle for the relaxed problem.

THEOREM 5.1 (Maximum Principle). Let f° and f be as in Section 3.
Let (@y, vy) be a solution of the relaxed problem, Then there exists a constant
2’ =0 and an absolutely continuous function A such that (1%, A(t)) #0 on I
and such that

A =21 —AOTAQ),

1 1
fH(ty @a(t); vo(t), =A%, A(1))dt >Iﬂ(t1 @o(t), v(t), —2°, l(t))dt,
where

fi(®) =f‘1)(tr Po(t), vo(t)},  fi(?) =f1(tv Pol?), '”o(t))f

where
H(ta Po(l), vo(l), —A(r: ;*(t)) = —'}*ofo (t: Polt), vo(t)) +;'(t)f(t1 Po(t), vo(t))v

and where H(t, py(t), v(t), —i° A(t)) is defined similarly, ewcept that v(t)
replaces v,y(t).
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6. The bounded stute problem

We consider the following problem. Minimize J(p,v) defined by (5.1)
subject to (5.2), (5.3), and the additional state constraint

(6.1) Glp(t) <0

for all ¢ € I. Here @ is assumed to be a real valued C* function defined
on R". Our treatment will follow Medhin [7], [8], where a more general
problem is treated and where full details can be found. Ag in Section 5,
we shall only sketch the method.

As before let (g@,, v,) denote a solution of the relaxed problem. We
assume that VG (z) # 0 at all points » whose distance from some point
of the set {&: x = @o(t), 0 <t <1} is less than ¢,, where 0 < ¢ < 1.
We adopt the notation V@G for the gradient of & instead of @, to emphasize
that &, is a gradient.

Let I" denote those functions in W'?(I) that satisfy (6.1). We again
consider the penalty function F defined by (6.4). The arguments used
in Section 5 can now be used to establish the following result.

LEMMA 6.1. For every 0 < e < ¢, there exisis an integer N (&) such that
the minimum of F(-, -, N(e)) over the set D(e)NI is attained at a point
(ey ©.) salisfying

[lv,— vl < e, llps(0) — @l < €, ”‘P:—'Pl,)"z < e&.

Since (@,, v,) minimizes F (-, -, N (¢)) over D(e) NI, in order to obtain
a necessary condition we cannot vary ¢, arbitrarily. We must ensure
that the-comparison function ¢,+ 65 also satisfies (6.1). To this end, let

(6.2) £t) = — VG (%(f))/HVG (R

and let z be a continuous nonnegative piecewise (! scalar function on I
such that z(0}) = 2(1) = 0. Let

(6.3) n{t) = 2(1) §(1).

Note that £, and hence %, depend on e. It is easy to see that for 5 so defined
and for sufficiently small 6> 0,6 (p,(t)+ 67(t)) < 0. Also, for such 6,
we have (p,+ 01, v,) € D(e).

As before, the function ®, defined by the formula &,(6) = F(p,+
+60n,v,, N (s)) is differentiable with respect to 6. Now, however, P, is
only known to have a minimum at 6 = 0 over the set 0 < 0 < 6, for some
8, > 0. Hence, @,(0) > 0. Thus, we now get

(6‘4) GD;(O) = L(‘Pu V,) ("7) = L((P., v,) (2§) = 0
for all 2. From this relation it is possible to conclude, with the help of
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(56.8) and some further manipulation, that
1

(6.5) L(g.; v)) (26) = [ &(e, )2 (1)@t >0,
0

where g is 2 nonincreasing function defined as follows:

f
(6.6)  &(e,?) = (e, )EM) — [ {2 (e, 8)+2(w, —gp)fale, 9)—

—9 (e, 8)f1(e, 8)16(8) + p (e, 8) ' (8)}da+ d(¢).

Here y is defined by (5.7). Note that ¢ does not satisfy (5.9), even though
v and ¢ are both defined by (5.7).

The relations (6.4) and (6.5) are not entirely satisfactory in that they
involve an inequality instead of an equality. The inequality is a conse-
quence of using variations that go in the direction of decreasing @ at a point
@(t). That is, the variations “point into” to constraint set. A condition
involving equality can be obtained by using variations h that “move
along” surfaces of constant &. Thus if ¢(?) is on the boundary of the con-
straint set, i.e., G(p(f)) = 0, then the point ¢(t)+ h(¢) will “stay on the
boundary”. This result is contained in the next lemma.

LEMMA 6.2. Let the function £ be in W (I) and let

(6.7) h(@) = ¢(t)— (V6 (p.(0) - L (1) V& (@, ()| VE (@. (V).
Then

d
L(tpu ‘va) (h) = %F(¢l+ah’ LY -N(E))Ia-o =0.

