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Let G be a finite group acting on the n-manifold M as a group of
homeomorphisms. A convenient and widely studied class of such actions is
the locally linear (= locally smooth = locally smoothable) ones, i.e., those
such that each point x of M has a neighborhood U which is invariant under
the isotropy subgroup G, = {g: g(x) = x| and is G,-equivariantly home-
omorphic with some orthogonal representation of G, on a Euclidean
space Rj. (This hypothesis eliminates many local pathologies of a topological
nature, guaranteeing, for example, that the components M¥ of the fixed point
sets M¥ of the subgroups H of G are always locally flat submanifolds of M
and that the intersection of two such components is a locally fat
submanifold of each.) The category of locally smooth actions of compact Lie
groups on n-mantfolds is analysed in the fundamental reference [Bre2]. It is
even a highly desirable condition (in its piecewise linear form; for, without
it, there is no equivariant regular neighborhood theorem.[Ro; Section 5].)

A considerable amount of work has been done to relate locally linear
actions to the smooth and p.l. actions, e.g., [LRo], [Ro], [(HsPa], and [114]
and to produce equivariant analogs ol the basic theorems of inequivariant
geometric topology, including the Deformation Principle of Edwards and
Kirby [Si2], Stebenmann’s Cell-Like Mapping Theorem [Han], basic p.lL
theory [I12, 3, 4], the Whitehead group and s-cobordism theorem [Brel],
(Ilt, 5], [Ro], [Hau], [An], the obstruction to finiteness [Bag], [An], [K],
[Q2] surgery [BroQ], {DoPe], [DoRo], triangulation and smoothing [112],
[AnHsl, 2, 3], [Ro], [Q2], and the “controlled topology” which we shall

* This paper 1s in final form and no version of it will be submitted for publication
elsewhere.
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refer to as CFQ-theory (after Chapman, Ferry, and Quinn) [Chl-10],
[ChFel,2], [QL2].

One ol the most striking aspects of finite group actions, leading to a
standard inductive strategy [or argumentation, is the stratification' of the
space acted upon by the fixed point components of the subgroups ol the
acting group, since if H c K, then M" > MX This stratification is
particularly nice in the case of locally linear actions because the fixed point
components are equivariantly locally flat submanifolds. Passing to the orbit
space and filtering by the dimension of the images of these submanifolds
yields the structure of a “cone-like™ stratified set in the sense of [Si2], in
which each point has a neighborhood U which is the product VxW of a
Euclidean neighborhood V in the stratum of the point with a cone W on a
stratified set.

Many inequivariant results virtually prove themselves in the equivariant
context by induction on the “depth™ of the stratification, an example being the
s-cobordism theorem in the smooth or p.l. locally linear categories (once the
appropriate definition of the Whitehead group, dimension restrictions, and
hypotheses preventing knotting of fixed point sets in each other (or of
detecting 1t) are made (cf. [BroQ], [Ro]). In connection with this, it is
particularly pleasant to note that an equivariant map between two G-ANR’s
(ANR’s in the category of spaces with G actions and equivariant maps) is an
equivariant homotopy equivalence if it restricts to a homotopy equivalence
between the H-fixed point sets of domain and range for each subgroup H of
G, cl. [Brel].

For the topological category of manifolds with locally linear actions, two
of the most fundamental results of the inequivariant theory fail equivariantly:
the topological invariance of Whitehead torsion and the finiteness of
homotopy type for compact manifolds. These failures are of the greatest
philosophical and technical import, as the first deprives us of the s-cobordism
theorem, one of the most important tools for the construction and
classification of manifolds, and the second deprives us of even the existence
of handlebody decompositions, a yet more fundamental tool. Both these
results fail magnificently and quite generally. For example, if the classical
Whitehead group Wh(Z [G]) or reduced projective class group Ko(Z [G]) is
non-zero, then there is a smooth action of G on an h-cobordism that is
topologically a product but is not a smooth or p.l. product [Ro], [BHs].

The failure ol the topological invariance of equivariant Whitehead
torsion was to be anticipated after Milnor’s disproof of the Hauptvermutung
for polyhedra [Mil], even though a definition of the equivariant Whitehead
group was thirteen years away [l11], [Ro]. It was discovered in the mid-
1970's, cf. [116], [Ro], [BroHs].

The discovery that compact, locally linear equivariant manifolds need
not be equivariantly homotopy equivalent to finite G-CW-complexes (CW-
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complexes on which G acts by permuting the cells) was made by Quinn in
1982 [Q2]. It came as a shock, although it was foreshadowed by some of
Siebenmann’s examples of non-triangulable spaces.

Both of these failures were discovered as a consequence ol “topological
Eilenberg swindles” converging to a single fixed point of the action and
employing ¢lements of the Whitehead group or the projective class group,
with equivariant engulfing employed in the complement of the point to show
that local linearity was preserved. (Rothenberg and Browder and Hsiang
used engulfing [ConMoY], [Sta]; Quinn used his controlled end theory to
achieve essentially the same thing.) It is crucial that the equivariant situation
is inherently stratified, topologically for the failure of the s-cobordism
theorem and homotopically for the failure of compact manifolds to have
finite homotopy type, for these swindles do not apply disruptively without
stratification consideratons.

This state of affairs brings many problems and questions to mind.
Among them are the following:

1. Construct the appropriate Whitehead group and prove an equivariant
topological s-cobordism theorem for pl. G-manifolds. (Note that the
equivariant s-cobordism theorem in the p.l. locally linear category gives a
bijection between the equivariant p.l. isomorphism classes, rel. M, of
equivariant p.l. h-cobordisms and the appropriate subgroup of the
equivariant Whitehead group Wh".

2. The kernel of the map from the p.l. equivariant Whitehead group to
the topological one of (1) above will correspond to the subgroup of the p.l.
isomorphism classes of h-cobordisms that are topological products, i.€., the
p.l. structures on the product h-cobordism. Describe this group algebraically,
or at least give means for its algebraic computation.

3. Give a topological definition of an equivariant “Whitehead” group
and prove an equivariant topological s-cobordism theorem for the locally
linear topological category.

