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1

One of the most interesting problems in analytic number theory is to
determine a possibly slowly increasing, function y(x)} such that the interval

(1.1) [x—y(x), x]

would contain a prime number for x > x,(y). The result of Chebyshev,
n(x)

(x/log x)

implies (1.1) with y(x) =0.17x. The prime number theorem without a re-
mainder term yields y(x) =é¢x (x > xo(g)) whereas any form of it with a
remainder term implies a better estimate for y(x). The so-called quasi
Riemann hypothesis,

(1.3) {s)#0 for >8,9<1,

(1.2) 092129 < < 1.10555 (x> xo)

would imply (1.1) with

(14) y(x)=x°

for any 8 > 3, even in the stronger form

(1.5) n(x)—m(x—y) ~ y/log x.

In particular, the Riemann hypothesis yields y(x) = O(\/; log? x), or with a
further idea of Cramér this can be improved to give y(x) = O(,’/x log x).

While (1.3) is undecided at present, Hoheisel, in 1930, succeeded in
proving (1.4)-(1.5) for 0 >1—(33000)"'. He derived his result {rom two
theorems which had been already known for nearly ten years and seemed to
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be of no or only very slight arithmetical consequence. The first of them was a
theorem of Carlson which (with a slight modification due to Hoheisel) asserts

(1.6) N, T):= Y  <cgTHM 7 og®T,  A(o) = do.
ﬂﬂﬂ"'”):O

o, 0<y<sT

The second was the zero free region proved by Littlewood,

A loglog ¢

(1.7) (@0 for o> 1-—

(A = const. > 0).

Using the shortened explicit prime number formula of Riemann and
Von Mangoldt, one obtains with T = x'*¢/y

Xt —(x—y)* e
(18) | S logp-y=|Y —(—y)—‘+0(yx 2
x—p<plsx [P T Q
<y Y, X7+o(y)

IPI<T
(where o = f+iy runs through the non-trivial zeros of {(s)) and it is clear
that (1.6)-(1.7) can be used to prove Hoheisel's theorem. It is easy to see that
if A can be chosen arbitrarily large (which was shown to be a consequence of
Vinogradov’s estimate of trigonometric sums by Chudakov in 1936), then
(1.4)-(1.5) can be proved for

1
(19) 0>1->, A= max A(o).

A 1/2<0%1

In this way Chudakov’s and Carlson’s theorems yielded € = 3/d4+¢. In
1940 Ingham proved that if

(1.10) LG +it) = 0(th)

then one may take

1+4b
A =2+4b, = )
+ andso 6@ 2+4b+8
The result of Hardy and Littlewood, b = 1/6+¢ implied
(1.11) A=%4¢, O=F+e.

Slight improvements in the value of b led automatically to slightly better
values of 4 and 6. In 1970 Montgomery proved (1.6),

(1.12) A=3+¢ andso 0=32+e,

without making use of any estimate of the (1.10) type. Soon after his result
Huxley [4] refined his method to yield

(1.13) A=%+e, 0=15+e.
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(For exact references concerning the results mentioned earlier see, e.g.
Montgomery [9].) '

Using another approach, avoiding density theorems completely, Heath-
Brown [2] has recently proved (1.4)-(1.5) with

(1.14) y() = X712,

for any £(x) - 0. This is the best result of this type at present. The famous
density hypothesis,

(1.15) A=2 or A1l=2+¢
yields
(1.16) 0 =4%+e.

As was pointed out by Heath-Brown, Littlewood’s original zero-free
region (1.7) suffices, if one uses “log-free” zero-density theorems, ¢.g., result of
Jutila [8],

(1.17) N(o, T) € TA¥s+ati-a)

It is even sufficient to have
(1.18) ()0 for o>1——r—r

for an arbitrary large A, and this, combined with (1.17), leads to Huxley’s
theorem 8 > 7/12. We may further note that to prove (1.1)—~(14) witha 8 < 1
it is sufficient to work with the original zero-free domain of De la Vallée-
Poussin (which corresponds to (1.18) with 4 = 0.032, t > t,) if one has an
estimate of type

(1.19) N(o, T) € TH =9,

Finally, we note that Cramér conjectured that (1.1) is true for

(1.20) y(x) =(1+¢) log®x, x> xo(e)
but not for
(1.21) y(x) = (1—¢) log® x.

