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1. Introduction

Let X be a smooth compact orientable surface, possibly with boundary. The
main object of our interest is the group of orientation-preserving
difftfomorphisms X — X considered up to isotopy. More rigorously, this
group is defined as the factorgroup Diff*(X)/Diff, (X), where Diff "(X) is the

* This paper is in final form and no version of it will be submitted for publication
elsewhere.



16 N. V. IVANOV

group of all orientation-preserving diffecomorphisms X — X and Diffy(X) is
the subgroup of diffeomorphisms isotopic to the identity. Topologists usually
call it the mapping class group of X. This group is also known to analysts as
the Teichmiiller modular group. The first term is nearly self-explanatory. The
origin of the second one will be explained later, for it is intimately related to
our methods of investigation of this group. That is why this group will be
denoted Mody throughout the text, in accordance with the second term.

If X is a closed surface, then every diffeomorphism f: X — X gives rise
to a 3-manifold by the well-known Heegaard construction. The
diffetomorphism class of this 3-manifold depends only on the isotopy class of
f- Apparently, this observation explains the interest of low-dimensional
topologists to mapping class groups. Isotopy classes of surface
diffeomorphisms appear naturally in many other problems of 3-manifold
topology, e.g. in the study of fibrations over the circle and of fibered knots.
As for the surlace topology, these isotopy classes are the main objects of
study. The mapping class groups play a fundamental role not only in low-
dimensional topology, but also in the theory of Riemann surfaces. These
groups are intimately related to the moduli spaces of Riemann surfaces.
However, the mapping class groups have been studied by topologists much
more intensively than by analysts. The present paper is not an exception.

Many interesting questions about the mapping class groups can be
stated in terms of surface topology as well as of the theory of Teichmiller
spaces (to be defined below). But we shall restrict ourselves to the
investigation of purely algebraic properties of mapping class groups. If X
is a 2-dimensional torus, then Mody 1s isomorphic to SL,(Z) (the
isomorphism is given by the action of diffeomorphisms on H, (X, Z) =~ Z?%).
The group SL,(Z) occurs in almost all branches of mathematics and has
been thoroughly studied from many points of view. Its higher dimensional
generalizations, such as the groups SL,(Z) and, more generally, arithmetic
groups, have been also treated in detail in a large number of papers. The
groups Mody can be considered as higher genus (*multi-handled”)
generalizations of SL,(Z), and hence provide an alternative and a partial
counterpart to the study of SL,(Z) and arithmetic groups (I owe this remark
to A. M. Vershik).

The above definition of mapping class groups is the modern differential
version of the classical topological definition. Namely, Mody can be defined
as Homeo *(X)/Homeo,(X), where Homeo™ (X) is the group of orientation-
preserving homeomorphisms X — X and Homeoq(X) 1s the subgroup ol
homeomorphisms isotopic to the identity. This definition is equivalent to the
previous one because every homeomorphism X — X is isotopic to a
diffeomorphism and if two diffecomorphisms can be connected by a path of
homeomorphisms then they can be connected by a path of diffeomorphisms,
too. (Note that higher-dimensional analogues of these statements are false.)
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There is also a homotopy-theoretical description of Mody, which we shall
state for simplicity only for closed surfaces. Namely, if X is a closed surface,
then Mody can be defined as the group of homotopy classes of all homotopy
equivalences X — X which act trivially on H, (X, Z). The equivalence of this
definition to the previous ones 1s a classical result of Dehn and Nielsen. Since
X 1s cither the 2-sphere or an Eilenberg—MaclLane space, this homotopy
definition allows us to compute Mody in terms of n,(X) by applying
elementary obstruction theory. It turns out that Mody is isomorphic to
Aut (n, (X))/Inn(r, (X)) where Aut(n) denotes the group of all automorphisms
of a group n and Inn(n) denotes the subgroup of inner automorphisms, that
is, automorphisms of the form g+shgh ', hen. The group Aut(z)/Inn(n)
1s called the outer automorphisms group of 7 and is denoted by Out(n)
(the subgroup Inn(n) is always normal in Aut(n)). Thus Mody is isomorphic
to Out{m,(X)): of course the isomorphism is given by the action of
diffeomorphisms (or homeomorphisms or homotopy equivalences) on =n, (X),
which is well-defined up to inner automorphisms. Using the well-known
presentation of =, (X) by generators and relations, we obtain a purely
algebraic definition of Mody for closed X. There is also a similar definition
in the non-closed case. To give such a definition, it is necessary to express
(firstly homotopically and then) algebraically the fact that every
diffeomorphism preserves the boundary of X. It is rather surprising that this
algebraic definition plays a very small role in the study of algebraic
properties of Mod,.

2. Teichmiiller spaces

One ol the most effective and beautiful ways, which permits to understand the
structure of a group, is to study its actions on suitable geometrical objects.
For mapping class groups the most important objects of this type are,
beyond doubts, the Teichmiiller spaces. In the following definition of the
Teichmiiller spaces, we restrict ourselves for simplicity to closed surfaces.
Thus, let X be a smooth closed orientable surface. Fix an orientation of
X. Roughly speaking, the Teichmdtiller space of X is the space Ty of complex
structures on X, i.e. structures of 1-dimensional complex manifold on X,
which are consistent with the smooth structure and orientation and
considered up to isotopy. To make this definition rigorous it is necessary,
first of all, to introduce a topology in the set of complex structures on X.
A complex structure on X is determined by the automorphism of the tangent

bundle TX given by the formula Ul—b\/——l v. Hence, we can identify the set
of complex structures on X with a certain set of automorphisms TX — TX
and, consequently, with a certain set of smooth sections of the vector bundle
End TX. Now, we can equip the set omplex structures with the topology
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18 N. V. IVANOV

induced by some natural topology on the space of sections (e.g. the C™-
topology). We shall denote the space of complex structures on X by Sy.