4. Give examples of compact equivariant manifolds realizing all possible
obstructions to (equivariant) finiteness.

5. Define the obstruction to controlled equivariant finiteness and give
examples of compact locally linear manifolds realizing all possible
obstructions.

6. Do there exist equivariant h-cobordisms of locally linear p.l
manilolds that do not admit handle decompositions on them?

7. Do there exist locally linear manifolds without handle decompositions
but with vanishing equivariant finiteness obstruction, i.e., is the finiteness
obstruction the obstruction to the existence of a handle decomposition?

8. Is the controlled equivariant finiteness obstruction the obstruction to
equivariant handle decomposition?
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9. If the answer to 7 is “No”, what is the obstruction to equivariant
handle decomposition?

10. Both [AnHs] and [Q2] give sequences of obstructions, the
vanishing of which ensures the triangulability of M as a G-combinatorial
manifold; however, no general realizability theorems are given. Sharpen these
schemes by calculating precisely which are realizable. (Cf. [DoRo].)

11. What is the situation with respect to lower dimensional manifolds
for any of the above?

12. What is the situation with respect to Hilbert cube manifolds for any
of the above?

13. Has every compact G-ANR the equivariant homotopy type of a
compact, locally linear manifold? What about the finite-dimensional compact
G-ANR’s?

14. What is true for any of the above for locally linear actions of
compact Lie groups? What about proper actions of non-compact Lie groups
(each isotropy subgroup compact)?

We have made an analysis (cf. [SteWes1] that solves 1 and 2, gives a
candidate for 3, solves 4 and 5, answers 7 positively with a calculation of D.
Webb [Web], and produces a relatively mature theory of “Q.-manifolds”
where Q i1s a universal linear action on a Hilbert cube, thus going a long
way toward 12

Our fundamental result is our solution of 1. It is motivated by
Chapman’s proof {Chl, 2, 3, 5] that the inequivariant Whitehead group may
be regarded as (roughly) “stable homeomorphism classes of finite CW -pairs”
or “finite CW-pairs mod cell-like maps”, which are clearly topologically
invariant, the point being that while inequivariantly these and Whitechead's
“stable algebra™ description coincide, they diverge equivariantly, with the
stable algebra being precisely the appropriate setting for the proof of the
equivariant s-cobordism theorem in the smooth and p.l locally linear
categories and the stable homeomorphism class/cell-like map definition the
right one for the topological s-cobordism theorem.

In pursuit of this idea, we have developed a theory of equivariant cell-
like mappings which generally parallels the inequivariant theory because
controlled topological engulfing works perfectly well equivariantly. Thus, we
have equivariant versions of Siebenmann’s Cell-like Mapping Theorem [Si3],
of 'Edwards’ Approximation Theorem [E], and the Chapman-Ferry
a-Approximation Theorem [ChFe2], together with its corollary unobstructed
Thin h-Cobordism Theorem and “Fibrations are Bundles” theorem. We have
also, as mentioned above, been led to develop a theory of locally “universal-
linecar” G-actions on Hilbert cube manilolds.

Our techniques, in general terms, are controlled (equivariant) engulfing
and equivariant versions of the controlled simple-homotopy theory of
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Chapman, Ferry and Quinn [Ch 1, 2, 3, 5, 6, 7, 8, 9, 10], [FI, 2, 3], [ChFel,
2}, [Q1, 2].

The last two sections deal with subsequent refinements. Section 2, due to
P. Kahn and the first author, generalizes work of Burghelea, Lashof, and
Rothenberg to the equivariant setting, giving a structure set interpretation of
Whi-¢ (M), and showing that stably this leads to an equivariant homology
theory the spectrum of which has vanishing positive homotopy. Section 10,
due to the first author, uses the structure sets in a fiber sequence for
manifolds of the form M = N xI to compare the £ = PL and ¢ =TOP
theories with an exact sequence on the n,-level that determines, for example
when a p.l. G-manifold admits G-h-cobordisms without equivanant handle
decompositions and the order of the set of equivariant homeomorphism
classes of them, rel. M, which is not always 0 by a calculation of D. Webb
[Web].

We have until now dealt in generalities, deliberately slighting detail for
readability. The next section begins a more precise discussion.

1. Definitions and conventions

The finite group G is fixed throughout the discussion. A G-space is a space
equipped with a G-action. We freely use the symbol “G-" to mean
“equivariant”. Representations of G are always orthogonal. If “XXX” is a
familiar concept from inequivariant topology, then “G-XXX” or “GXXX”
denotes its equivariant analogue.

We generally follow the terminology of [Bre2] for isotropy subgroups
fixed point sets, etc. Thus, ML is a component of the fixed point set M¥ of
the subgroup H of G and My_is a component of the set My of points x with
isotropy subgroup G, equaling H.

One restriction that we generally employ is the term G-manifold. In this
paper, it means a locally linear n-manifold M satisfying the codimension > 3
condition that the intersection of a fixed point set component with another, if
it 1s not equal to the first, has codimension at least three in it. The purpose
of this is to ensure that there is no knotting of the fixed point components in
each other. The effects of this restriction are twofold. Firstly, it allows the use
of a very straightforward generalization [II1] of the inequtvariant Whitehead
group, which cannot detect knotting, in the smooth and p.l. s-cobordism
theorems. Secondly, it provides the 1-LC complements that we need for our
engulfing moves.

A second definition that requires some precision is that of equivariant
h-cobordism. Here, this term means a G-manifold W with boundary
W =MyuM; UE, where E is a closed equivariant collar between dM,
and éM,, such that the inclusions M; — W are equivariant homotopy
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equivalences and such that the union of the fixed point components of W of
dimension less than 6 is equivariantly homeomorphic with the product of its
intersection with M; and the unit interval.

2. G-ANR’s and manifolds modelled on @,

Many of the generalities of the theory of ANR’s go over unchanged to the
category of G-spaces. We discuss only those points that are relevant to our
considerations.

We say that a compact metric G-space A is equivariantly cell-like
(G-CE) if whenever it is equivariantly embedded in a G-ANR X, it equi-
variantly deforms to an orbit in each of its neighborhoods. This is a familiar
concept. Note that because equivariant maps can only alter the isotropy
subgroup by enlarging it, A~ X" will be N(H)-CE. Thus, G-CE sets are
stratified cell-like in a way that is vital to induction arguments using the
stratification by orbit types.

