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I. Introduction

This is a survey on classification results in low-dimensional topology.

The Greeks were the first ever to whom the idea of classi{ying
mathematical objects occured. From those early days on their classification
of platonic bodies, in particular, became a prototype of what should be
considered a “classification”. However, the classification of platonic bodies
deals with a finite set of mathematical objects, whereas most of the
mathematical theories today have to face infinitely many objects, and in the
latter case it often remains obscure what is really meant by their
classification. One reason for this is that the Greeks' classification has
actually two aspects: one is that it offers a complete list of objects in
question, and the other is that it offers models for these objects. Hence, in
general, one is prompted again to ask for a complere list, i.e., more precisely,
for a complete enumeration without repetition, of models for the (equivalence
classes of the) objects in question. This is sometimes possible to achieve (see
e.g. the classification of finite dimensional vector spaces, up to isomorphy). In
the other case, however, either a complete list does not exist at all, if e.g. the
set of objects is not countable, or the meaning of the notion “model” is not
clear, for a model should reflect “many” of the properties shared by the
objects which it represents.

Here we deal with low-dimensional manifolds, up to homeomorphy, and
homotopy equivalences (especially homeomorphisms) between them, up to
homotopy. It is known that in dimensions 2 and 3 these sets of objects are
countable, and this fact led Papakyriakopoulos [Pa] to the definition:
“Classification means to define an infinite sequence of closed n-manifolds
M,, M,, ... such that any two of these are not homeomorphic, but any
closed n-manifold M is homeomorphic with one of them”.

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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In I we outline in some detail the classification of Haken 3-manifolds in
the previous sense, as given by Haken and Hemion. Furthermore, we discuss
the possibility of models for homotopy equivalences between 2- and 3-
manifolds, and we describe Hemion's solution of the conjugacy problem in
the mapping class group of surfaces.

The material is organized under the following headlines:
11. Surfaces

§ 1. Circle-homeomorphisms given by surface-diffeomorphisms
§ 2. Extremal surface-dilfeomorphisms

§ 3. The conjugacy problem

§ 4. Homotopy equivalences

1LL. 3-Manifolds

§ 5. Presentations

§ 6. Hierarchies

§ 7. Classification

§ 8. Homotopy equivalences

I1. Surfaces

Surfaces are classified. Models for closed, orientable surfaces, say, are
provided by connected sums of the 2-dimensional sphere, $2, with tori. This
result is classical and well known. The next step is the study of homotopy
equivalences, especially difffomorphisms, of surfaces. There are several
approaches to this problem, but I think it is fair to say that two of them
proved to be of particular interest and power: the Nielsen theory and the
Teichmiiller-Thurston approach. Both theories were begun around 1930 and
have eventually led (after almost half a century) to a number of classification
results in surface theory, which include the classification of surface-
diffeomorphisms, up to isotopy, and the conjugacy problem in the mapping
class group. The aim of this section is to outline Nielsen’s approach (for the
Teichmiiller-Thurston approach see [Berl, 2] and [FLP]).

To begin with let M? be any closed, orientable surface of genus > 2 (the
non-closed case is similar), and fix some basepoint in M2 Let h be any
(basepoint preserving) diffcomorphism of M? Then h induces an
automorphism, h,, of I, M? which is well-defined, up to (basepoint
preserving) isotopies of h. Now, call h a pseudo-Anosov diffeomorphism, il no
power of h, maps any element of IT, M? to itself (or some conjugate of it in
the fundamental group). In § 1-3 we only consider this particular type of
diffeomorphisms and defer to § 4 the discussion of how to reduce the general
study of homotopy equivalences between surfaces (closed or not) to that one
of pseudo-Anosov diffeomorphisms.



CLASSIFICATION PROBLEMS IN LOW-DIMENSIONAL TOPOLOGY 39

§ 1. Circle-homeomorphisms given by surface-diffeomorphisms. Let
Dill_ (M?) denote the space of all (basepoint preserving) diffeomorphisms of
M?. Then the assignment [#] — h, defines a map I, Diff, (M?) - Aut [T, M*?
and Nielsen shows that this map is an somorphism [Nie 1]. Hence the
group [T, Diff, (M?) can be considered as acting on II; M? and Nielsen
studies the elements of I7,Diff, (M?) via their action on 11, M*. For this
purpose Nielsen first turns 7, M? into a metric space with the remarkable
property that the iterates of any point in this metric space under the action
of a pseudo-Anosov automorphism defines a Cauchy sequence.