(If an automorphism J: TX — TX is associated with a complex
structure, then JoJ = —id. Conversely, every automorphism J: TX - TX
which covers idy and satisfies JoJ = —id arises from some complex
structure. This is a classical result going back to Gauss and Riemann. In
modern language it is usually stated as follows: every l-dimensional almost
complex structure 1s integrable. It is well-known that this is no longer true in
higher dimensions.)

The group Diff "(X) acts naturally on Sy. This natural action is the
restriction of the action of Diff"(X) on the space of automorphisms of TX
given by the formula: (f, J)+>TfoJoTf !, where feDifl*(X), J: TX
—+ TX and Tf is the tangent map of f. If we equip Difl*(X) with a suitable
topology (e.g. if we equip Diff *(X) and Sy with C™-topology) then this
action becomes continuous. The factor space Sy/Diff*(X) is called the
moduli space of complex structures on X or the moduli space of Riemann
surfaces (of genus ¢, where g 1s-the genus of X) and is denoted by M. The
moduli space My can be regarded as the set of Riemann surfaces (i.e. 1-
dimensional complex manifolds) diffeomorphic to X and considered up to
isomorphism. Indeeéd, two complex structures on X represent the same point
in My iff they are isomorphic: an isomorphism is an orientation-preserving
diffeomorphism taking one structure into the other. We can consider not
only My = Sy/Diff "(X) but also the factor-space Ty = Sy/Diffy(X) which is
called the Teichmiiller space of X. Two complex structures on X represent
the same point in Ty iff they are isomorphic and the diffeomorphism taking
one structure into the other can be chosen isotopic to idy. It is clear that
Mody = Diff*(X)/Diffy (X) acts on Ty and Ty/Mody = M,.

To understand the structure of M, is one of the main problems in the
theory of Riemann surfaces and in the theory of complex algebraic curves
(which is another side of the same subject). This problem is usually called the
moduli problem. It has been attracting much attention since Riemann’s times
up to nowadays. By introducing Ty this problem can be divided into two:
the study of Ty and the study of Mody and its action on Ty.

Ty turns out to be homeomorphic to R®~° where ¢ is the genus of X.
The group Mody acts on Ty discretely. In particular, the isotropy groups of
this action are finite. Points with nontrivial isotropy groups arise from
complex structures on X with nontrivial automorphisms. Hence, the
projection Ty — My i1s a branched covering and the branching set is the set
of isomorphism classes of Riemann surfaces with symmetries. Moreover,
Mody contains a subgroup of finitie index, which acts on Ty freely. For every
such subgroup I the projection Ty — Ty/I' is a genuine (unbranched)
covering. Since Ty is contractible, we see that T,/I' i1s an Eilenberg-MacLane
space and I is its fundamental group. For I suitably chosen the space Ty/I"
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can be interpreted as the moduli space of Riemann surfaces with an
additional structure. Eg. i[ I is the kernel of the natural map Mod,
— Aut(H, (X, Z/pZ)) with p > 3 (the subgroup I" acts freely on Ty), then
this additional structure is a fixed element in H, (X, Z/pZ). As for Mody, it
is “almost” the fundamental group of M, and My is “almost” an Eilenberg—
MacLane space.

Il X i1s a torus, then Ty can be naturally identified with the upper half-
plane H = {zeC: Imz > 0}. Under this identification, the action of Mody
on Ty corresponds to the well-known action of the modular group SL,(Z)
on H:

a b: az+b
[c d:l fTa+d

These observations explain why the term “Teichmiiller modular group™
stands for the group Mod,.

In fact, Ty and M, have much richer structures than just the structure
of a topological space. Ty is a metric space and a complex manifold. The
metric structure had been introduced by Teichmiiller. Teichmiiller also
claimed to have proved that T is a complex manifold, but the first complete
proof was given by Ahlfors [7] (this result was already anticipated in 19-th
century). Mod, preserves both these structures and for both of them it is the
full automorphism group. This remarkable theorem is due to Royden [37].
M, is not a complex manifold, but it is an analytic space and the projection
Ty — My is an analytic map. Moreover, My is, in a natural way, a
quasiprojective algebraic variety over C. This result is due to Mumford.
However, we will not use these additional structures.

3. Cohomological dimension and finiteness properties

The title of this section is the same as that of Section 1 of the well-known
paper of Serre [38]. It was chosen to remind the general theory and its
applications to arithmetic groups considered in Serre’s paper. Nevertheless,
we do not assume that the reader is familiar with this theory and, in
particular, with Serre’s paper.

Let X be a closed surface. Let I be a subgroup of finite index in Mody
acting freely on T,. Then T,/I' is an Eilenberg-MacLane space and a
topological manifold (actually, a smooth and even a complex one). This
manifold is noncompact because My is known to be noncompact. One can
pose a natural question: is Ty/I" the interior of a compact manifold with
boundary? The answer is positive, at least for some I'. Moreover, it is
possible to glue a boundary to all manifolds of the form T,/I
simultaneously. Namely, Harvey [18] had constructed a manifold with
boundary Ty, such that:
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(i) Ty is the interior of Ty;

(11) the action of Mody on T, extends by continuity to an action of
Mody on Ty and this extended action is discrete;

(iii) there is a subgroup of finite index in Mod,. which acts freely on Ty:

(iv) the factorspace Ty/Mody is compact.

Nole that Ty and its boundary ¢ Ty are noncompact. It follows from (iv)
that Ty/I" is compact for every I' of finite index in Mod,. A priori it may
happen that Ty/I" is a manifold and Ty/I" is not. In any case, this does not
take place at least for some I' (by (iti)) and this is all we need for our
applications. If Ty/I' is a manifold then Ty/I' is finitely triangulable.
Triangulability of Ty/I" follows from the fact that Ty has a natural Mody-
invariant structure of a smooth manifold with corners (the defimtion of
manifolds with corners can be found in [6], which is the most appropriate
reference in our context). Hence, Ty/I" is a smooth manifold with corners and
every such manifold is triangulable (see [6]). moreover, every triangulation is
finite because Ty/I' is compact.