We say that an equivariant map f: X —Y between G-ANR’s is
equivariantly cell-like (G-CE) if it is proper and if f~'(Gy) is G-CE for each
yeY.

Let a be an tnvanant (G-) cover of a G-space Y, i.e, one whose elements
are permuted by G. A proper equivariant map f: X — Y is an equivariant -
equivalence ((G, a)-equivalence) if there is an equivariant proper homotopy
inverse h: Y — X such that fh is equivariantly a-homotopic to the identity
and hf is equivariantly f~!(a)-homotopic to the identity. If f is a (G, a)-
equivalence for all open G-covers of Y, then it is an equivariant fine
homotopy equivalence.

Now we can state an equivariant version of Haver’s theorem [Hav],
which holds equivariantly: for separable metric G-ANR’s the G-CE maps
coincide with the fine homotopy equivalences.

We now turn our attention to Hilbert cube manifolds. Let Q; be the
countably infinite product of unit discs of the regular real representation
R[G] with the diagonal action by left translation. It enjoys in the category
of G-spaces all of the familiar universality properties of the Hilbert cube.
A Qs-manifold is a metrizable G-space locally equivariantly homeomorphic
with Qg.

In [SteWes4], we show that the basic topological properties of Hilbert
cube manifolds extend to our equivariant setting. (See [Ch4], [Fel], [FaV],
[ChFel], [T1,2] for basic references.) In particular, we are interested in
Edward’s Stabilization Theorem [Ch4] that locally compact G-ANR’s
become Hilbert cube manifolds upon stabilizaion by Cartesian product with
the Hilbert cube, for that is how we relate the polyhedra defining our
topological Whitehead group with the manifolds we wish to classily.
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The most basic tools of Hilbert cube manifold theory are Z-set
unknotting and stability; from them the rest of the theory flows almost
formally. By an equivariant Z-set 4 in a locally compact G-ANR X we mean
a closed, invariant subspace such that for every open cover a of X there i1s an
equivariant map F: X — X — A that is a-close to the identity.

We show (G-Z set unknotting) that any pair of equivariantly homotopic
embeddings f: X - M, i =0, 1, of a locally compact G-space onto closed,
equivariant Z-sets of a Q;-manifold M are equivariantly ambiently isotopic.
This has the corollary that closed G-Z submanifolds in Q;-manifolds are
equivanantly collared.

Stability holds for Qg;-manifolds: the projection M xQ; - M may be
approximated arbitrarily closely by equivariant homeomorphisms.

With these results, together with the equivariant version of the
Deformation Principle of [FaV] (= Edwards—Kirby [EK] for Hilbert cube
manifolds), we establish equivariant analogs of virtually ail the results in the
foundations of the theory of Hilbert cube manifolds that are independent of
handle straightening and thus do not require the vanishing of Whitehead and
K-theory obstructions, for it is a feature of the equivariant K-groups that
they are nonzero even for points (we think of them as functors of G-spaces).

First, we generalize Edwards’ theorem: if X is a locally compact metric
G-ANR, then X x Q;-manifold.

Next, we have an equivariant version of Ferry’s [Fel] a-Approximation
Theorem: for every open cover a of a Qg-manifold M there is another open
cover f# of M such that every (G, f)-equivalence f: N — M from another Q-
manifold is equivariantly -homotopic to a homeomorphism.

From the x-approximation theorem we also obtain a Qg;-manifold
fibrations are bundles theorem: an equivariant fibration p: E — B between
locally compact metric G-spaces is an equivariantly locally trivial bundle
provided that the base space is locally finite-dimensional and each fiber
p~l(b)is a Qg,-manifold. (Here, an equivariant fibration is a G-map with the
covering homotopy property in the category of G-spaces.) A locally trivial
G-bundle p: E— B is a bundle on which G acts by fiber-preserving maps
such that each he B has a G,-invariant neighborhood U and a G,-equivariant
trivialization P~ !'(U) ~ U xF, where G, acts diagonally on U xF. Such
bundles may be classified by the methods of [LRo]. Note that because of the
bundle theorem and the stabilization theorem above, more general notions of
equivariant bundles will not satisfy the equivariant covering homotopy
property.

Finally, we obtain an equivariant version of Torunczyk’s
characterization of Hilbert cube manifolds [T1]. By a generalized n-disc we
mean a balanced product G xyzD; where D; is an n-dimensional
representation disc of the subgroup H of G. A G-space Y has the equivariant
disjoint n-discs property (DD; F) if each pair of G-maps into Y of (possibly
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distinct) generalized n-discs may be approximated, arbitrarily closely, by
equivariant maps with disjoint images.

The characterization of Q;-manifolds is: the Q,-manifolds are the locally
compact, metrizable G-ANR’s with the equivariant disjoint n-discs property
for all n. (We could, of course, use Q. instead of the generalized n-discs.)

The reader familiar with Hilbert cube manifold theory will notice that
handle straightening is the only ingredient in Chapman’s first proof [Ch!1] of the
topological invariance of Whitehead torsion which has not been lifted to the
equivariant setting above. Since equivariant torsion is not a topological
invariant, this handle straightening is non-trivially obstructed. Moreover, the
existence of compact G-manifolds M ([Q2], see Section 8 below) with non-
vanishing equivariant finiteness obstruction produces by stabilization non-
triangulable @;-manifolds, i.e., manifolds not equivariantly homeomorphic to
K x Q¢ for some simplicial G-complex K.

We show that any locally compact G-ANR X has a well-defined
controlled “finiteness” (or “propriety”) obstruction ¢.(X) in an equivariant
controlled K-group K, (X), (see Section 6, below) such that ¢.(X) vanishes
if and only if for every open cover a of x there is an equivariant proper x«-
equivalence f: K — X for some locally finite equivariant simplicial complex
K. The equivariant x-Approximation Theorem now shows that if X is a Q-
manifold, o,(X) is the obstruction to equivariantly triangulating X.

Using this, we show that the obstruction to straightening a k-handle
Gxy(R* xQy) = X lies in the H-equivariant lower K-group K -, y(*) and
hence vanishes for k = 3.

