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1. Introduction

Let (Y).>, be a sequence of independent identically distributed random
variables with the distribution function F such that ¢ (u) := InEexp(uY;) < o

for some u # 0 and put X,:= > Y. If t is a stopping time, then under
k=1
some conditions the so-called Wald fundamental identity

Eexp(uX,—¢(u)t)=1 (1)

holds (see, e.g., [2], [15]). This identity has turned out to be substantial for
sequential statistics and has been generalized by several authors (see, e.g., [4],
[6], [9]. [12]). We shall mention here a generalized version of (1) proved by
Bahadur ([1]). If 7 is any finite stopping time for (X,),» then

Eexp(uX,— ¢ (u)1) = P*(z < ),

where P* is the probability measure corresponding to the sequence (X,),>
and the Y, k > 1, are independent identically distributed with the distri-
bution function G where G is defined by

dG(x) = exp(ux— ¢ (u))dF (x).

Let (W),>o be a standard Wiener process on the real line and © a
stopping time with Eexp(u?2 't) < oo for some real u. Then this u satisfies
the fundamental identity

E(exp(uW,—u?27'7) =1

This is a particular case of a result of Novikov ([11]). Shepp ([13])
proved a more general result. He considered stopping times t of the form

:=inf {t > 0O} W, =/(1)},
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where f 1s an arbitrary continuous function on [0, «©), and showed that
without further assumptions on t for every real u we have

E(expuW,—-u?2"'1); 1 < w0) = P(W,+ut =f(1) for some t >0). (2

In this note we shall extend Shepp’s result (2) to one-dimensional
processes with independent stationary increments and arbitrary stopping
times. The method used below can also be partially applied to more general
processes, e.g., to processes with independent nonstationary increments or to
semimartingales, by using their local characteristics (see [ 10]). Finally, let us
mention that very general results in the theory of absolute continuity of
stochastic processes, which can be interpreted as fundamental identities in a
certain sense, can be found in [3], [5], [14].

2. Generalized fundamental identity

Let R be the set of real numbers and {2, 2, P) a probability space, and
(X))o a process with independent stationary increments on (£, 2, P).
Without restrictions ol generality we can assume for our aims that (2, ) is
a canonical space, i.e., that Q is the set of all right-continuous real-valued
functions on [0, c0) having limits from the left, U is g-algebra generated by
all cylindric sets and X,(w) = w, 1s the coordinate projection. In this sense
the probabilistic behaviour of (X,),», i1s given by P; we shall identify (X,),»,
and P.

Furthermore, it 1s known for stochastically continuous processes with
independent stationary increments that the characteristic function ¥p(t, 4):
= Ep(expiiX,) of X, under P has the form

2ra? A
Wplt, ).)=expt[iy)»— 20 + J (exp(iiy)—-l—]%‘_'%)v(dy)jl

R {0}

(t >0, AeR).

2

The parameters 7, o2, v, where yeR, ¢® >0 and v is a o-finite measure on

,2

R\ {0} satisfying the condition J 1:‘;y‘zv(dy) < oo, are called the Lévy-

R\10}
characteristics of the process P. Conversely, for every triple y, o2, v with the

above properties there is a process P with independent stationary increments
having 7, ¢2, v as its Lévy-characteristics. We shall denote by 2, the o-
algebra generated by {X,, s <t} and, for an arbitrary stopping time 7, by 2,
the o-algebra generated by all sets of the form {Ae M Az <t}e ).
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THEOREM. We choose a fixed ue R. Then the following properties are
equivalent

(i) [expuX)dP < oo for some t >0,
R

2
(ii) j #yzexp(uy)v(dy)<oo.

R\{D) _
_ If these properties hold, the following identity is valid for every stopping
time t:

[ exp(uX,—v(ut)dP = P* (At < w}), Ae ., (3)
Anfr < oo)
where
2.2
v(u) =uy+u 26 + j (exp(uy)—1~l—%)v(dy) 4)
R\ [0}

and P“ represents the process with independent stationary increments having
the Lévy-characteristics v,, 6%, v, given by the Lévy~characteristics of P and

the chosen ue R; in particular we have

Yo =7+0ru+ f 1jT(e)(p(uy)—I)V(dy),

R\{0)
ol =02, (5)

dv,(y) = exp(uy)dv(y)
(see also [10]).

Proof. The equivalence of the two properties (i) and (i1) 1s known. In a
note- by Kiichler and Kiichler ([7]) about the so-called exponential class of
processes with independent stationary increments it is shown that a process
with independent stationary increments not being a deterministic motion
fulfils properties (i) and (i) for u # O iff it is a process from the exponential
class of processes with independent stationary increments.