In order to describe Nielsen's metric for 11, M?, let us first, once and for
all, fix some hyperbolic structure on M. Then the universal cover, M, of M is
the hyperbolic plane. This hyperbolic plane is equipped with a natural
compactification as a disc, especially equipped with a boundary, dM, if we
think of M as being the interior of the unit disc in the complex plane.
W.lo.g. the origin, P, in M lies above the basepoint in M.

With these preliminaries in mind we have

Lemma. There is a natural map 11, M* - dM = S' which is almost
injective.

More precisely, the preimage of any point in M under this map is
given by the set of all (positive) multiples of some element in /7, M2.

Proof. This lemma is immediate from the well-known fact that I7, M?
always can be identified with some discrete subgroup of PSL, R which
consists of hyperbolic elements alone. The required map is then obtained by
simply mapping an element of [T, M* to the positive fundamental-point
(= end-point) of the axis of the corresponding element in PSL, R.

Alternatively, start with some based loop, a, in M2, Such a loop gives
rise to a sequence, %,, i, ..., of lifted arcs in M with the property that the
starting point of I, is the origin, P, and that the starting point of any other
%;+, i1s the end-point of &;. The union of all these arcs defines a ray, &, (the
ray corresponding to «) which converges (in the euclidean metric) to some
unique point in @M, and we get the required map by mapping each
[x]ell, M? to the far end-point of &. (Indeed the far end-point of & equals
the positive fundamental point corresponding to [a]e 1, M* < PSL, R)

The Nielsen-metric, dy, for I1, M? is now given by the induced metric on
S! = C via the previous map I, M? —» S'. In particular, dy(x, f) = 0 iff
a" = ™ for some n, m= 1.

We note that, given a presentation of I, M2, one may conclude, using
rays as above, that the points of éM are in correspondence with sequences
(or rather products) in the given generators of /7, M2, But while the rationai
points of ¢M (:=the image points of the map [T, M — éM) correspond to
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finite sequences, the irrational points (i.e. the remaining points) correspond
to infinite sequences [Niel, p. 220].

In particular, the set of rational points 1s countable, and, moreover, it is
dense in OM (i.e. the rational set in &M behaves like Q in R, hence the name)
[Nie 1, p. 210]. Therefore any homeomorphism of the rational set extends to
a unique circle-homeomorphism. This gives an injection Aut IT, M — H (¢M)
=H(S"), ¢— ¢, where H(S') denotes the group of all circle-
homeomorphisms. Thus to any (basepoint preserving) diffeomorphism, h, of
M? there is assigned the circle-homeomorphism h,, : = (h,), which preserves
the rational set. Furthermore, any covering translation, deIT, M?, extends
continuously to M and so we may note that d-h,, is again a well-defined
circle-homeomorphism.

Now, let h be any (basepoint preserving) pseudo-Anosov diffeomorphism
of M?. Furthermore, let g = dh7, and g’ = d'hZ,, for some d, d'c 11, M? and
m,neZ. Then the I[ollowing properties of the induced circle-
homeomorphisms, g, ¢’, lie in the core of Nielsen’s theory:

(1) Fix(g) consists of irrational points alone (here Fix(:) denotes the
fixpoint set).

(2) Fix(g) is a finite set and consists of an even number of points.

(3) The fixpoints of g in M are alternating attracting and repelling.
Now, let Fix™ (g), resp. Fix (g), denote the set of all contracting, resp.
repelling fixpoints of g. Then we have

(4) Fix'(¢g") either equals Fix"(g) or is entirely contained tn one
component of the complement of Fix*(g) in éM (the same with Fix™ (g")).

(5) UFix*(g) is countable and dense in éM, where the union is taken
over all g =dhy, with de I, M? and meZ (see [Mil, Prop. 5)).