3. Equivariant Whitehead groups and s-cobordism theorems

lllman [Il1, 5] gave an equivariant Whitehead group modelled on [Co2],
1., equivalence classes of equivariantly proper homotopy equivalent pairs of
finite G-CW complexes (Y, X) modulo equivariant cellular expansion and
collapse, rel. X. (An equivariant n-cell of type H is G/H x ¢".) We denote it by
Whs™ (X); the class of a pair is also called its torsion (Y, X) or t(Y). Il we
use the restricted subgroups Whs""¢(X), in which Y is only allowed cells of
types appearing in X with dimension at least five, then an equivariant s-
cobordism theorem holds [BroQ], [Ro] in the smooth and p.l. categories of
locally linear G-manifolds (see Section 1 for definitions). It even holds in the
topological category for G-manifolds with equivariant handle decompositions
if one asks for equivalence up to finite handle manipulation, i.e., isomorphism
classes, rel. M, of G-h cobordisms (W, M) are in bijective correspondence, via
(W, M), with Whi-*(M).
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With this, we can establish an equivariant version of Siebenmann’s Cell-
Like Mapping Theorem [Si3]: Let F: M—> N be a G-CE map of G-
manifolds that is a homeomorphism of boundaries and of fixed point
components M¥ of dimension less than five. Then f is a limit of equivariant
homeomorphisms agreeing with it on the boundary and fixed point
components of dimension less than five.

The argument is by induction on orbit types, beginning with the
inequivariant result and utilizing the fact that the G-CE maps are NH-CE
maps on M for each H. Note that the Bing Shrinking Criterion works
equivariantly.

A remark should be made here concerning the relation of this theorem
to Handel’s Stratified Cell-Like Mapping Theorem [Han]. Handel assumes
that the point inverses lie in single “pure” strata of the stratified sets.
Equivariantly, this is equivalent to the hypothesis that f~!(y) « My, where
H =G,, and hence to the hypothesis that the map is isovariant. Our
situation allows the point inverses to traverse several or all strata. It is this
that allows us to make the connection between equivariant homeomorphisms
of manifolds and the geometrically defined Whitehead group: the collapse to
K of the regular neighborhood of K in a representation disc, for example, is
only isovariant for free actions.

Equipped with the Equivariant Cell-Like Mapping Theorem and
controlled engulfing, we can now manipulate Chapman’s shuffling machine of
[Ch&], which is basically a torus argument reminiscent of Connell’s shuffie in
[Con] that avoids any use of Whitehead groups or surgery results, to prove
the x-Approximation Theorem for G-manifolds: Let M" be a G-manifold. For
each open cover a of M there is an open cover g of M such that every
equivariant g-equivalence f: N" — M that 1s a homeomorphism of bounda-
ries and on fixed point components N of dimension less than five is
equivariantly a-homotopic to a homeomorphism. (Again it should be empha-
sized that isovariance is not hypothesized.)

With the Equivariant a-Approximation Theorem, we can now obtain
our primary technical goal in this material, a fully equivariant version of an
unobstructed controlled h-cobordism theorem of Chapman and Ferry (cl.
[Q1], [Ch9]). To state it, we need two more definitions.

An equivariant map f: X —Y is equivariantly (x, 1)-connected
(cf. [Q1]), where a is an open cover of Y, if for each equivariant relative
2-complex (R, S) and equivariant maps h: S — X and k: R— Y with fh =k,
there is 2 G-map k': R— X extending h such that fk' is a-close to k.

If « is an open cover of the G-manifold M, then a G-h cobordism (W, M)
1s a (G, a, h)-cobordism provided that there is an a-strong deformation
retraction r of W to M for which the inclusion dW-M — W is equivariantly
(r~*(a), 1)-connected.
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The equivariant controlled h-cobordism theorem we need is now the
following: For each G-manifold M there is an open cover a such that all
equivariant (x, h)-cobordisms (W, M) are equivariant topological products. It
is an easy corollary to the Equivariant a-Approxtmation Theorem.

A second corollary of the Equivariant a-Approximation Theorem is an
equivariant “fibrations are bundles” result quite analogous to the one in
[ChFe2]: a G-fibration of locally compact, locally finite-dimensional metric
G-spaces p: E— B with B equivariantly path connected is an equivariant
bundle if each p~!'(b) is an n-dimensional compact G,-manifold and p
restricts to an equivariant bundle on the union of the boundaries of the
fibers p~'(b) as well as the union of their fixed point components which are
of dimension less than five.

Finaily, there is an equivariant version of Edwards’ Approximation
Theorem that CE-resolvable ANR homology manifolds with the Disjoint
Discs Property are manifolds: each equivariant CE map f: M — X from a
G-manifold to a G-ANR with the equivariant disjoint 2-discs property is a
limit of equivariant homeomorphisms il it restricts to a homeomorphism of
O0M and each fixed point component M} of dimension less than five. We
suppose it will be useful in identifying locally linear actions on known
manifolds.

5. Equivariant controlled-simple homotopy theory and
a controlled equivariant s-cobordism theorem

In this section and the next, we sketch the outlines of some equivariant
versions of Chapman’s controlled simple-homotopy theory [Ch10], which is
the end-product of a decade of research by him and Ferry. (CI. [Ch 1, 2, 3, 5,
6,7, 8,9, 10], [Fel, 2, 3], [ChFel, 2].) It plays a major role in our study. We
follow Chapman [Ch10] closely. In particular, Chapters 1-11 of it go over
verbatim, the primary difference being that we get several distinct but
parallel equivariant theories which all coincide mequivariantly. We use them
for our analysis of G-manifolds.

The notation is as follows. B is a fixed, finite-dimensional metrizable G-
space. The G-space in which we are interested is X, for the moment a locally
finite simplicial G-complex, which is equipped with an equivariant control
map p: X — B. (For simplicity we assume p is proper. The general case is
given by passage to direct limits from subspaces of X mapping properly to
B.) We fix an open G-cover a of B and let DR(X), be the equivanant proper
p~ ! (a) strong deformation retractions r: ¥ — X of locally finite simplicial G-
complex pairs (Y, X).