As an application, we can prove all finiteness properties of Mody. Let I
be a subgroup of finite index in Mod,, acting [reely on Ty. Since Ty/I is
obtained by attaching a boundary to Ty/I', it is homotopy equivalent to
Ty/I' and hence is a K([I', 1)-space (because Ty/I' 1s K(I', 1)-space, see
Section 2). Moreover, Ty/I" is a finite complex, as was mentioned above.
Thus there 1s a finite complex which is a K(I', 1)-space. Therefore, I' is
finitely presented, the cohomological dimension of I is finite, and I is of
type (FL). Recall that the cohomological dimension ¢dG of a group G 1s
defined to be the supremum over all integers n such that H"(G, A) # 0 for
some G-module A. It is possible that ¢cd G = oc. Further, G is of type (FL) if
the trivial G-module Z admits a resolution of finite length consisting of
finitely generated free modules. If G is of type (FL) then ¢d G < x. Since I is
finitely presented and of finite index in Mod,, Mody is finitely presented,
too. But since Mod, contains elements of finite order, cd Mody = x: and
Mody 1s not of type (FL). The fact that Mody contains a subgroup I' of
finite index with cdI” < oo and of type (FL) is usually expressed as follows:
Mody virtually has finite cohomological dimension and is a group of
type (VFL).

If a group G contains a subgroup of finite index of finite cohomological
dimension, then the cohomological dimension is the same for all such
subgroups, this common cohomological dimension being called the virtual
cohomological dimension of G and denoted by vcd G. The natural problem is
to compute ved Mody. Of course, ved Mody = cd I where I' is as above. Let
g be the genus of X. It 1s easy to show that 3g—3 < vedMody < 6g—-7.
To prove the first inequality it is sufficient to exhibit a free abelian subgroup
of rank 3g—3 in I" (because cd Z™ = m). Such a subgroup can be generated
by suitable powers of Dehn twists along 3g—3 disjoint and pairwise non-
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isotopic circles on X. To prove the second inequality note that T/l is a
K(I', )-space and dim Ty/I' = 6g —6. Hence cd I' < 6g—6. Moreover, since
C(Ty/I) is nonempty, Ty/I' is homotopy equivalent to a (6g — 7)-dimensional
complex and hence cd /" < 6g—7. It had been conjectured (see [17]) that
ved Mody = 3g—3, but this turned out to be false.

The inequality cdI' < 6g —7 can be proved by using only Ty/I" without
recourse to Ty/I". However, the above proof can be generalized and this
generalization leads to the computation of vcd Mody. The following general
theorem is essentially due to Bieri and Eckmann [3].

TueoreMm 1. Let G be a group acting freely on a contractible topological
manifold V with boundary. Suppose that V/G is compact and triangulable. If
'V is (n—1)-connected, then cd G < dim V—n— 1. If, moreover, ¢V is homotopy
equivalent to a CW-complex of dimension n {(and hence is homotopy equivalent
to a houguet of n-spheres), then ¢cdG = dim V—n—1.

The above prool of ved Mody < 6g—7 is in fact an application of the
case n = 0 of Theorem 1 (a space is (— 1)-connected ifl it i1s nonempty). To
compute ved Mody by means of this theorem, we must study the homotopy
type of ¢Ty. The first step in this direction was made by Harvey [18]. He
proved that @Ty is homotopy equivalent to the geometric realization of a
certain simplicial complex which is called the complex of curves of X and is
denoted by C(X). We now define it.

Recall that a simplicial complex is a set with a family of its finite subsets
called its simplices. Every subset of a stimplex is required to be a simplex, too.
The elements of this set are called vertices of the simplicial set; two-element
simplices are called edges and (n+ 1)-element simplices are called n-
dimensional simplices. The vertices of C(X) are isotopy classes of simple
closed curves on X (for brevity called also circles) which do not bound a disk
in X. If several circles on X are disjoint, pairwise nonisotopic and do not
bound disks, then the set of their isotopy classes is a simplex in C(X) and
there are no other simplices.

THEOREM 2. The geometric realization of C(X) is homotopy equivalent to
a bouquet of (29— 2)-spheres where g is the genus of X.

Cororrary. ved Mody = 4¢g —5.

These results are due to Harer [15]. The connectedness of C(X) was
first proved by Harvey [18] and the !-connectedness for g > 2 was first
proved by the author [22]. In {22], the l-connectedness of C(X) was
deduced from the I-connectedness of a much more complicated complex
introduced by Hatcher and Thurston [19]. The Hatcher—Thurston complex
is l-connected by the main result of their paper. Not much later the author
found a direct method for studying C(X). The first application of this
method was the proof that C(X) is 3-connected for g > 3. These results were
presented at the Warsaw Congress. The potential of this method was
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completely realized after the author has learned from Harer that ved Mod,
=4g—5. As it turned out, the method provides the precise inequality
ved Mody €< 4g—5. From Harer's preprint [15] it became clear that the
complete result ved Mody = 49— 5 can be deduced from ved Mody <4g—5
by a simple combinatorial argument due to Harer [15] (cf. [15], end of the
proof of Theorem 3.5) and some general facts from the Bieri-Eckmann
theory [3] (cf. [15], the remark after Lemma 4.2).

The idea of this quite simple method will be explained below. But before
doing this we show how to prove that Mody is finitely presented without
using Teichmiiller spaces. An interesting feature of this proof is that we have
to deal with nonclosed surfaces in order to demonstrate the claim for closed
ones. Let Y be a compact surface and let X be the closed surface obtained by
glueing disks to all boundary components of Y. Every diffeomorphism Y — Y
.can be extended to a diffeomorphism X — X and such an extension is
unique up to isotopy. Hence we have a homomorphism Mody — Mody. This
homomorphism is surjective and its kernel can be easily identified with the
braid group of n strings on X, where n is the number of components of Y.
Recall that this group is defined as the fundamental group of the space of n-
element subsets of X and is denoted by B,(X). Thus we have an exact
sequence

(*) lﬂBn(X)_"MOdy‘—’Mde-—’].