The previous properties (except (5)) are classical and contained in [Nie
1]. Nielsen discovered that these results can be fruitfully used in a study of
the fixpoint problem for surface-diffeomorphisms (solving this problem in
two special cases). However, far more is true. Not only are these properties
very useful in the study of special problems, but, moreover, they describe a
pseudo-Anosov diffcomorphism completely. We will see soon how easily
indeed, Nielsen’s results lead to a full classification of pseudo-Anosov
diffeomorphisms (and so also to a full solution of the fixpoint problem for
pseudo-Anosov diffeomorphisms). As a matter of fact it is somewhat
astonishing that this possibility escaped attention for such a long time.

To continue observe that, by the above properties, every rational point
in &M is contained in some expanding interval of h,,, i.e. in some interval of
OM bounded by two neighboring points of Fix*(h,,). In particular, the
iterates of elements from I7, M? under (pseudo-Anosov) automorphisms of
IT, M? define indeed a Cauchy sequence in Nielsen’s metric of I7, M2
Therefore the question arises naturally, how fast such a Cauchy sequence
might converge to its limit point in the completion of [T, M2. A more recent



CLASSIFICATION PROBLEMS IN LOW-DIMENSIONAL TOPOLOGY 41

argument of Hemion [He] suggests that the velocity cannot be very f{ast.
Since we need this result later on, we give the argument below.

To get a first insight into the velocity of convergence we fix, following
Hemion, a tesselation, 4, of M by geodesic fundamental regions of [T, M2
This tesselation is chosen such that the origin, P, of M appears as lattice
point of A. Let ac I, M? and let h be that lifting of h fixing the origin. Then
a denotes the ray corresponding to a (see above) and &; denotes the ray &;
:= i@ Then the set &} is a bunch of rays whose far end-points all lie in one
expanding interval of h,,. Each two rays &; and &, separate a uniquely
given region, A;, from the closure M~ which contains no fixpoint from
Fix™ (h,,). A branching point, z;, of the pair (&, &;, ) is, by definition, one of
those lattice points of 4 different from P, contained in the region A; and with
minimal distance, d (P, z;), to the origin. Furthermore, denote by z_,. one of
those points from the set of all branching points whose distance, d,(P, z_,,),
to P is minimal. Here the distance, d,(x,, x,), between two points (or sets})
x,, x, of M is defined to be the minimal number of fundamental regions one
has to meet while travelling from x; to x,.

The distance d ,(P, z;) (or rather its reciprocal) of the branching point z;
of (&;, &;,,) to the origin also is a measure for the distance between the two
elements of IT, M* covered by & and %;,,. This new distance actually
“approximates” the distance of the same elements in the Nielsen metric.

Our aim is now to estimate the distance, d,(z;, z.;,), of the branching
points to the minimal branching points. This can be done via the distortion
of h. To define this distortion define first the d-measure, m,(A), of any set, A,
in M to be the number of all fundamental regions of 4 which meet 4. Then
the distortion of [k], or A, is defined to be

d 4(h) := min {my (g’.Q)},

where 2 is some fundamental region of 4 and where the minimum is taken
over all homeomorphisms §: M — M which are II,-equivariantly isotopic to
h, fixing lattice points.

ProrosiTion (Hemion). d,(z;, z,,,) < d,(h)'.

Proof. By our choice of z,,, as minimal branching point, this point 1s a
vertice of at least one fundamental region, Q, of 4 which meets all rays, &;. If
the proposition is false, then d,(z;, z,,) > d (i) and so QA Q = @. Since A
acts transitively on the bunch of rays, AQ separates the region A_._, too, and
the point z_, has to lie below 4 Q, ie. in that component of (4, —hQ)
containing P. But then 777z, is below Q, contradicting our minimal choice
of z_. .
This ends the analysis of the circle-homeomorphisms given by surface-
difftomorphisms. Next we translate the information about the circle
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homeomorphisms into informations about the original surface-
diffeomorphisms themselves.

§ 2. Extremal surface-diffeomorphisms. Given any isotopy class, [h], of
(based) surface-diffeomorphisms, the question arises whether there is a way of
picking a “typical” member in this class. Teichmiiller and Nielsen were the
first to consider such a question and Thurston has given the final solution.