Let ¢ denote one of the following classes of equivariant surjections: PL
simple (p.l. with each point inverse f “y) Gy-equlvari“antly contractible and
representing the trivial element ot WhGy?L(x)), <Ei L \p.l. with cach point
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inverse f~'(y) G,-equivariantly contractible), G-CE. Now let DR®(X), be
the equivalence classes of members of DR(X), under the equivalence rela-
tion generated by equivariantly r 'iv1-homotopy commutative diagrams

/I\
~_
|

where f and f’ are in ¢ and the identity on X. Define Wh;*(X), to be the
invertible elements of DR®(X), under the operation of union over X
(pushout). Let Whg"""™(X) = Wh* "™ (X) ., and note that Whs“5(X).p.
= Wh;"°"(X) by the shuffle argument of [SteWes2].

There are naturahty properties of these groups [Ch10] that we forbear to
detail, but note the relaxation (ol control) homomorphisms WAh (X),
— Whg (X); when a refines f and the quotients Whi (X), — WhY(X), when
=2

The kernel of the quotient

Whe™(X), — Wh "PH(X),
is seen, with the help of [Ste] (cf. [Co3]) to be the subgroup generated by the
inclusion induced images of the groups Wh;" (G (x)), xe X.

We set Whi(X), = lim, Whi (X),, the inverse limit. The above remark
holds here, too. If p is simplicial or, more generally, is properly dominated by
a simplicial map, Whj (X). is stable in the sense of being equivalent to a
constant system.

Unlike the mequivariant case [Chl0, Section 121, if B= X and p 1s the
identity, Whg™(X), and Wh *" (X). are usually nonzero.

An immediate application ol these limits is that the Equivariant
y-Approximation Theorem for Q;-manifolds shows immediately that the
following sequence is exact for { = PL or CEPL:

Whi(X), — Whi(X)— Wh;""(X)— 0.
(Here B= X and p=id)

Foliowing Ferry [Fe2] and Chapman [Ch10] 9¢f. [AnHs2], [K], [Ra]\
we define K3 ;(X), to be the subgroup of Whi (X xS'), comprised of those
elements invariant under the standard geometric transfers (pull-backs via
idy x v, v being a standard orientation preserving self-covering of S'). Here S
has the trivial G-action, and the control is p(proj): X xS' — X — B. Analo-
gously, we set K%;;(X), to be those elements of Whi(X x T'""), that are
invariant under all the geometric transfers of the standard S' factors of the
(i4+1)-torus T*' K§4(X), and K&, 5(X), is the inverse limit. Again, if X

13 - Banach Center Publications
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is compact and p is properly dominated by a simplical map then the inverse
systems are stable.

When we come to studying equivariant finiteness obstructions we need
non-compact X but relatively finite (¥, X). These groups are Wh (X) etc.

We can now obtain a strict equivaniant analog of Chapman’s controlled
Whitehead theorem. We consider G-h cobordisms (W, M) in the smooth, p.l.,
or topological category with given equivariant handlebody decompositions
and ask for isomorphisms that are smooth, p., or obtained by handle
manipulations. '

The choice of a G-p~!(x) homotopy inverse of i: M — W gives us an
element of DR(M), which determines a unique torsion t(W, M)e Wh (M),
where B is an iterated star of a, the number of iterations being a structural
constant of the theory. The effect of handle manipulations and cell trading is
generally to lose control with each step, but a key observation in the theory
[Q1, 2], [Ch10] shows that this loss 1s well-regulated. Following [Ch10], we
have a function ¢: Z, xZ, — Z,, preserving the product partial order,
describing this loss.

The equivariant analog of Chapman’s Controlled A-Cobordism Theorem
(cf. [Q2]) is now that the equivariant p~'(a)-h cobordism (W, M) is equi-
variantly p.l. p~!(y)-somorphic with (M xI, M x!0)) if and only if its
torsion t(W) vanishes in Wh"™ % M)y,, where y is the ¢(dim B, dim M)"
star of a; moreover, for any xe Whg"4M), there is an equivariant (smooth,
p.l, or top-with-handles) p~!(;)-h cobordism (W, M), the torsion of which in
Whi" (M), equals the image of x (under relaxation).

We conclude this section by showing how to extend these definitions to
locally compact G-ANR’s. For a compact G-ANR X with control map p: X
— B and open G-cover a of B, let B, <f, < ... <p !(a) be a sequence of
precise shrunk open G-refinements [Du] of p~'(«) such that if 4; denotes the
element of y; corresponding to Aep '(a), then 4 = {JA,. Let 3, <7,,, < ...
be a sequence of open G-covers of X such that St?(f};, 7;,,) refines B, ,.
Now choose equivariant finite j;-dominations u;: X — L, d;: L, — X and let
6; =di '(). Then define Whg(X), = lim_. Whi(L;); where the bonding
homomorphisms are (u;, ;d;),: Whi (Li)s, = Whi(Liy ()5, , - ¢ = PL, CEPL,
or CE. (We need to use equivariant simplicial approximation here.) To
extend to locally compact G-ANR’s, we need to use more than a sequence of

f's and y's, but the idea is the same. Altering the above choices results in
isomorphic limit groups.

From this definition, the Wh (X),, IZ%,G(X),, etc., may bec defined as
before.

If the control map p: X — B is the identity then it is properly dominated
by a simplicial map so that the inverse system defining Wh(X), is stable.
This extends to the equivariant controlled lower K-groups.
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6. Controlled equivariant finiteness and splitting obstructions

An equivariant version of Wall's finiteness obstruction [Wa] was given by
Anderson [An] (cf. [Bag], [K]) in the form of a direct sum of inequivariant
obstructions exploiting the theorem of Bredon that equivariant maps that are
inequivariant homotopy equivalences on all fixed point sets are equivariant
homotopy equivalences. Geometrically defined inequivariant controlled
finiteness obstructions have been given by Ferry [Fed4], Chapman [Chl10]
and Quinn {Q2]. We present here equivariant versions of the Chapman-
Ferry obstruction to (controlled) finiteness, applying them to obtain an
equivariant “End Theorem” modelled on those of [Chl0] and [Q2]. The
homotopical parts are taken from [Chl0], sections 7-11].