LemmMa. If a sequence of groups 1 = I - T —TI'" — 1 is exact and I'", "
are finitely presented, then I' is also finitely presented.

The proof is elementary. Applying this lemma to the well-known exact
sequences

1 - B, (X —{point}) —» B,(X) —» 7, (X)— 1

we obtain that the braid groups are finitely presented. Applying further this
lemma to the sequence (x), we obtain that if Mody is finitely presented then
Mody is also finitely presented.

Now assume that Mod, is finitely presented for all closed Y of genus
< g. Then Mody is finitely presented for all compact Y of genus <g. We
shall prove that Mody is finitely presented for closed X of genus ¢. By
induction, this will be sufficient for the proof that Mody is finitely presented
for all X. Our strategy is to apply the following theorem to the action of
Mody, on C(X).

THEOREM 3. Let G be a group acting on a simplicial complex C. If

(1) the geometric realization of C is simply-connected (and in particular,
connected);

(i) the isotropy group of every vertex is finitely presented;

(iii) the isotropy group of every edge is finitely generated;
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(iv) the number of orbits of 2-simplices is finite, then G is finitely presented.

A special case of this theorem was used implicitly by Hatcher and
Thurston [19] and was formulated in an explicit form in Laudenbach’s report
[24] on Hatcher and Thurston’s paper. The proof of this special case can
be easily adapted for the general case. In the above form this theorem was
recently published by K. S. Brown [8]. He deduced it from the Bass-Serre
theory of group actions on trees. In fact, finite presentations of isotropy
groups of vertices and finite sets ol generators of isotropy groups of edges
(and the action of G on C) give rise to finite presentation of G itself.

Let S be a circle on X which do not bound a disk in X, and let Mody s
be the isotropy group of the corresponding vertex of C(X). Let Y be the
surface obtained by cutting X along S. Then Y consists of one or two
components, having genus less than the genus of X (= g). It is easy to check
that there 1s an exact sequence

1_"Z_’ Modx's_*MOdy—" l

It follows from Lemma and our inductive assumption that Mody g is finitely
presented. Similarly, i1sotropy groups of edges are finitely presented (and not
only finitely generated). Finally, it is easy to see that the number of orbits of
2-simplices is finite. This number is equal to the number of configurations of
3 disjoint circles on a surface of genus g considered up to diffeomorphism.
Since C(X) is simply connected for ¢ > 2 by Theorem 2, it follows from

Theorem 3 that Mody is finitely presented. Thus, we have proved the
[ollowing theorem.

THEOREM 4. All groups Mody are finitely presented.

Now we sketch a proof of the (2g — 3)-connectedness of C(X). Actually,
we shall prove only the connectedness of C(X) for g = 2. The general
assertion can be proved in the same manner. We have to show that every
two vertices of C(X) can be connected by a chain of edges. We shall denote
by ¢(S) the isotopy class of a circle S. Let {(§) and {§"> be two vertices. Our
aim is to find a chain of vertices <{Sy), <8,>, ..., (Sp+,y such that (5>
= {So), {8,+,) = (8> and such that {§;> is joined with (§;,,;> by an edge
for i=0.1,...,n. This means that certain disjoint circles 7, and T/ are
isotopic to S; and S;,,, respectively. To this end we choose two Morse
functions f, f': X — R such that S (respectively S') is a component of a level
set [~ '(a) (respectively f'~'(a)), and a, d are regular values of f, f",
respectively. Let !f;: X — R} 4o,1; be a generic path of functions joining f
with f': fo = f, fi = /. Then for every t except for a finite set of values of r,
J; is a Morse function with distinct critical values. For exceptional t, either f,
has exactly one degenerate critical point of the form (x, y)r+x>+y? (the
birth-death point) or f, has exactly one pair of Morse critical points with the
same critical value. It is easy to check that every such f, has a noncritical
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value a, and a component S, of /,  '(4,) which does not bound a disk in X.
Since «, is a4 regular value of f, there is an open interval U, containing ¢ such
that a, 1s a regular value of f, for every ueU,, and, moreover, some
component S,, of f,” '(a,) is isotopic to S,. We can cover [0, 17 by a finite set
WU, s Uy,ys ..., Uy ) of intervals U,. We can assume that OeU,, 1e U, and
u,nU # @ fori=1,....n—1 Consider the chain {§), {5, >, .... {5 >,
{§8’'> of vertices. Every two consecutive vertices in this chain are joined by an
edge, because if uelU, NnU, | then §,,. § are isotopic to S, S

respectively, and the circles S,,, S

fi+1

ti+ 14 i+ 1’
are either equal or disjoint. The latter

44

statement follows from the fact that §,,. S are components of level sets

i+ 1t
ol the same function. Hence, we have proved the connectedness of C(X).

Theorem 4 1s due to McCool [32], who proved it by the methods of
combinatorial group theory. Hatcher and Thurston [19] suggested a
geometrical proof. Their proof is similar to the above one but they used a
much more complicated complex formed of so-called cut systems on X
(which are certain sets of g circles on X). In the prool of 1-connectedness of
this complex the Morse-Cerf theory and the connection between circles and
functions on surfaces were also used, but in somewhat disguised form.
Indeed, it was the thought of Hatcher-Thurston’s paper that led the author
to the ideas sketched above. One of Hatcher and Thurston’s goals was to
write down an explicit presentation for Mody by generators and relations. It
was difficult to get an explicit presentation from McCool's prool. An explicit
finite presentation was known only [or genus two, it was found by Birman
and Hilden [4]. But the methods of Hatcher and Thurston led to a very
complicated presentation and they had not written it down. Later Harer [14]
found a smaller complex with the same properties as Hatcher-Thurston’s
one, and using this complex Wajnryb [41] wrote down a finite presentation
for Mody. This presentation, and especially 1ts proof, are very cumbersome.
The proof sketched above also allows one to write down a presentation of
Mody, at least in principle (cl. the remarks after Theorem 3), but its main
advantage 1s simplicity.