Nielsen e.g. studied isotopy classes, [#], which are periodic elements in
H, Diff, (M?), or in the mapping class group, 11, Diff(M?). He showed in a
long paper that in this case one always can pick a periodic diffeomorphism in
[A] (see [Nie2] and [Zi] for filling a gap of that paper). The same result can
be obtained from Teichmiiller theory as well [Kra].

Moreover, Teichmiiller shows that there always exists a certain extremal
diffeomorphism in the isotopy class of each diffeomorphism between
Riemannian surfaces. Today this unique extremal diffeomorphism is known
as Teichmiiller map. The precise definition of a Teichmiiller map involves the
notion of (holomorphic) quadratic differentials. For our purpose, however,
the essential feature of a quadratic differential ¢(z)dz? on a Riemannian
surface M2 is given by the fact that it describes (similar to differential forms)
a foliation on M? with singularities. In fact, it describes a pair of transversal
codim. 1 foliations — the horizontal and the vertical foliation (given by the
real and the imaginary part of ¢(z)dz? respectively). These foliations have
singularities of a very special type only, however, they are not necessarily
carried by vector fields. A Teichmiiller map now (1) maps the pair of
foliations of one (the initial} quadratic differential to that one of another (the
terminal) quadratic differential, and (2) is expanding (by a factor 4, say) in the
horizontal direction and contracting (by the factor A™'} in the vertica!
direction. The existence of such Teichmiiller maps in each isotopy class of
diffeomorphisms between Riemannian surfaces follows from Teichmiiller
space considerations [Tei 1, 2] (see also [Ber 1] for a modern proof).
Thurston shows, by means of an appropriate compactification of the
Teichmiiller space, that a similar, but even stronger theorem is true (sce
[FLP], and [Ber 2] for a different proof). He also noticed that this stronger
result follows from Nielsen’s analysis of induced circle-homeomorphisms,
too. The latter will be described below.

To reach our goal we first have to construct the extremal extension of
the circie-homeomorphism h,,: dM — 0M given by [h]. For this first
associate to each set Fix’ (dh?,) the ideal polygon, Q* (dhl,), in M generated
by this set, i.e. the convex region in M spanning the points of Fix* (dhl).
Let ©~ denote the union over all these ideal polygons and define T
similarly, using Fix~ (dh},) instead. Then note that, by properties (4) and (5)
of h,,, the set D* (and D~ as well) is dense in M and that it consists of
pairwise disjoint ideal polygons.
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Now, observe that the circle-homeomorphism h,, maps all the ideal
vertices of an ideal polygon, Q(dh%,), from D', resp. D, onto those of
another ideal polygon from D7, resp. © . Thus, given h,,, there is an
obvious way to map the vertices of the polygons from T nD~. Applying
the cone construction twice (to the edges first and then to the polygons
themselves), this map extends to a diffeomorphism, h,: M — M, which
permutes the polygons from D N D~ and which, moreover, extends h,,
continuously. We call k, the extremal extension of By

Since h,, is I1,-equivariant, the same holds for h, and so f, lies above
some unique (based) surface-diffeomorphism, h,, of M?. Since h, is deter-
mined by h,, it is known that h, actually lies in the isotopy class [h] (see
[Nie 1]). We call h, an extremal diffeomorphism from [h].

The extremal diffeomorphisms from [h] are not unique, for they depend
on the choice of a particular hyperbolic structure on M2 However, it is
known that any two extremal diffeomorphism within the same isotopy class
are conjugate (via some surface-difffomorphism which is isotopic to the
identity) [FLP, exposé 12]. Thus invariants of the conjugacy-type of surface-
diffeomorphisms are the same [or all isotopic extremal diffeomorphisms.
Examples of such invariants are provided by the (topological) entropy, the
number of fixpoints (or fixpoint classes) and the (topological) dilatation of
surface-difftomorphisms. It turns out that extremal diffeomorphisms
minimize all these invariants within their isotopy class, which justifies their
name [FLP, exposé 10], [Ber 2]. Moreover, extremal diffeomorphisms
behave very much like very nice Teichmiiller maps.