The proof is carried out by adding a penalty term to F as follows.
Define

1
F*(, v, N(e), K) = K [ (G (p(t)dt+F(p, v, N(e)),

where o is as in Section 2. For fixed K consider the problem of minimizing
F* over all g in W"*(I) such that flp— .} < ¢ and [l¢’' — gyl < e.

If there exists an integer K (¢) such that for all ¢ satisfying the pre-
ceding incqualities the following holds:

F'(q)’ v,y N{e), K(S)) = F(?u Vsy N(s))y

then since F(g,, v,, N(e)) = F*(g,, v, N (¢}, K(¢)), the function ¢, fur-
nishes the required minimum and is an interior point. Straightforward
differentiation and the special form of % give the desired result,
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If no such integer K (&) exists, then the argument is rather tricky
and cannot be summarized here. The reader is referred to Medhin [7],
[8] for details.

We shall obtain the desired “e-Euler equation” by using an arbitrary
variation { in W"*(I) with {(0) = {(1) = 0. We write { = h—y, where
h is defined as in (6.7) and

y(t) = — (V& (p.(1) - L (1) V& (pu(1))/]| V& (. (1))

The function ¥ is a variation of the form (6.3) with 2(¢) = (VG(tp,(t)) -C(t)).
Thus we have written an arbitrary { as the sum of two “orthogonal”
variations, one “along a surface of constant G@” and another directed
“into the constraint set”.

From Lemma 6.2 and from (5.9) we have

L(g.; v.) (b) = L(g., v.) ((+Y) = Lig,, 2.) (§) +L(g., v) () = 0.

Since y (1) = 2() £(t) with z(t) = V& (tp,(t))'C(t), it follows from the equality
in (6.5) that

(6.8)  Llg,y 0) (0)+ [ 8(e, 1) V& (1) L' ()t +

1
+ [ a(e, Dga(t)- 8,V (9. (1) - L (1)t =0,

where 3,(_\70(;1:)) is the jacobian matrix of V@(x), or the Hessian matrix
of @. Recall that equation (6.8) holds for all { e W"*(I) satisfying {(0)
={(1) =0.

Now substitute the defining expression for L(g,, 2,) ({) given by (5.8)
into (6.8) and substitute the defining expression for g(e,t) given by (6.6)
into (6.8). Next integrate by parts and apply the fundamental lemma of
the calculus of variations to get the “e-Euler equation”

¢
(6.9)  $(e, 1)+ (e, 1) VG (g (1) = [{F' (e, 8) — B, 8)fal(2, 8) +
+2(gi—ga)file, 8) + (2, 8)@a(5) 8, VG (pa(9))}ds +C (2).

From (6.9) it is possible to conclude that g(e, -) is bounded, and is
constant on intervals (a, f) on which ¢, is interior to the constraint set;
i.e., intervals on which @(g,()) < 0. By proper choice of C(e) we may
take g(g,1t) = 0. Recall that we have already shown that g(e, ) is non-
increasing.
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If in (6.9) we choose C(e) appropriately, then divide through by an
a ppropriate normalizing factor M (¢) and define

Alg, 1) = [ﬁ(s, t)+a(e,?) VG(%(t))]/M(E)y
ole, 1) = g(e, 1)/ M(e),

then we may choose an appropriate sequence {¢,} such that ¢,—0 and
such that we may pass to the limit in (6.9). We shall get the following
relation in the limit

:

(6.10) AQt) = f{loff (37 Po(8), '00(8)) —A(8)}f, (37 Po(8), "70(3)) +

0
+e(s)8, V@ (9’0(3)) 'f(a’ Po(8}, 00(8))}018 +4(0).
Here p is a bounded, nonincreasing, nonnegative function which is obtained
as the limit of g(e, )/ M (). Moreover, A° > 0.

Using arguments similar to those used to establish the integrated
form of the maximum principle in Theorem 5.1, we can establish a similar
result here. Namely,

1

(6.11) [ —2°F"(t, @ (1), vo(0) + [A(1) — () V& (go(0))] S (£: @o(2), 2o (2))

0
1

> [ =21, 00(t), v(t) + [A(2) — o(t) V(g ()] S (2, po(2), 0(8))dt

0
for all » in R*
In summary, we have the following result:

THEOREM 6.1. Let (@,, v,) minimize J (p, v), defined by (5.1), subject to
(5.2), (5.3) and (6.1). Then there exists a constant 2’ =0, an absolutely
continuous function A defined on I, and a function ¢ defined on I such that
the following hold:

(i) A°+0(0) > 0;

(ii) The function o is mommegative, monincreasing, continuous from

the right on (0, 1) and is constant on any subinterval on which G(tpo(t)) < 0.