Appendix. Cohomology of Mody. Our knowledge of cohomology
properties of Mody is not exhausted by the value of ved Mody. There are
several other remarkable results. Powell [36] has computed H, and Harer
[14] had computed H, in almost all cases. Namely,

= 3,
H,=2""" forg>=5

)

where g i1s the genus of X and b is the number of boundary components of X.
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Harer [16] proved several results on stabilization of homology of Mody. In
particular, if g = 3n+1 then H,(Mody) depends only on b. Morita [33]
hus found a lot of nontrivial elements in H,(Mody). Using these nontrivial
elements and the Bott vanishing theorem [7] he proved the following
remarkable theorem.

THeoreMm. The natural homomorphism m: Diff " (X) — Mody do not admit
any section: that is, there is no homomorphism i: Mody — DIff " (X) such that
noi =1d.

Finally, in some papers (e.g. [9], [42]) homology groups of the moduli
space of stable curves are studied. These homology groups turned out to be
closely related with H,(Mody).

4. The Thurston boundary of the Teichmiiller space
and the classification of elements of Mod,

All results in the rest of the paper are based on the Thurston theory of
diffeomorphisms of surfaces. This Section is devoted to a short survey of this
theory. Complete (and, in fact, unique) exposition of this theory can be found
in the Proceedings of Orsay Seminar [11].

A difleomorphism f: X — X is called reducible, if f(S)=S for some
one-dimensional submanifold § of X such that every component of S neither
bounds a disk in X nor is isotopic to a component of ¢X (components of S
can be permuted by /). An element of Mody is called reducible if it contains
reducible diffcomorphism. An ¢lement o of Mody is called periodic if a" = 1
for some n # 0. By a deep theorem of Nielsen, if x" =1 then a contains a
diffeomorphism f such that f" =id. Irreducible (that is, nonreducible) and
nonperiodic elements of Mody are called pseudo-Anosov. These elements are
the most interesting ones. Thurston has proved that these elements also
contain  some remarkable representatives, called pseudo-Anosov
diffetomorphisms. We are not going to use them explicitly and so we do not
give a definition here. But the main ingredient of the proof ol the existence of
these representatives, that is, the Thurston boundary of the Teichmiiller
space, will be of great importance for us.

As in Section 2, we shall confine ourselves to closed surfaces. If X is a
closed orientable surface of genus g, then Ty is homeomorphic to an open
ball of dimension 6g — 6. Thurston has constructed a compactification .7y of
Ty which is homeomorphic to a closed ball of dimension 6g—6. The
difference .7y \ Ty is called the Thurston boundary of Ty and is denoted by
(Fy; it is homeomorphic to §% 7. This compactification is natural in the
following sense: the action of Mody on Ty can be extended by continuity to
Zx. Much earlier Teichmiiller had constructed a compactification of T
which is also homeomorphic to a closed ball and which is very natural from
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the viewpoint of geometry of Teichmiiller spaces, but recently Kerckhoff
[23] showed that the action of Mody on Ty cannot be extended to the
Teichmiiller boundary. The construction of 7 is rather difficult. The points
of 0% are certain equivalence classes of special geometric objects, namely,
singular foliations with transverse measure. ¢.7y is another natural geometric
object on which Mody acts. The study of this action will help us to get new
results on Mody.

In [11] we encounter the following description of the action of pseudo-
Anosov clements on ¢.7y. Each element of this type has exactly two fixed
points in 07x. One of them is called the attracting fixed point and is
denoted by A, the other is called the repelling fixed point and is denoted by
R;. If a point xe dFy is not fixed, then

lim f"(x) = Ay, hm f"(x) = R;.
We need a more precise description of the action of pseudo-Anosov elements,
which 1s given by the following theorem. This theorem was proved
independently by J. McCarthy [29], Papadopoulos [35] and the author [21]
and certainly was known to Thurston.

THEOREM 5. Let [ be a pseudo-Anosov element of Mody. Let K be a
compact subset and U an open subset of 07x. If A;e U and R;¢ K then there
is an integer N > 0 such that

fMK)yc U

for n> N.

The theory outlined above is applicable to surfaces with a boundary.
Actually, surfaces with boundary arise in the analysis of reducible elements.
If f: X - X 1s a reducible diffeomorphism and f(S)=S for some S as
above, then by cutting X along S we obtain a new surface Y with nonempty
boundary and a new diffeomorphism f': Y — Y. The isotopy class of f' is
again either reducible or periodic or pseudo-Anosov; components of Y have
genus smaller than the genus of X. Considerations of this kind lie in the
background of inductive reasoning.

Periodic elements are often a source of difficulties. Nevertheless, in many
cases we can avoid these difficulties in the following way. An element of
Mody is called aperiodic if either it is pseudo-Anosov or it contains a
diffeomorphism f such that f(S) =S for some S as above (so f is reducible)
and such that f: Y — Y obtained from f by cutting X along S preserves
each component of Y and induces on each component either identity (up to
1sotopy), or a pseudo-Anosov element. Let I'y(p) be the kernel of the natural
map

Mody — Aut (H, (X, Z/pZ)).



ALGEBRAIC PROPERTIES OF MAPPING CLASS GROUPS OF SURFACES 27

THEOREM 6. If p =3, then all elements of I'y(p) are aperiodic.

Note that the index of I'y(p) in Mody is finite.

Theorem 5 can be extended to the case of aperiodic elements. This
extension 1S too cumbersome to be presented here, but it is crucial for
applications.