The generating function for processes from this class has the form

Eexp(uX,) = exp(v(u)t), Yue Ry,
with Rp:= {ue R: (i) holds].
Furthermore, the process
Z,:=exp(uX,—v(u)t) (6)

is a martingale. Now let us apply a stopping theorem of martingales. 7 is an
arbitrary stopping time. Then, for every fixed ¢t > Q, the stopping time 7 A t:
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= min(z, t) is bounded, and there holds a stopping theorem

E(Z,]Q[,,\,) = Z'r/\l'

The event A N {t <t} belongs to ., because this event is equal to the
event An{t <t At}. We have

{ ZdP= | Z, . dP= | ZfdPTf_’ | Z.dP,
Anfrsi) Anft &) Anft &) * Anft < mo)
where the last integral is the left-hand side of (3).
On the other hand, let us show that the integral | Z,dP converges

Anr <t}

to the right-hand side of (3). We first define for fixed ue Rp and arbitrary
t > 0 a one-dimensional measure

P¥ (dx): = exp(ux—v(u)1) P,(dx)
with P,(dx) = P(X,edx). There exists a process P* with independent station-
ary increments and one-dimensional distributions
P (dx) = PY(X,edx).

The Lévy-characteristics of P can be calculated and are given in (5). It is
easy to show that we have

PYC)=[ZdP, Ce¥,t>0.
C

Because of AN {t <t}e WU, we get

[ ZdP=P(An{x<t]) 2PNt < o0}

Anfr <1

Thus formula (3) has been proved. .

ExampLES. 1. Assume that P is the standard Wiener process. Then y
=0, o2 =1, v(:) = 0. Obviously (ii) holds for every ue R. We have y, = u,
62 =1,v,(-) =0, ie, P* is the Wiener process with diffusion constant 1 and
drift coefficient u. The theorem implies for every stopping time

[ expuX,—u*/2)t)dP = P(A {1 < ©}), Ae ..

Anfr <o}
In particular, for A =Q and 7 =inf{t >0: X, =f(¢), f being an arbitrary

continuous function}, we get Shepp’s result (2).

2. Let us consider a compounded Poisson process, in particular the
difference of two independent Poisson processes with the parameters 4 and p.
Then its Lévy-characteristics have the form

y=3(A—w, *=0, v(A) = (D+pr,(-1),
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where y,(l1) is the indicator variable of the event A. We have Eexp(uX,)
< o (ueR), and thus Rp = R. The measure P has the Lévy-characteristics
o2 =g =0,

vi(A) = xa(1) Aexp(u) + x,(—1) pexp(—u),

Yu = %(i CXpu-— »u(exp)( _u))s

i€, P is again the difference of two independent Poisson processes, but
with the parameters Aexpu and pexp(—u) respectively. If we choose 4= pu
and 1, :=min{t > 0: X, =k, ke N}, then we get P (1, < ) =1 for every
u > 0. Therefore the generalized fundamental identity (3) has the form

Eexp(uk—v(u)1,) =1

with v(u) = A[expu—1]+pu[exp(—u)—1].

From this identity we are able to calculate the generating function
Eexp(vty) of the stopping time t,, where v is a parameter. Thus we have to
determine the parameter u as a function of v. Since A > yu, we have v'(u) >0
for every u > 0, and thus we can construct the inverse function u(v) of the
function v{u). We obtain

1
u(v) = lnz—i(i+u+v+\/(/1+,u+v)"—4/1;1).

Now we get the generating function of the stopping time T,
E exp(vty) = exp(u(v)f, v=0.

3. We look at an arbitrary process (X,),»o of the exponential class of
processes with independent stationary increments belonging to the prob-
ability measure Py, 3€Op:= {3(u), ue Rp} (see also [10], [16]). Let the
parameter 3 be unknown; we want to test the hypothesis Hy: 3 = 9, against
the hypothesis H,: 3 =8, (3¢ # 3,; 3y, 3,@p). Then the sequential pro-
bability ratio test (SPRT), first investigated by Wald ([15]) for the unknown
parameter 3 of a distribution function F, has the following form. We observe
the likelihood ratio process

P

= , t >0,
dP&oI‘)l,

as long as the process S, := In A, first leaves a certain interval (a, b), where a
and b depend on the chosen values of the errors of the first and second kind.
Then we decide for 3, or 9, if §, =2 b or §, < a respectively. The stopping
time 7 of the SPRT is defined by

t:=inf {t: §,¢(a, b)} with inf@:= .

By means of the generalized fundamental identity, the characteristics of this
test, the operating characteristic function L(3):= P,(S, < a) and the average
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sample time Eg4(7) can be calculated. But we still have to replace the process
(X )iz 0 by the process (S,),» ¢, also belonging to the exponential class. We get
L(9) if we divide the left-hand side of the identity into conditional expected
values with the conditions S, < a and S, > b. By differentiating the identity

with respect to 3 at 3 =0 we get Wald’s equations and from those the
average sample time function Eg(1).
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