(iii) Relations (6.10) and (6.11) hold.
In [7] and [8] a more general problem with intermediate and terminal
constraints and with additional vector constraints of the form

P(ty‘P(t)y 'U(t)) =0, R(t’?’(t)ag(t))<0 and Q(tyv(t)) =0

is treated. The intermediate and terminal constraints are of the form
M1(¢’1(To)5 cery @ (Tg)y o eey ‘Pl(fuﬂ)y ey ?’”(Ta+1)) =0,
Mn('Pl("o)’ ceay ?’"(70)1 ceny ‘Pl(ra+1)s ceny ‘P"(Ta+1)) <0,

where ¢, ¢ =1,...,n is the ith coordinate function of ¢ and 0 =1,
<7< ...< T4y, =1 is a partition of [0,1].
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7. Hereditary optimal control problems

In this section we summarize the treatment of the relaxed hereditary
optimal control problems given by Bates [2], who applied the penalty
technique to this problem. For full details see Bates [2].

Let I denote the unit interval [0,1] and let I denote the interval
{—7,1], where r is a given positive number. Let C (I) denote the metric
space of continuous functions on I with range in R® and with supremum
norm. Let il denote the class of all Borel measurable functions defined
on I with range in R™.

Let the following be given:

(i) real valued functions &% A, ..., h"* defined on I xO(I)xR™,

(ii) real valued functions g° ¢, ..., g" defined on I xI xR" xR™, and

(iii) real valued functions w° w!,..., o" defined and measurable on
I for every fixed t e I.

For any (i, ¢, 2) in I xC(I) xR™ the notation &’ (t, 9(-), z) will indi-
cate that the value of h* depends on ¢, 2z, and some or all of the values
@(s), —r<<s<t.

Define functions f*, 4 =0,1,...,n on I xC(I) x U as follows:

[
fi(t! @), u()) = hi(t’ ®()y u(t)) + fdawi(t’ 8)9‘“7 8, ¢(8), u(3))1

where the integral is a Lebesgue—Stieltjes integral. The notation again
indicates that the valué of the function depends on some or all values
of ¢(8) and u(s), where —r <8<,

Let AC(I) denote the subset of C(I) consisting of all absolutely
continuous functions. Let S be a given compact subset of AC([ —r, 0]).
Let z, and z, be fixed points in R" and let Q be a fixed compact subset
of R™. A pair (¢, 4) in C(f) x W is called admissible if the following condi-
tions are satisfied:

(i) (1) = f(t, ®(*), u(*)) for a.c.  in I;

(ii) @(t) = a(t) for each t in [ —r, 0], for some a € S;

(iii) @(0) = o, p(1) = @y;

(iv) u(t) € 2 for a.e. ¢t in I.

The hereditary optimal control problem is the following: Minimize

I(pyu) = [ f(t, p(), u())dt

over all admissible (¢, %).
In [2], condition (iii) is replaced by the more general condition,
(¢(0), (1)) € B, where B is some fixed set in B™,
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As in the ordinary control problem and in the bounded state problem,
the penalty method requires the introduction of relaxed controls. The
definition of a relaxed control is unchanged. The relaxed hereditary control
problem is the following one.

Minimize

(7.1) Igy0) = [ f*[t, p(-), o(-)) @

over elements (g, v) in (W"*(I)nC(I)) xR* subject to
(7.2) ¢’ (1) =f(t, @(-),v(:)) for ae. tel,

(7.3) p(t) =0(t), —r<it<0 for some 0€@,
(7.4) 9(0) =2, ¢(1)=ua,

where for ¢ =0,1,...,n,
¢
(7.5) f{t’ o(+), ”(')) = h‘(t’ (), ”(t))"' fd,w‘(t, 3)9{“9 8, p(8), ‘0(8))
= [#{t, 9(), 2)du(t, ) +
2

t
+ [do'(t,0) [, 8, 00), 2)dpis, 2).

In [2] it is shown that this problem has a solution under rather mild
assumptions on the data of the preblem. ;

We now state the assumptions under which the necessary conditions
are derived.

AssuMpPTION 1. The function 2 = (k°, &) is differentiable with respect
to @ for fixed (¢, z). Both % and its Fréchet derivative with respect to g,
dh, are Borel measurable in t for fixed (¢, 2z) in C(I) xR™ and are con-
tinuous in (@, 2) for fixed t in I. For every compact subset I' of RE" there
exists a function x in L,[I] such that for any y in C(I) and any (t, ¢, 2)
in IxC(I, I'xQ,

IR(t, (), 2)I < p(2),
@& (t, @(-), 2; vl < 4 () ¥llos

where C (I, I') denotes the space of continuous functions on I with range
in I'. Condition (7.6) is the analogue of (3.5).