5. Subgroups of Mody

One of guiding principles in the study of Mody 1s an analogy between Mody
and linear groups, i.e. subgroups of GL,(k) for some field k. Actually, not
only certain results, but also some basic methods of the theory of linear
groups can be extended to Mody. For example, the results of Section 3 are
analogous to those of Serre [38] and Borel-Serre [6] on arithmetic groups
which constitute a certain special class of linear groups over C (for more
details about relations with arithmetic groups, see Section 7). The results of
this section coresspond to some central results in the theory of linear groups.
The analogy between Mody and linear groups leads to the natural question,
whether the groups Mod, are isomorphic to certain linear groups. The
answer is very likely to be negative but our knowledge of Mody and of
linear groups (!) is unsufficient to answer this question.

THEOREM 7. Mody contains a subgroup of finite index without torsion.

This theorem is due to Serre [39]. It is a consequence of Theorem 6.
Indeed, I'y(p) for p = 3 is such of subgroup. Actually, Theorem 6 is a natural
strengthening of Theorem 7 in the setting of Thurston’s theory. Serre used
algebraic geometry in his proof of Theorem 7 (and stated it in other terms).
Several topological proofs are known by now.

THeOREM 8. Mody is a residually finite group; this means that, for every
geMody, g # 1, there is a homomorphism ¢: Mody — G on a finite group G
such that @(g) # 1.

This theorem is due to Grossman [13]. Her proof is based on rather
involved arguments from the combinatorial group theory. A more conceptual
proof was suggested in a very interesting paper of Bass and Lubotzky [2].
Unfortunately, their proofl does not cover the genus 2 case. Algebraic ideas of
Bass and Lubotzky can be combined with Theorem 6 and this leads to a
very clear proof of Theorem 8. It is interesting to note that, unlike all other
algebraic results on Mody, all proofs of Theorem 8 known to the author use
the algebraic definition of Mod,.

THEOREM 9. Let g be the genus of X and let b be the number of boundary
components of X. If G is a subgroup of Mody then either G N I'x(p) is a free
abelian group of rank < 3g—3+b or G nI'y(p) contains a free group with two
generators.
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This theorem was proved by the author [21] and, independently, by
McCarthy [29, 30] in a somewhat weaker form. It 1s an analogue of a
famous Tits' theorem [40] on linear groups.

Tits” THEOREM. Let G he a finitely generated linear group. Then either G
contains a solvable subgroup of finite index, or it contains a free group with
rwo generators.

The key point in the proof of Tits’ Theorem, and of Theorem 9 as well,
is the [ollowing lemma, which is applied to an appropriate action of G.

Lemma. Let G be a group acting on a set P. Let U, U,, V;, V, € P and
fly.f‘ZEG' ’f

(P\Uy <V, S UPA\V)< U, i=1,2
U,‘(-\V‘-:(D, i=l)21
(Ul UVl)ﬁ(UZU Vz) =(Z), P\(Ul UUEU Vl v Vz) %@,

then f, and f, are the generators of a free subgroup of G.

This lemma goes back Lo Klein, who applied it to the action of Kleinian
groups on CP!'. Its proofl is quite easy. Let us prove, for example, that
fifs ifr # 1. Take xe PA\(U, WU, UV, UV,). Then fo(x)eV,, fifx(x)eV,,
fo N fa(x)eU, and fy f37' [y f2(x)e V,. Therefore, f, /5" f; f2(x) # x and
N hh# L

In the proof of Tits’ Theorem, this lemma is applied to the action of
subgroups of GL,(k) on the projective space kP". In the prool of Theorem 9,
the projective space is replaced by the Thurston boundary (7. As an
illustration, we shall outline the proof of the following assertion: if f, y are
pseudo-Anosov elements of Mody and f, y cannot be presented as powers of
the same element of Mody, then f™, ¢" are generators of a [ree group for all
sufficiently large m, n. It is easy to check that for such f, ¢ all points 4., R,
A,, R, are distinct. Choose disjoint neighbourhoods V,, U,, V,, U, of the
points A,, R;. A,. R,. respectively. It follows from Theorem 5 that
f(eTx\Uy) = V; for all sufficiently large n. Similarly,

IMATAV) S Uy ¢"@R\U) SV, g 0T\ V) = U,

for all sufficiently large n. Hence we can complete the proof of our assertion
by an application of the Lemma. Thus, if G is generated by pseudo-Anosov
elements, Theorem 9 is proved. But the main difficulties that arise in the
proof come from reducible elements. By Theorem 6, we may confine
ourselves to aperiodic elements only. These elements can be treated by means
of the generalization of Theorem 5 mentioned at the end of Section 4. The
argument sketched above was known to the author for a long time (but not
Theorem 5). However, only after the paper of Birman, Lubotzky and
McCarthy [5] it become clear that the complete analogue of Tits’ Theorem
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is within reach. In [5] it was proved that every solvable subgroup of Mody
contains an abelian subgroup of finite index.
Recall that a subgroup H of a group G is called maximal if H # G and
if for every subgroup K satisfying H € K < G, either H =K or K =G.
Tueorem 10. Let G be a finitely generated subgroup of Mody. Then either
G contains a maximal subgroup of infinite index in G, or G contains an abelian
subgroup of finite index in G.

In particular, Mod, contains a maximal subgroup of infinite index. For
SL,.(Z) this was proved quite recently by Margulis and Soifer. Theorem 10 is
an analogue of the following theorem of Margulis and Soifer [28].

MaRrGULIS-SOIFER'S THEOREM. Let G be a finitely generated linear group.
Then either G contains a solvable subgroup of finite index in G, or G contains
a maximal subgroup of infinite index in G.

The proof of Theorem 10 follows that of Margulis and Soifer as a
pattern and deals with the action of Mody on 0.74. The idea is like this.
Assume that G does not contain any abelian subgroup of finite index. Then
it is possible to find an infinite set Z = G such that: (1) Z intersects all
residue classes modulo all subgroups of finite index in G; (ii) Z is the set of
free generators of a free subgroup of G. Since Z is infinite, the group F
generated by Z is not equal to G, which is finitely generated by assumption.
Therefore, there is a maximal subgroup H of G containing F. It follows from
(i) that H is of infinite index. Z being suitably chosen, one can verify (i1) by
an application of the Lemma to the action of G on ¢.7y.