2

However Iwaniec and Jutila [7] showed in 1979 by a combination of sieve
methods and weighted zero-density estimates that in problem (1.1)-(1.4) one
can take f = 13/23. Further, they sketched what type of refinements might
lead to ¢ > 5/9 = 1/2+ 1/18. Their method was not capable of showing (1.5),
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but besides (1.1) they proved

(2.1) n(x)—n(x—y) > og x°
The main idea of their proof is that with a ze(x!/?, x'/?)
(22) r)-n(x-y)= ¥ 1- Y 1,
x—y<psx x—y<pgsx
x—y<pgsx z<px
zy<p‘gq p=q

and the first sum can be estimated non-trivially from below by using the
new, bilinear form of the remainder term of Rosser’s sieve, given by Iwaniec
[5]. The treatment of the second sum by an upper bound sieve alone cannot
be sufficient to obtain a final positive lower estimate for n(x)—n(x—y),
because of the so-called parity phenomenon. But part of the second sum may
be evaluated asymptotically. For any single p > x'/* one has, for § £ 7/12

3/8
(2.3) Z<(f) ,
P \p

so naturally one has no hope of evaluating

n(x/p)—n((x—y)p) or ¥ {(x/p—y(x—y)p).

However, when one deals with

(24) Sp= ¥ w(g)—w(ﬂ) W)= Y log p)

P<pslP p pmEx

the situation changes favourably. Namely, analogously to (1.8), this leads to
the estimation of

2.5) Y IK@¥!, K@= Y

|y]$x1+5/y P<;.1$2Pp‘E

This makes it possible to use the mean-value theorem and the Halasz—
Montgomery inequality in proving that the weights K (g) are much less than
1 on the average, and this enables us to treat (2.4) for a 6 with 6/11 < 0. As
regards the sieve part, it is interesting to note that by the classical, trivial
treatment of the remainder term of the sieve any positive lower bound for
the first sum would need the requirement y > z2 > x%3 (even slightly more),
which case was already solved by Ingham’s result of 1940.

The linear sieve gives the following lower bound for the first sum X, in
(2.2):

y log D
2.5 - -1 )—cep—
(2.9) 2 logD{ZIOg(logz 1) ca} R(D)
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where ¢ is an absolute constant and ¢ is arbitrarily small positive constant.
R(D) may be expressed by

(2.6) rd) = B—]—["—‘—y]-l 1<d<D

and D is an important parameter for which z* > D > z2 is required in the
present case. The bilinear form of the remainder term can be written as

(2.7) RD)=Y Y Y an(l)b,(l)r(mn),
1 <e(r) m’::lfﬁ<:'

for any M, N with M, N > 1, MN = D, where |a, ()|, {b,()] < 1. Thus, in
order to have a negligible remainder term in (2.5), it is sufficient to show that
(2.8) RMM,N)= % Y amb,r(mn <€yx~*

M<ms2M N<ns2N

(where, in the sequel, we allow the symbol <« to depend on ¢ for

M, N < /D and arbitrary |a,|, |b,| < 1. Iwaniec and Jutila [7] have proved
this for

(29) 0>59 and D < x™1(56-1y2-r
This was extended by Heath-Brown and Iwaniec [3] for
(2.10) 6>11/20 and D < x™n(l(128-2/5)~¢

In addition, they were able to evaluate some terms in the linear sieve, which
had been ignored by Iwaniec and Jutila. In this way they succeeded in
extending the range of validity of (2.1) to the value 0 > 11/20 = 1/2+1/20
([3]), given by (2.10), and this was the limit of their method. We shall briefly
sketch the method in proving (2.8)-(2.10) and point out how the constant
11/20 appears.

Introducing the notation

a b, 1
@1) M@= Y — N9= ¥ = L= 3 %
M<m<2M N<n<2N L/s<I<3iL
where L = x/MN, we have with T =x'*%/y
1+ 1flogx+IT
1 ' xX—(x—y) -
(2.12) Z anb, 1l =-— f(s)——(———y)—ds+0(yx ‘)
L5 <1€2L 2ni
x—y<mnlS€x 1+ 1/logx—iT

with f(s) = M(s) N(s) L(s). By non-trivial but standard methods one can
show that the main term of (2.12), y) a,b,/mn, is given with an admissible
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error by
1+1/logx+iTg

(2.13) j f (s)f—:%:y—)sds, |

1+ 1/logx=ITy

where T, can be chosen as L'/2, Since one can shift the path of integration
onto the line ¢ = 1/2 the proof of (2.8) reduces to showing

(2.14) j If G+it) dt < x}27e,
0
Let us denote by (U, V, W) the measure of those points te[T,, T] for
which
U < |L(G+ir) <2U,
(2.15) V< |MG+it) < 2V,
W< NG +i) <2W,
where
(2.16) x ' U, V,W<x.