To see the latter, foliate any ideal polygon from D" as follows:

Carrying this out for all ideal polygons from D%, gives a IT,-equivariant
foliation, §*, of M (with singularities). Similarly, we obtain 7§, using D~
instead of D*. The foliations ¥* and T~ are transversal (see property (3))
and their critical leaves are geodesics converging to attracting resp. repelling
fixpoints of h,, . It follows that h, preserves these foliations and is expanding
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in the direction of T§* and contracting in the direction of . Since
everything is 71 -equivariant, we have a similar picture in M? below. In
particular, %%, T~ lie over a pair of transversal foliations, 3%, J~, on M?
left tnvariant by the extremal diffeomorphism h,: M - M. The local
structure of the pair (3%, J7) is given by the two sets of level curves
associated to the two maps z— Re(z*) and z— Im(z*). Moreover, the
fixpoints of h, are precisely the singularities of I, and h, “rotates” the set of
critical leaves near a fixpoint.

To complete the picture note that J*, 3~ can be realized by some
quadratic differential on M2, i.c. there is a hyperbolic structure on M? and a
quadratic differential ¢(z)dz?, on M? whose pair il horizontal and vertical
foliations equals I, J~ (for a more general statement see [Hu-Ma]). With
other words, h, 1s a Teichmiiller map whose initial and terminal quadratic
differentials coincide. In patricular, h, appears to be (locally) affine in the flat
metric given by @(z)dz’> on M? minus singularities of ¢(z)dz?.

This ends our discussion of the qualitative behaviour of extremal
diffeomorphisms.

§ 3. The conjugacy problem. In this section a surface-problem is to be
discussed which itself is closely related to the classification of Haken 3-
manifolds (see next chapter). This is the conjugacy problem for the mapping
class group, I7,Diff(M?), of surfaces.

Conjucacy pROBLEM. Let M? be a closed orientable surface of genus
> 2. Given two diffeomorphisms, f and g, of M2 does there exists a
diffeomorphism, h, of M? so that hf is isotopic to gh?

This problem was solved by Hemion in 1978 [He}l. Here we outline the
argument in the closed case (the bounded case being similar, requiring some
technical modifications, however).

First of all, the conjugacy problem is easily reduced to the case where f
and ¢g are pseudo-Anosov. Since only this case will be needed later on, we
simply suppose that f and g are both pseudo-Anosov. Moreover, we assume
w.Lo.g. that f, g and h are always isotoped so that they all fix the basepoint.

The idea to solve the conjugacy problem is to show that there are
“essentially” only finitely many difleomorphisms, h, which possibly can
conjugate f and g, and that, moreover, the set ol all of them can be effectively
constructed. To make this idea work the distortion, d,(h), of a
diffeomorphism, h, as introduced by Hemion (see § 1) turns out to be very
helpful. The reason for this is that the isotopy class of a basepoint-preserving
diffeomorphism is completely determined by the action of its lift (to the
universal cover M) on the set of vertices of some fundamental region. Hence
the set of all diffeomorphisms, h, of M? with d,(h) < const. is a finitely,
effectively constructable set (see definition of “distortion”). Thus the
conjugacy problem follows from
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TueoreMm (Hemion). Let f and g be given as above, and suppose that h is a
diffeomorphism of M? such that fh is isotopic to gh. Then there is some
diffeomorphism h* with h* = f"h, for some n = 1, such that

ds(h*) < @(d,(f), d4(9), genus(M?).

Here ¢ denotes some explicitely known function in three variable. By abuse
of language, a positive integer will be called small if it is bound from above
by some ¢.