This method allows us to derive some additional conclusions. For
example, in Mod, there is a maximal subgroup of infinite index which
contains Z xZ. Il G 1s a finitely generated subgroup of Mody and if G
contains a maximal subgroup of infinite index then G contains an
uncountable set of such subgroups.

The next theorem is not a purely algebraic assertion on Mody. To state
this theorem we need a definition. A subgroup G of Mody is called reducible
if there is a l-dimensional submanifold § of X with properties as in the
definitton of reducible diffeomorphisms and such that every element of G can
be represented by a difftomorphism f: X — X with f(S) = S. It is possible to
study reducible subgroups in the same manner as reducible diffeomorphisms,
i.e. by cutting X along S. A subgroup of Mod, is called irreducible if it is not
reducible.

Tueorem 11. Every infinite irreducible subgroup of Mody contains an
irreducible and nonperiodic (i.e. a pseudo-Anosov) element.

Conversely, if a subgroup contains an irreducible element then,
obviously, it i1s irreducible. Note that the conclusion of Theorem 11 is false
for finitie subgroups. Gilman [12] has constructed finite irreducible sub-
groups of Mod, consisting of reducible elements only.
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6. Automorphisms of Mody and of related groups

In this section we consider not only Mody but also the extended mappmg
class group 'lh\/lodx and its subgroups Mod$, Modj. By definition, Modx
= Diff (X)/Diff (X); Mod$ = Diff®(X)/Diff,(X) and Mod$ = Mod{ n Mod,
where Dill(X) is the group of all difffomorphisms X — X and Diff?(X) is the
subgroup of diffeomorphisms fixing every component of ¢éX setwise. It is
clear that Mody is a normal subgroup of index 2 in Mod, and that Mod$,
Mod% are normal subgroups of finite index in Mody.

THEOREM 12. Assume that X is neither a closed surface of genus 2, nor a
torus with < 2 holes, nor a sphere with <4 holes. Then all automorphisms of
the groups Mody, Mody, Mod%, Mod} have the form a+>faf ' with
BeMody. In particular, all automorphisms of Mody are inner, the groups of
outer automorphisms Out(Mod?), Out(Mod}), Out(Mod,) are finite and,
moreover, Out(Mody) = Z/2Z.

The case of closed surfaces of genus 2 was examined by McCarthy [31].
His paper contains also his version of the author’s proof of Theorem 12 in

the case of closed surfaces. In this case Theorem 12 was conjectured by V.
Turaev.

THEOREM 13. Let X be a closed surface of genus 2. Then
Out (Mody) = Out(Mody) = Z2ZDZ/2Z.

The difference between the genus 2 case and the higher genus cases in
these theorems stems [rom the fact that the center of Mody is nontrivial only
if the genus of X is 2. This reflects the following fact from the theory of
Riemann surfaces: all Riemann surfaces of genus 2 are hyperelliptic (it is not
true for surfaces of higher genus).

The proofs of these two theorems are based on a description of pairs of
commuting elements of Mody. Recall that the support of a diffeomorphism f
is the closure of the set {x: f(x) # x}. It is clear that two diffeomorphisms
with disjoint supports are commuting and hence their isotopy classes are
commuting. More generally, if f,...,f,; X — X are diffeomorphisms with

disjoint supports then all diffeomorphisms of the form f, ‘o...0of,"

commute. It turns out that these are essentially all examples of commuting
elements in Mody. The precise assertion i1s given by the following theorem.

TueoreM 14. If a, Belx(p), p=3 and aff = Pa then there are
diffeomorphisms  f,, ..., f,: X - X with disjoint supports and integers
my,...,m, 1y, ..., 1, such that a, B are the isotopy classes of f{ '©o...0f, "

Lo, o fin respectively.

This theorem is a by-product of the proof of Theorem 9: It can be used
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for an algebraic characterization of certain elements in Mody of geometric
origin. As an example, we give a characterization of Dehn twists along
nonseparating circles. Fix some p > 3. Let N = [Mody,: I'x(p)} and let I'y be
the group generated by the set [a": ae Mody}. It is clear that I'y = I'y(p).
We denote by C(H) the center of a group H and by C,(H) the centralizer of
acH in H.

THEOREM 15. Let X be a surface as in Theorem 12. An element a. e Mody
is a Dehn twist along a nonseparating circle iff
(i) C(C (M) = Z;
(i) Mody contains a free abelian group A of rank 3g—3+ b generated by
a and some elements conjugated with a, where g is the genus of X and b is the
number of boundary components of X.
(i) a % B" for all B from the centralizer of A in Mody and n> 1.

It follows immediately from this theorem that every automorphism of
Mody takes Dehn twists along non-separating circles into themselves. There
are standard systems of generators of Mody consisting of such Dehn twists.
These systems have been constructed by Lickorish [25]. It turns out that
every automorphism of Mody takes every standard system into another
standard system. In other words, every automorphism acts on standard
generators as conjugation by the isotopy class of some diffeomorphism. The
closed case of Theorem 12 follows immediately from this fact. The proof in
the non-closed case is based on similar ideas, although it is much more
complicated. In this case, it is another set of elements of geometric origin
that plays the decisive role. This set is the image of the natural homomor-
phism of a braid group into Mody:

Bb(Y) - Mde.

Here b is the number of boundary components of X and Y is the result of
glueing disks to all boundary components of X (for the definition of B,(Y)
see Section 3). Surprisingly, this homomorphism can be used also in another
direction, namely to get a description of automorphisms of B,(Y). If the
genus of X is = 2 then B,(Y) — Mody is a monomorphism and its image is
a normal subgroup of Mody. In this case we shall identify B,(Y) with its
image in Mody.

THeoreM 16. If Y has genus = 2, then all automorphisms of B,(Y) have
the form a— Baf™' with Be Mody.