In order to prove (2.14) it is clearly sufficient to show, for any U, V, W with
(2.15)-(2.16), that

(2.17) UVWQU, V, W) < x!?~ 2,
Introducing the notation
QU, Vv, w)
i =F =22 7
(2.18) F (U, v, w log ™% x

we have to show
(2.19) UVWF < x1273%

Using the mean-value theorem, the Haldsz—~Huxley-Montgomery inequality,
and the fourth power moment of {(s), one can show

(220) F <min {V 3} (M+T), W 2(N+T), V2 M+V S MT,
W iIN+W eNT, U 4L+ U212 T, U~*T}.
We consider four cases.
Case 1: F<2V~2M, 2W"2N;
Case 2: F >2V "M, 2W™*N;

Case 3: F>2V"*M,F<2W™N;
Case 4: F<2V™*M.F >2W~%N.
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In the most critical Case 2 we distinguish

Case 2a: F>2U 22T, 2V~2 M, 2W™2N;

Case 2b: F2U I T, F>2V *M,2W"2N.

Since the crucial requirement 6 > 11/20 is only needed in Case 2b, we
shall consider only this case. (The treatment of the other cases is similar, and
it needs only 8 > 17/31)) In case 2b we have

(221) F<2Tmin (V"3 W 3 V"SM, W SN, U122, U4
< 2T(V 3120 (W~ 37120 (=6 p)120 (=6 N)LZ0 ([~ 12 [ 2)1/40 ([~ 4)7/40
=2(UVW)™! T(MNL)'?°,

which yields (2.19) if T < x%2%73 ie, 6 > 11/20+5¢. It is easy to see from
(2.21) that if M # N or

(2.22) MN =x%8%¢ 440

then the minimum in (2.21) is strictly less than the weighted geometric mean
value in the second line of (2.21); by some calculations one can even show

(2.23) F < (UVW)~ ! Tx!/20-lelite

Thus if we want to improve 0 =11/20+¢ we are entitled to assume
log (M/N) = o(log x) and ¢ = o(1) in (2.22).

3

Very recently Iwaniec [6] and independently the present author [10] were
able to improve the result 6 > 11/20 to

(3.1) 0=17/31 =1/2+1/(20+2/3)
and somewhat later we jointly proved
(3.2) 6 =123/42 =1/2+1/21.

In all these proofs a crucial role was played by the following deep
theorem of Deshouillers and Iwaniec [1): If 0< L, KL< T, < T, K(s)

= Y k,n7% Y |kJ*n <1, then

n<K n<K
T
1 ¢ k,., g 1+e
(3.3) Y qEen| | & g A <IT
L, <ISL n<k
! Tl

¥ = max (l, T-1/2 KZ, T2 K514 LI/Z)_
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This theorem itself does not imply an improvement of (2.10), but one might
use the multilinear form of the remainder term, of which the bilinear form
(2.8) is a consequence. In fact, Theorem 4 of Iwaniec [5] shows that R(D)
can be written in the form

(34) R(D)= Z Z Cv(Pli"'iPr)Rv(Pls--':Pr)a

1<r<xE (PloP)e@
where all elements (r-tuples) of the set 2 satisfy

(3.5 D*<P <. <P <z,
(3.6) P .. Pl PP D=x120"2057¢ £ x092 (1 I<r)

and ¢,(P,, ..., P,) are bounded by 1 in absolute value, further

(37) Rv(Pla"'SPr)= Z v Z r(vplpl"'pr)

Py<pysQy  Pp<p <0,

with some P, <(Q, <2P;,. By using the fact that & contains at most
O ((log x)*®) elements it is sufficient to show

(3.8) Ry(Py, ..., P) <v  yx~ 2.

In proving (3.8) one can assume without loss of generality that v = 1, since
otherwise the interval [x—y, x] is transformed into [v™!(x—y), v ! x]. As in
Section 2, it is sufficient to prove (2.14) (with x'= %), where .# and .} is a
suitable subdivision of (P,, ..., P,)

1 1
(3.9 M= Y = NoO=]I Y =
Pre# P|<p[$Q‘p'|“ Ples Pl<pl$Q‘p1
(3.10) M=T] <D, N=]]P<D.
Pie.# Pje.t’

It is rather complicated to prove that the range of validity of (2.14) can
be extended to § = 23/42 or to 6 = 17/31. Our aim here is only to show that

for every kind of functions (3.9)-(3.10) type, where (3.5)-(3.6) are satisfied,
(2.14) can be proved, e.g., for

11

(3.11) =302 10%

ie T = x(9/20+1/2:10% + 2¢
by using the crucial result (3.3).