Now, the complexity of the previous theorem can be reduced
considerably by the observation that it follows from the mere existence of
some “doubly small” curve. To be more precise, let 4 be the given tesselation
of M by fundamental regions, let A* = h* A with h*:= f"h, and let the
lengths d ,(c), d+(c) of a curve, ¢, in M? be defined to be the A-, resp. 4*-
measure of some lift of ¢ to M (see § 1 for definitions). Then the previous
theorem follows from the existence of some closed curve, c, in M? (singular
or not) for which there is an integer n such that d,(c) as well as d,(c) is
small (in the above sense). To see this claim recall that f is supposed to be
pseudo-Anosov. In this case there exists a small integer, g, (depending on the
genus of M? alone) such that the union |J ¢ splits M? into a system of

1€i<

discs, where ¢; denotes the unique, closed geoglesic in the homotopy class of
ffoc. Now, lift all these discs to the universal cover to obtain a new
tesselation of M and recall that ¢ is supposed to be doubly small. It is then
easily checked that the image of some (and so any) fundamental region of
IT, M? under the lifting of h* (or rather some diffeomorphism I1,-
equivariantly isotopic to it) is covered by a small number of discs of the
previous tesselation and that all these discs have to have small 4-measure. It
follows that d,(h*) is small, proving the claim.

Therelore everything boils down to

The construction of some doubly small curve. The existence of a doubly
small curve follows from a certain combinatorial fact about pairs of
tesselations in M. In order to describe this fact first, let us be given two
tesselations, say 4 and A4*, of M by geodesic polygons. Suppose that the set
of all lattice points of A* is contained in that of A. Then the intersection
AnA* consists of geodesic polygons again. We distinguish between
“rectangles” and “non-rectangles” in 4 n 4*. Here a rectangle is a component
of 4AnA* which is a quadnlateral with precisely two opposite sides in
(interiors) of sides of some polygon of 4.

Finally, let us be given two rays, &, &,, corresponding to two different
elements, o, a,, of IT, M? (] # af, for all n, me N) and let z be some
branching point between &, and a, (see § 1).

LEMMA. There is at least one non-rectangle, 2, in A A* such that
dz,2)=1 and d(P, 2) <2 d (o)) +d 4 (x,).
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(recall that P denotes the origin of M, and so P is the starting point of the
rays a, and &,).

Proof. Let @ be the polygon from 4 whose one vertex is z and which
meets both &, and &,. Then one side of Q, say o, meets both &, and 4,
(z 1s a branching point). W.l.o.g. ¢ splits the area between &, and &, into
two regions and we let A’ denote that one of those containing the origin, P.
Then A" contains no other lattice point of 4, and so none of 4* except P.

Now, let x be some point from the intersection of &, with ¢Q—o. Let
X,, resp. Z,, be the non-rectangle in @ which we first meet while travelling
from x along dQ—o¢ to the left, resp. to the right. Then certainly d,(z, %))
=1, for i=1 and 2, and d, (P, x) <d,(a;) since A" contains no lattice
point besides P. Hence it remains to show that d ,(x, 2;) <d 4 (o)) +d 4 (x3),
fori=1ori=2

To see the latter observe that we only meet rectangles in Q while
travelling from 2, to X,. All of these rectangles have to join the same two
sides of Q. It follows that either all rectangles which we meet on the right of
x or all of those which we meet on the left of x, have to intersect &, U &,, for
A’— P contains no lattice points. Thus the lemma follows.

In order to obtain a doubly small curve from the previous lemma, let 4
now denote the tesselation of M given by geodesic fundamental regions of
I, M?. Furthermore, let a be some non-trivial element of IT, M2, and denote
by & the ray corresponding to a. Denote by &, the ray & := f* hd, and let z,
be the branching point between &; and &;,,. Let n be an integer with the
property that d,(P, z,) < d,(P, z;), for all ie Z, i.c. z, is a minimal branching
point. Finally, let h*:= f"h and A4* := h* A. Then 4* is again a tesselation,
and we here simply assume that it is a tesselation by geodesic polygons (see
[He, § 1]). Moreover, lattice points of 4* are lattice points of 4.

Observe that there is only a finite set of non-rectangles from 4 N 4* in
any given fundamental region of 4 — limited by some integer, say m— 1,
which depends on the genus of M? alone. Thus in any set of m pairwise
different non-rectangles at least two of them are [T,-equivalent. Consider, in
particular, the non-rectangles, X;, near z; as given to us by the lemma above.
Then w.log. X, and X,., are Il ,-equivalent.