The proof is based on a description of pairs of commuting elements in
B, (Y). It 1s deduced from the description of pairs of commuting elements in
Mody. This proof is fairly surprising because braid groups are considered
usually as objects of much simpler nature than mapping class groups. In fact,
braid groups have been intended to serve as a tool in mapping class group
theory, but not conversely.
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Like Theorems 7-10, Theorems 12 and 13 can be considered as
analogues of certain results on linear groups, now concerning arithmetic
groups. For instance, it is well known that all automorphisms of GL,(Z) are
inner. More generally, it follows from Mostow’s rigidity theorem [34] that
Out (I is finite for almost all arithmetic groups I (the subject of our theory
is an exception: the fundamental groups of surfaces are arithmetic and their
outer automorphism groups are exactly the mapping class groups of surlaces.
(Cf. Section 1). If T is a subgroup of finite index in an arithmetic group I,
then I is also an arithmetic group (simply by the definition of arithmetic
groups). Moreover, if the theorem on the finiteness of the outer
automorphism group applies to I', then it applies also to I'". By analogy, this
leads to the following conjecture:

If T is a subgroup of finite index in Mody then Out(TI) is finite.

7. Mod, and arithmetic groups

The above results indicate a strong analogy between Mod, and linear or
arithmetic groups. This leads to a natural question, whether Mody is an
arithmetic or at least a linear group. Actually, the question of arithmeticity of
Mod, is much older than the above results. (See Harvey [17].) The answer
to this question turns out to be negative. (We do not give the definition of
arithmetic groups, which is not used explicitly in our discussion. It is enough
to know that arithmetic groups are a natural generalization of classical
groups over Z, such as SL.(Z), Sp,,(Z) etc.) No answer to the question
about linearity is known. (See the beginning of Section 5.)

TueoreM 17. If X is not a torus or a torus with one hole, then Mody is
not isomorphic to an arithmetic group.

If X is a torus or a iorus with one hole, then Mody is isomorphic to
SL,(Z), and hence Mody is an arithmetic group.

If I' is an arithmetic group, then either (i) I" contains a solvable normal
subgroup, or (ii) I' does not contain such a subgroup. In the case (i) we can
check that I' £ Mody, applying Theorems 9 and 14. (By Theorem 9 every
solvable subgroup contains an abelian subgroup of finite index, and by
Theorem 14 such a subgroup cannot be normal) The case (1) is divided into
two rather different subcases: groups of rank 1 and groups of rank > 2. The
case of groups of rank > 2 is treated by means of the following deep
Margulis’ theorem [26].

MarcuLiss THEOREM. Let I’ be an arithmetic group of rank = 2 and let
@: I' = H be a homomorphism. Then either Ker ¢ lies in the center of I', or
Imeo is finite.

There 1s a natural homomorphism Mody — Aut H, (X, Z). It is well
known that both the image and the kernel of this homomorphism are
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infinite. Since the center of Mody 1s trivial (this follows, e.g., from Theorem
14), 1t follows that Mody, cannot be isomorphic to an arithmetic group of
rank 2.

As to arithmetic groups of rank 1, all of them are isomorphic to the
fundamental groups of complete Riemannian manifolds of finite volume of
negative curvature pinched between two negative constants, that is, C,
< Kl(o) < C, for some C, £ C, <0, where K is the curvature function.
Hence, this case can be treated by means of the following theorem.

THEOREM 18. Suppose X is not a torus or a torus with a hole and M is a
complete Riemannian manifold of finite volume of negative curvature pinched
between two negative constants. Then Mody is not isomorphic to m;(M).

Under the conditions of Theorem 18, n, (M) cannot contain a subgroup
isomorphic to (Z+Z) xZ. This can be deduced from the Eberlein-O’Neill
theory [10]. On the other hand Mod, contains a subgroup isomorphic to
(Z *Z) xZ; hence the theorem.

The main point of the proof of Theorem 17 is the existence of an infinite
normal subgroup of infinite index in Mod,. We have exhibited only one
subgroup of this kind, the kernel of the homomorphism Mody
— Aut H, (X, Z). The image of this homomorphism is an arithmetic group. If
g is the genus of X, then this image is isomorphic to Sp,,(Z). Thus the next
question is, whether the kernel of this homomorphism is an arithmetic group.
If the answer were positive, Mody would be composed of two arithmetic
groups. But the answer turns out to be negative.

TueoreMm 19. Let X be as in Theorem 17 and 18. Then no normal
subgroup of Mody can be isomorphic to an arithmetic group.

There are two proofs of this theorem. The first one is more algebraic in
nature and is based on some additional results on arithmetic groups. For this
proof the normality assumption is vital. The second one is based rather on
the techniques of the theory of arithmetic groups than on its results. This
proof extends a certain part of this techniques to Mody and so it exhibits
once again the analogies between Mody and arithmetic groups. Actually, this
proof was found earlier. It leads to the conjecture that the normality
assumption in Theorem 19 is superfluous. Of course, there are some
arithmetic subgroups in Mod,, e.g. free subgroups. The right conjecture is as
follows.

If X is as in Theorems 17-19, then no subgroup of Mody can be
isomorphic to an arithmetic group of rank > 2.

There is certain evidence in favour of this conjecture. Every arithmetic
group lies naturally in a Lie group. By the Margulis superrigidity theorem,
every homomorphism from one arithmetic group into another is induced,
possibly after replacing the first group by some of its subgroups of finite
index, by some homomorphism of the ambient Lie group (there are some

3} — Banach Center Publications
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exceptions, including the fundamental groups of surfaces). Since there is no
natural Lie group containing Mody, we expect that there are no homo-
morphisms from arithmetic groups to Mody (if the analogy between Mody

and

arithmetic groups goes sufficiently far). A natural candidate for such

a Lie group is the group of all (metric or complex) automorphisms of the
Teichmiiller space, but, surprizingly, this group is equal to Mody by
Royden’s theorem [37]. (The situation is more subtle than sketched above,
because there are homomorphisms from Mody to arithmetic groups, e.g.
Mody — AutH, (X, Z))
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