Let X be a G-space with a control map P: X — B (equivariant). For
simplicity, assume B is compact. We give a generalization to controlled
propriety obstruction in [SteWes3]. If (u,d): X—- K-> X is a p '(a)
domination of X by a simplicial G-complex K, then X is equivariantly
p~'(f)-homotopy equivalent to the infinite mapping cylinder D, of the
homotopy i1dempotent ¢ = ud (D, is the infinite cyclic cover of the mapping
torus T(¢) of e).

Here f 1s an iterated star of a, the number of iterations being a
structural constant of the theory [Ch10] (cf. [Fe2]). Thus, we may restrict
ourselves to the case where X i1s a simplicial G-complex. If K is finite, then
by taking the simplicial mapping cylinder of ¢ we may presume K to be a
subcomplex of X.

Now T, is equivariantly p '(f)-homotopy equivalent to X xS*
[Chl0]. Let u be such a homotopy equivalence with inverse v, and let » be
the reflection of S* through some line through the origin in R?. Then, for an
equivariant simplicial approximation ¥ to v(idy xx)u, the simplicial map-
ping cylinder M(y) of Y equivariantly p~'(y)-deformation retracts to its
“domain” end for 7y sufficiently larger than o« This yields an element of
DR(X xS8'), by u,. which is represented by adding M(w) to M(y) along
their domain ends. Again for some iterated star o of «, the number of
iterations being a structural constant of the theory, this produces a unique
element a,(X)e Ko ;"™ (X){. which is zero if X is p~ ' a-finite. (See [Ch10]) If
o,(X) =0, then X is equivariantly p~'(¢)}-homotopy equivalent to a finite
simplicial G-complex, with & again an iterated star of «, the number of times
being a universal constant.

Similarly, if (X, A) i1s a G-ANR pair with 4 closed in X there is a
controlled relative finiteness obstruction a,(X ret A)e K, s™(X)] whose
vanishing implies that X is p~!f-equivalent rel A to a relatively finite
relative G-CW complex built on A. Moreover, il ¢: A < X, then 0,(X)
=0,(X rel A)+i, 0,(A) modulo slight relaxation of control.

This leads to an equivariant controlled end theorem, the statement of
which is exactly like Chapman’s but again needs two definitions. Let M be a
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noncompact smooth or p.l. G-manifold with equivariant control p: M — B,
B finite dimensional and metrizable. Neighborhoods U of the end (s) § of M are
the complements of compact sets. M is equivariantly p '(x) 1-movable at «
if for each neighborhood U of & and open G-cover a of E there i1s a smaller
neighborhood V of & such that for cach neighborhood W of & there is a
smaller one Z such that each equivariant map f: (K, L)—(V,Z) of a
relative 2-complex may be p '(x)-approximated, rel. L, by another f”:
(K. L) —{W, Z) that is equivariantly p ' (x)-homotopic to it in U and rel. L.

The end(s) 1s equivariantly tame over B if for every neighborhood U of
4 and open G-cover x of B there is a smaller neighborhood V of & so that U
equivariantly p~'(x)-deforms into U~V

Both of the above conditions are implied, of course, by the existence of
an equivariant boundary for M over B (ie, a manifold N > M, with
boundary. such that N—M < ¢N and such that p extends to N).

Controlled equivariant tameness ensures that each neighborhood U of &
with bicollared frontier in M is equivariantly p~!(a)-finitely dominated for
each x so we get o,(U)eKy"™U),, and these give an element
o (Selimy, Ko o™MU), = Ko g(4) . This element is independent of all
choices in the construction. The vanishing of ¢.(&) is as in [Ch10] necessary
and sufficient that ¢ have neighborhoods that may be split as a sequence of
controlled G- cobordisms with ever-increasing control over E. To adjust
them to controlled equivariant s-cobordisms requires that the sequence of
controlled torsions represent 0 in the lim' group of the sequence of their
controlled equivariant Whitehead groups (with bonding maps derived
from inclusion of neighborhoods). This provides a second obstruction
t.(&)elimf, Whe™ (U), = WhPH (&), it is defined when 6.(£) =0 and is
independent of all choices.

Now the equivariant controlled end theorem can be stated. Except for
the by now [amiliar hypothesis on low-dimensional fixed point sets, it reads
exactly as does Chapman’s [Ch10]: a smooth or pl. G-manifold controlled
over a finite-dimensional metrizable G-space E admits and equivariant
controlled boundary over E if and only if the five conditions below hold.

1. M =¢ and all noncompact fixed point components MY of
M are of dimension at least five,

2. M is equivariantly l-movable at « over B.

3. M is equivariantly controlled ame at oc over E.

4. The controlled equivariant finiteness obstruction a,(é)e Ko "1(&)! of
M at x over B vanishes.

5. The lim' torsion obstruction 1.(&)e WhgH( &), vanishes.
(If the control is equivariantly simplicial or an equivariant simplicial p-NDR,
then t.(&) = 0.)

There i1s a relatively straight-forward analog for smooth and p.l.-G-
manifolds with ends that are “proper” over B. For this theorem we define a
neighborhood U of & to be an open set of M such that p restricts to a
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proper map of M—U to B and proceed as above, obtaining obstructions
0.(5)e Ko "™M(&), and /(&) e WhE™H( ).

An additional use of the controlled equivariant finiteness obstruction (in
a relative form) is as a controlled splitting obstruction for elements of
Whe(X),. Chapman’s treatment in [Chi0} again goes over verbatim. We
summarize as follows.

Suppose that B = C xR for C compact and that p: X — B is proper
For r: Y - X in DR(X),, choose a p ! (x)-deformation retraction r, and an
invariant Urysohn function

A (Y, r P pH(st(C x(—x,0]) = A), a), r~ ' pT (st (A, 1)) > (1, 0. 1).

(Here set (F, 8) =) !Uef: UnF # @}, and st*(D, f§) = st(st(F, f5), B))

Then y—rg, () =u(y) i1s an equivariant domination of Y by Z
'p-'(4)u X UF. where F is a finite subcomplex of (a subdivision of) Y
containing the closure of r~ ' p~'(st*(4, a)— A). Thus, it may be regarded as
a relatively finite domination of the pair (Y, X ur~ ! p~'(A4)), and we can ask
it whether the pair is equivariantly p~ ! (f)-homotopy equivalent to a relati-
vely finite pair (K, X ur 'p7'(A4)) rel. X ur™'p 1(A).