(7.6)

AssuMPTION 2. The function §: (2, s, ¥, 2)—>§(t, 8, ¥, 2) is continuous
on I xIxR"xR™ and is continuously differentiable with respect to y
in R",
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AssumptioN 3. Each function o, ¢ = 0,1, ..., %, is measurable on
I xI, and for each ¢ € I, o*(t, -) is of bounded variation on I. Each o'(t, *)
is continuous from the right as a function of s, and vanishes for s > ¢,
For each t in I, let Vo'(t, -) denote the total variation of '(t, ) on I.
Then there exists a function u, € L,[I] such that Vef (t ) << u, (1) for
a.e. {in I,

For each ¢ =0,1,...,n and tel, let o'(t, ) = oi(t, )—wi(t, ),
where o} and o} are monotone functions of s. For any Borel set E < [
define

1
Yi(E) =ffd Y, 8)dt, §=1,2; i=1,...,n.
0

ASSUMPTION 4. For any Borel set E < I of Lebesgue measure zero,
[¥*{(E) = 0, where |-| denotes the total variation measure and 5* = 3% — %,
t=1,..,n

For fixed (¢, p, 2), dkh is a linear functional on C(I). By virtue of
(7.6) d@h is bounded for a.e. t € I. Hence for a.e. ¢t in I and each (g, ) in
C(I)xRB™, dk(t, ¢(:), 2; ) is an element in the dual of C(f). Therefore,
by the Riesz representation theorem, there exists a function I'; defined
on I, of bounded variation and continuous from the right, such that
for each y in C(I),

¢
dh(t, (), 23 9) = [d,Ii(t, 9,25 8)p(s).

Here b = (B% B, ..., A" and I', = (I}, I'} ... I'"). By T', being of bounded
variation we mean that each component is of bounded variation. Since %
does not depend on ¢(8) for ¢ > ¢, we must have I',(t, ¢, #; 8) equal to
a constant for 8 > t. If we take the value of the constant to be zero then
I'.(t, ¢, 2; ) is8 uniquely determined. Hence we may write

t
dﬁ(ta (), 23 'P) = fda-rl(t’ ®y2;8)p(s).

It follows from Assumption 1 that I, is a measurable function of ¢
for each fixed (g, 2, s) and is a continuous function of (¢, 2) for each fixed
(t, 8). Hence, for any relaxed control v, we may now write

Ty(t, 9,05 8) = [T1(t, 9, 2; 8)dult, 2).
2

Let @ = (0% 0, ..., o") = (0% w). By virtue of the continuity and
differentiability properties of 7, the mapping

¢
(ty 0y 0)—> [4,@(2,8)§(t, 3, 9(a), 0(3))
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has a Fréchet derivative with respeet to ¢ whose action on y in C(I) is
given by

¢
[amt, 8)3,(t, 5, 9(2), v(8))w(9),

for any (¢, @, v) in I xC(I) xR*. Here g, denotes the jacobian matrix of
g with respect to v.
Define

¢
Tat, 9,05 8) = — [a,(t, D, (1) 7, (2), 9(7))

for —r<s¢<t and equal to zero for ¢>1{. Define I' =I';4TI,. Then
the Fréchet derivative of f is given by

4
df(t, o( )00 )iv) = [a,T(t,,0;8)p(s)

for any (¢, ¢,v) in I xC(f)xR* and any ¢ in O(I).
The maximum principle for the relaxed hereditary optimal control
problem has the following form.

THEOREM 7.1. Let (@,, v,) be optimal for the relaved hereditary conitrol
problem. Then there exists a wveclor function X = (2% 2) = (A% 2, ..., A%)
of bounded variation on I such that

(i) 2° < 0 is constant;
(ii) A i8 continuous at t =1 and (1°, A(1)) +# 0;
(iii) A satisfies the integral equation

A®)+ [AWT(, 8)dt = A(1).

for each 8 in I, where I'(t, 8) = I'(1, gy, o; 8);
(iv) For every relaxed control v,

1 1
JADF(L, 9o(); vo())dt = [AOF(E, @o(-), v()) 2.
0 0

The general outline of the proof of this theorem should be clear to
the reader by now. We sghall merely review the major steps and refer
the reader to [2] for the details, which require careful attention.

First we define a penalty function on (W"*(I)nC (I)) xZ as follows:

F(p,v, N) =J(p, )+ ¢’ — @il + [9(0) — g (O)IF+ e Jo ~2,ll, +
+ o' —F(t, @ (), o2
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We again show that for all 0 < e< &,, where &, > 0 is fixed, there is an
N (¢) such that F (@, v, N (¢)) attains its minimum at an interior point
of the set D (¢) defined by (5.5). Denote the interior minimum by (g,, v,),
Since (g,, v,) is an interior point of D (¢), we can obtain & necessary con-
dition satisfied by (¢,, v,) by rather elementary calculations. We then
let e=0. The pair (g,, v,) will tend to (¢,, v,) in an appropriate sense, and
the necessary condition obtained for the e-problem will tend to the necessary
condition of Theorem 7.1.
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