We finally estimate the distances between X, and X,,,. First of all,
A (20 Zoym) S(d4(f)" (see prop. from § 1), ie. d,(Z,. Z,+m) is small. To
estimate d .(2,, Z,,,) we have to utilize the fact that fh is isotopic to hg.
First recall from the lemma above that d.(Z,, Z,,,) is estimated by some
expression in the dp(a,.;), 0<i<m+1. But dg(o,,,) =dw (/""" ha)
=dy (h*g'a) since fh>hg. Hence dj(x,,)<(dy(g), ie dpla,,)
0<i<m+1 is small, and so dx(Z,, X,4m)

~

Now, altogether, projecting an arc in M down to M? which joins two
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different [1,-equivalent points in X, U X, ,,, we obtain the required doubly
small curve.

§ 4. Homotopy equivalences. In this section we study homotopy
equivalences between surfaces. Our aim is to discuss briefly the method of
splitting up homotopy equivalences into simpler pieces which then can be
studied individually. This is a method which works nicely also in dimension
3 (see § 8).

The following two splitting results are relevant in our context. To
describe them let M2, N? denote two compact, orientable surfaces (closed or
not!).

ProPOSITION. Let f: M? — M? be a diffeomorphism which is not pseudo-
Anosov. Then one of the following holds:

(1) f is isotopic to a periodic 'diffeomorphism, or
(2) there is a system, k, of pairwise disjoint, simple closed curves in M?
such that f(k) =k, up to isotopy.

ProrosiTION. Let f: M?* — N? be a homotopy equivalence. Then there is
an essential surface, O, in N* such that f can be homotoped so that f ~* O, is
an essential surface in M? and that, in addition,

(D) flIf '0s: f710;— Oy is a homotopy equivalence,

(D fIM—f"10,)": (M=f"10,)" = (N=0/)" is a diffeomorphism, and

(3) any surface, O, with the above properties contains O, up to ambient
isotopy of N2.

(A surface, S, in M? is called “essential” if the inclusion S ¢ M defines an
injection I1, (S, ¢S) — I1,(M, dM) of the relative fundamental groups.)

Proofs of both of the previous proposition can be found in [Joh 1, 6.6
and 30.15.]. The proof of the first proposition essentially goes back to

Nielsen. The proof of the second proposition is technical, but surprisingly
difficult.

Observe that, by (3), the surface O, is unique, up to ambient isotopy of
NZ2. By a well-known theorem of Nielsen [Nie 1], any homotopy equivalence
between closed, orientable surfaces (genus > 1) is homotopic to a
diffeomorphism. With other words, O, = @ if N? = (. On the other hand,
we call f a totally exotic homotopy equivalence, if O, = N2

Now, the second proposition enables us to split up any homotopy
equivalence into a diffeomorphism and a totally exotic homotopy
equivalence. Furthermore, by iterated application of the first proposition, any
surface-diffeomorphism can be split up into periodic and pseudo-Anosov
diffeomorphisms.

As discussed earlier (for the closed «case) pseudo-Anosov
diffeomorphisms, and periodic diffeomorphisms as well, are pretty well
known. Totally exotic homotopy equivalences are not so nicely understood.
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Moreover, in general, O; # f~' 0, for self homotopy equivalences, f: M?
— M?. However, self homotopy equivalences, f: M? — M?, can be analyzed
to some extent by using Nielsen’s presentation of the outer automorphism
group of free groups [Nie 3] (note that the fundamental group of any surface
with non-empty boundary is free). As a result one easily obtains that
homotopy equivalences are products of Dechn flips. Here a Dehn flip is a
homotopy equivalence, g, with O, =g~ '0, and such that O, is a small
neighborhood of some proper arc in M?, ie. a Dehn flip has support in a
neighborhood of some proper arc. However, the relations between Dehn flips
are still unknown. Similarly, one knows that any (orientation-preserving)
surface-diffeomorphism, f: M? — M?; is a product of Dehn twists ([Deh],
[Lic]). Here a Dehn twist is a diffeomorphism with support in a small
neighborhood of some simple closed curve in M2, In fact, a finite set of Dehn
twists can be chosen which generates the whole mapping class group of M?2.
Furthermore, a finite presentation of the mapping class group has been
worked out by Hatcher and Thurston [Ha-Th 2]. Finally, it has been shown
by Scott [Sc] that II;Diff, (M?) is zero, for all i > 1 (see [Hat] for the
3-dimensional case).
This ends our discussion of surfaces.