If this is so then, as in [Sil], modulo an equivariant expansion, we may
assume that F is so chosen that there is a p~'(f) strong deformation
retraction F of Y to Z. Now Fr, is an equivariant p~'(st(a, f))-strong
deformation retraction of Z to X, which shows as in [Sil] that »r is
equivalent in DR(X),, 4 to W=2yu,Y-Z, where ¢ =r|: D— Z, with D
=Z N Y—-Z the site of attachment of Y—Z to Z. Observe that now W is
split into the two pieces Z and X U, Y—Z united along X and so equals the
sum of the two classes they determine in Wh (X), .z -

This argument shows that the controlled equivariant splitting
obstruction may be identified with the obstruction to controlled relative
finiteness given by the idempotent e = u|: Z — Z. This obstruction may be
handled in exactly the same way that the absolute fimteness obstruction was
by using the mapping torus construction (M ()) above and injecting it into
Ko ™(X) by first truncating Z to Z'=Zr 'p 1(st"(A, 1) 0 C x [0, 2))
for n sufficiently large that Z’ contains F and then taking X u, M (). where
n: t(elZ) — X xS' maps the domain end of M(y) to X xS' and is induced
by r.

Hence, there exists an integer k, a structural constant of the theory, such
that for [r]e Whi (X), or Wh(X), there is a unique element s ([r])e
eKi.c(p '(s*(C =0, 0)}Y, where 7 = st*(a), the vanishing of which ensures
that [r] splits near p~'(0) in Wh;""(X). (or Whi"(X)!).

This function s? is Chapman’s splitting homomorphism and enjoys
equivariantly all the properties established in [Chl0]. Moreover, his
realization theorem of Section 11 of that work holds equivanantly in all
three of the theories we are discussing. We reiterate, however, that
Chapman’s Theorem 12.1 and its two corollaries (one of which 1s that

= rﬁ
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compact ANR'’s have finite ¢-homotopy type for all ¢ > 0) fail equivariantly,
although Theorem 12.2 and its implications hold.

7. Calculations

Let X be a finite G-CW complex with fundamental group =n. The
Bass—Heller-Swan splitting [BHS] of Wh(Z[rnxZ]) as Wh(Z[n])
@K (Z [n]))®Nil extends to the isomorphism

WhePH (X xSY) = Wh," (X)DK o 6" (X)®Nil
with each summand itsell decomposed into a direct sum over conjugacy
classes of subgroups (H) and component classes (x) of fixed point components.
This also applies to Whg'""(X) and to the restricted groups Whz¢(X).
However, with our definition of K3 ¢ (X), the injection into Wh (X x S') is in
general slightly different from that of Bass, Heller, and Swan. (See [Ra].)

Our first order of business is 1o analyse the kernel of q: Wh;"™(X)
— Wh;"°"(X). We have already seen in Section 5 an exact sequence

Whi (X), » Whe (X) = Wh"P(X) - 0

for £ = PL, CEPL or CE. This sequence also holds for the restricted groups
Whée(X). We also have the kernel of Wh™(X)— Whe*"™(X) being the
subgroup generated by the PL groups of orbits Wh;" MG (x)), xe X. If
X = Z xS', this kernel contains no transler-invariant element, so Ko™ (X),
= K. P X), and similarly for the lower K-groups, the inverse limit groups
and the restricted groups and all their extensions to locally compact G-
ANR’s X. We drop use of the ¢ notation for them.

If the control map is simplicial, then we use the splitting material of
Section 6 together with Carter's Vanishing Theorem [Car] that K_,(Z [n])
= 0 for finite = if i > | in an induction over dual cells and a Leray spectral
sequence calculation with coefficients in the Whitehead and K _;-groups of
p~! (orbits) to calculate the Whgt*"(X), and K _; ;**"(X), groups. For X a
finite simplicial Gcomplex and simplicial (or equivariant simplicial p-NDR)
control map or a locally compact G-ANR and control the identity of X, this
yields the following results. For

i>1, K_¢(X)=0; K*l.G(X)c;Hg‘lF(X:'[.—I,G);
and there is an exact sequence
Hg‘U(X, -%/‘_ I.G) d H?.II(‘Y, %0.0) i WhG[‘EPL( ’Y)C i H(ZIJ"(X; .#‘_ 1_0)

- H(o;'U'(X§ -ﬁ/'o,(;) - KO,G(X):- - H?’U(X; A _ 1,6) - 0.
(Here, HS''/ (X ;. X, ) denotes Bredon homology [Brel] with locally finite
chains and coefficient system given by restriction of K;; to orbits.) This
sequence 1s reminiscent of the one Quinn obtains in [Q2] from an Atiyah-

Hirzebruch spectral seequence and can in fact be obtained from one using
the material of Section 9.
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With this sequence, we can prove that for compact G-ANR X,
Whi"oP(X) and IZO,G(X)P as well as the restricted groups, are functors of the
“mi-system” of X, by which we mean that an equivariant map inducting an
isomorphism of the system IT = |n, (X", yxy): H a subgroup of G, xze X% a
base point, and ge NH/H}, induces an isomorphism of Wh;"P(X) and of
Ko.(X).. From the above sequence, it is seen that Wh,*"'(X), depends on
the 3-skeleton.

For an informative example, suppose that X is a compact G-ANR with
X" nonvoid and simply connected for each subgroup of G. Then with the
trivial action on T' we have

() Wh"HX < T

Il

WhG"L(X)@iKO_G(X)@( )K_,,G(X)@Nil terms

[N

e

Whe™ (%) ®iK g (*)@(;)K_ 1. (x)@Nil terms

~

= @ WhZ[NH/H) @ Ko (Z[NH/H))
D (;)K _1(Z[NH/H))®Nil terms;

2)

Whe' "M X xT') = ®p K,(Z [NH/H)®py, (;)K (Z[NH/H])@®Nil terms;

(3) Whg"r(X x T') = Nil terms.