Since Cases 1, 2a, 3 and 4 are treated suitably for every 6 > 17/31
= 11/20—1/620 in Heath-Brown and Iwaniec [3], we can assume that Case
2b holds and, in view of (2.23),

(3.12) MN =[] Py =x"8* L=x%% |p <1072
=1
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Further, we can restrict ourselves to the interval [T}, T] where T,
= x04573 in view of the work of Heath-Brown and Iwaniec [3]. If we
succeed in finding a relatively short factor of M(s) or N(s), then we can
attach this to the zeta-factor L(s), and the application of (3.3) furnishes an
improvement. If one would be contented with a very slight improvement. one
could take the shortest factor, corresponding to P,. But if, say, P, < D, then
this would lead to an improvement of 8 with £2/16 only, where, however, &
can be chosen as a fixed positive number. This, however, would need explicit
calculation of ¢ in (2.5), and so we would probably have a very slight
improvement only. (In that case we would have to work in (2.8)—(2.10), (2.14)
etc. with another, much smaller value n, instead of ¢ but this would cause no
difficulties at all)

So we define the index a, ] <a<r, by

r

(3.13) [[P=x>%> [] P
1=

I=a+1
(where the empty product means 1) and by symmetry we can suppose

f

(3.14) K:= [] P x0002

Pk
and let K (s) be the product of factors corresponding to Pye A, | 2 a. Now K
is not too large, since by (3.6), (3.12), (3.13) we have

< D < D < X
= a = MN x0.004
1

i=
and thus by (3.13)-(3.14)
(316) x0.002 < K < xO.lZS—-qo.

Let us denote by Q(U, ¥, W, Z) the measure of those points te[ T, T]
for which besides (2.15)—(2.16) (with an integer m)
(3.17) Z<|KG+in<2Z, x'<Z<x,Z=2"
and let us define Q(U, ¥, W) and F as in (2.15) for the shorter interval
te[T,, T]. Then, clearly,
(3.18) log'®xF=Q(U,V, W)

<3 log x max Q(U, V, W, Z) =:F, log*°x.
Z

0.124-p
L

(3.13) P,

Then in Case 2

; VY *M
_2 - .
(3.19) F,>F>2V*M>2 (Zo) X’
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if the maximum in (3.6) is attained for Z = Z,, since Z, @log‘“x\/l?
=o(ﬁ) if K(s) consists of v factors of the shape )  p/°.

Pieps@ .
So in this case we can use the Haldsz—-Montgomery inequality for
M (s)/K (s) instead of M (s), and further the Deshouillers-Iwaniec theorem;

thus by (3.19) we obtain for Case 2 the inequality
(3200 F <T'*"x
xmin {V"2, W2, V"6 ZEMK !, W eN, U4, U *Z;% ¢}
s Tl +5(V—2)5/16(W—2)5]16(V—6 Zg MK— 1)1116 X
X(W—GN)I“G(U_“)””’(U"‘Zaz j)S/lﬁ

= (UVW)—I T1+B(MN)1/16(f3 K-l)lllG
=(UVW)™! T e x120( g3 xo K 1)116,

Now by (3.3), (3.11), (3.12) and (3.16) we have

2 \ x¢ KS xcp Kl 1/4 L3/2 xzp
(3.21) F°x*K™" < max (0002 270>~ 27/40

< xmax(¢~2-1o‘3.—o.035—4¢.— 0.023 - 13¢p/4)

-0.001
<X .

Thus in view of the choice of T in (3.11)
(3.22) UVWF « x1/27107%+3¢,

This shows that the remainder term of the sieve is of a smaller order of
magnitude than the main term for = 11/20~1/(2-10*). Naturally, the whole
method works only if in (2.2) the final lower estimate remains positive. Thus,
to obtain the improvements (3.1) or (3.2) in the original problem (1.1) or (2.1),
it is also necessary to extend the range where the second sum of (2.2) can be
evaluated asymptotically. Some further ideas are needed also in the treatment
of those terms which were ignored in the form given by (2.2). We do not
want to discuss these problems here. They are treated in [6] and [10].
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