8. Obstructions to finiteness in compact G-manifolds

Since Quinn [Q2] gave the first explicit examples of compact G-manilolds
not equivariantly homotopy equivalent to finite G-complexes, several others
have given examples, e.g., [DoRo]. We apply the preceeding material to
give examples of compact G-manifolds M (with boundary) exhibiting all
controlled finiteness obstructions of compact G-ANR’s and hence, as control
relaxation Ky 6(X), - Kog(X) sends o.(X) to o(X), of all finiteness
obstructions of compact G-manifolds. As may be seen from the example of
Section 7, this picks up distinct new classes of obstructions.

Our examples are easy to construct: let xe K, 6(X),, for X a compact
G-ANR and control the identity of X. From Section 7, we know that
KO‘G(X)C is a m,-system functor, so we may assume that X i1s a compact p.l.
G-manifold. Now let ¢ > 0 be so small that all equivariant ¢-h cobordisms on
X x §' are topologically trivial, using our controlled equivariant h-cobordism
theorem of Section 5. Choose an element f* ¥ — X xS§' of Kg4(X), (for
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sulficiently small ¢). By our version of Chapman’s realization theorem of
[Ch10], we may choose Y to be an equivariant &-h cobordism on X xS
Next, let (Y, X x R) be the indicated infinite cyclic cover of (Y, X x§') and
construct a G-p.l. bicollared splitting submanifold N of ¥ with N A (X x R)
= X x(0) such that inclusion N — ¥ is a #,-system isomorphism. Let Z be
the closure of the “positive” component of Y—N. Using an equivariant
topological ¢-trivialization of ¥ = X x Rx 1, we can attach a copy X x(0)
x! of X xI to the end of Z to compactily it into a G-manifold M.

The restriction of the projection X xR x1— X x (0! now induces a
retraction r: M — X which is a m,-system isomorphism and thus a K, ; ("),
isomorphism. A simple definition chase verifies that o (M) = i, o.(¢), where ¢
is the end of Z over M controlled by inclusion i; Z — M, so naturality gives
reo.(M)=r, i o.(e) =r,o.(Z) =n, where Z is controlled over M by inclu-
sion. Note that n =r_({), where { is the controlled finiteness obstruction
oc.(Z)elzo‘G(Z)f of Z with control over X by r, but r (c), suitably- relaxed,
equals the splitting obstruction s2(Y). By an equivariant version of a result
in [Ch10], this is up to sign conventions the torsion x of f: ¥ — X xS'.

Our examples have the property that even though they represent all
(identity-controlled) finiteness obstructions of compact G-ANR’s, they all
stabilize to equivariantly triangulable G-manifolds by product with R (trivial
action).

If one desires closed manifolds, one cannot realize all of the above
obstructions because of Poincaré duality. A version of Milnor's duality
formula [Mi2] shows that for R-stably triangulable closed G-manifolds M,
a (M) = 1+t for some element t, where 7 1s an analogous conjugate of 7. All
of the obstructions satisfying this symmetry property can be obtained from
the above examples M by taking ¢(M xI"), n > 2.

If the relaxation KO,G(X)C - KO'G(X) is not injective, then the realization
of an element of the kernel will be a compact G-manifold M with vanishing
equivariant finiteness obstruction that does not admit a handle structure
because its controlled finiteness obstruction does not vanish. D. Webb [Web]
has shown this to indeed be the case.

9. Structure spaces

This material is due to P. Kahn and the first author, generalizing
inequivariant work of Burghelea, Lashof, and Rothenberg [BuLRo], [BulLl,
2, 3]

Fix a category ¢ = DIFF of PL of locally linear G-manifolds, and let M
be a G-manifold in . Define (M xI, rel. M x!0}) to be the simplicial
space of ¢ structures on M x [, relative to M x {0} with the naturally induced
G-action. A typical k-simplex ol type H is an H-equivaniant shced ¢ structure
on M x I x A* that is equivariantly fiber-preserving (over A4*) homeomorphic
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to the product structure, rel. M x {0} x A4*. Face and degeneracy operators
are induced from A.

The first theorem is that WhP-¢(M), ~ ng"é(M x I, rel. M x{0}). Here
n4(X) denotes m, (X9).

Now, for a locally finite finite dimensional simplicial G-complex K, let
M be a regular G-neighborhood of K in some representation space and set
P:(K)=lim., Y*(M xD, x1I, rel. M xD,x |0}), where o ranges over the
isomorphism classes of orthogonal G-representations and D, is its unit disc.

The next theorem is that PY% P°(K) is the non-negative half of the
integrally graded portion of an ROg;-graded.

Let E° be the representing G-spectrum of this homology theory. Then

ng E¢ =~ Why (#),
T[I;’] Eé = KO'HPL(*),
T[E ZEé = K, 1_HPL(*).

For this homology we have seen that the O-th space of E* A M, is G-
homotopy equivalent to P*(M). The higher homotopy of E"" = 0.

10. h-Cobordisms without equivariant handle decompeositions

This material is due to the first author. Fix a category ¢ = DIFF, PL, or

TOP, and let M be a G-manilold in . Let hCob* (M) denote the classifying

space for G-h cobordisms (on M) bundles E — B (no action on B), that is,

the classifying space for bundles P: E — B containing trivial sub-bundles B

x M < E with each inclusion (h! x M - p~ ' (h) an cquivariant h-cobordism.
For M = N x1 there is a fiber sequence

Y5 (M x 1, rel. M x {0') - hCob* (M) — hCob™*"(M))

— ¥5(N xR xI,rel. N xR x|0!)— hCob®(N xR).
The above fiber sequence induces an exact sequence
Wi, " (M), — Wh¢ (M) — 7§ hCob™ (M) — K% ¢ (M), — K% ¢ (M).

As a corollary, we have from Webb’s calculation [Web] that K¢ ; (M),
— K% (M) is not always injective that there are G-ii cobordisms on
compact PL G-manifolds without equivariant handlebody decompositions.
The exact sequence, of course, is so designed that the image of the middle
term gives precisely the equivariant homeomorphism classes, rel. M of such
h-cobordisms.

A second corollary is that

1§ hCob"*F(M) = WhPe(M),
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where the latter 1s the Q;-stable homeomorphism classes (equivariant) of
restricted compact G-ANR pairs (Y, M), restricted meaning as ever that
Yy =Q if My = Q. This is probably true without the I-stability hypothesis

on M.
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