II1. 3-Manifolds

It is not known whether 3-manifolds can be classified in general.
Nevertheless, certain special classes of 3-manifolds have already been
classified for a while, e.g. lens spaces and sufficiently large Seifert fibre spaces.
More recently, it has been shown that it can be decided whether an
irreducible 3-manifold is a Haken 3-manifold [Ja-Oe], and, moreover, that
the isomorphism problem for Haken 3-manifolds is solvable [Hak 2, Hel.
This is remarkable since Haken 3-manifolds constitute a fairly large class of
3-manifolds, including e.g. all knot spaces (see § 2 for definitions). As a
matter of fact, a few years ago one actually was under the impression that
“almost” all (irreducible) 3-manifolds are Haken 3-manifolds. In the
meantime this opinion has changed. However, there is still strong evidence
that a good understanding of Haken 3-manifolds and their geometry will
eventually lead to a good understanding of all 3-manifolds as well (see e.g.
Thurston’s recent work on 3-manifolds).

The ultimate goal of this chapter is to discuss the classification of Haken
3-manifolds and their homotopy equivalences (see also [Wa 3]).

§ 5. Presentations. Parallel to groups in combinatorial group theory,
compact 3-manifolds are explicitely given by presentations. In the theory of
3-manifolds, however, a number of different presentations are in use. In the
following we give a list of them [or closed (orientable) 3-manifolds (the
presentations can be modified as to cover also manifolds with boundary).
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Triangulations. By a well-known theorem of Moise [Moi], every
compact 3-manifold, M*, admits some triangulation, 4. Recall that such a
triangulation is given by its incidence-matrix which, by its very definition,
records which two simplices are incident. In this way, each 3-manifold is
presented by finitely many data.

Heegaard-presentations. A handlebody is defined to be a 3-manifold
which is homeomorphic to a small neighborhood of some finite graph in the
3-sphere. Now, any (closed) 3-manifold is obtained by attaching two copies
of an appropriate handlebody along their boundaries. To see this, simply
observe that a small neighborhood of the 1-skeleton of the triangulation, 4,
as well as its complement in M? is a handlebody. Furthermore, observe that
the above identification of boundaries is completely described by the isotopy
class of a surface-diffeomorphism, and the latter in turn is again easily be
given by finitely many data.

Polyeder-presentations. Any 3-manifold, M?, is obtained from the
pairwise identification of the faces of an appropriate polyhedron. To see this,
consider the 1-skeleton of the dual triangulation of A, and take a spanning
tree of this 1-skeleton. The required polyeder is then obtained from M by
successively splitting along all those 2-simplices of 4 corresponding to those
edges of the dual 1-skeleton not contained in the spanning tree.

Surgery-presentations. Let, L, be a link in $° ie a finite system of
pairwise disjoint, simple closed (possibly knotted) curves in S3. Let N(L)
denote a small neighborhood of L in S3. Then N (L) consists of solid tori,
and taking them out from S* and sewing them back differently gives a new
manifold. We say that this new manifold is obtained by surgery along L.
Each such surgery is given by some link and a system of torus-
diffeomorphisms—hence by some finite set of data. Moreover, a universal link,
Ly, can be chosen in the sense that every 3-manifold can be obtained by
surgery along L,.

Branched coverings. Each 3-manifold is the 3-fold branched cover over
S? branched along some link in S® [Mon 1, Hil, Hir]. This link may even be
chosen to be a knot. Another remarkable result in this direction 1s the recent
discovery of links (and even knots) which are universal in the sense that each
3-manifold is the n-fold, n > 3, branched cover over S* branched along this
particular link (resp. knot) [Th4] (see also [Mon 2)).

This completes our list of 3-manifold presentations. We finally note that
cach of these presentations can be utilized for a complete enumeration of 3-
manifolds. To describe such an enumeration using the first presentation, say,
simply generate all 3-complexes, by an induction on the number of 3-
simplices. After each step check whether really a manifold is produced, and

4 - Banach Center Publications
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keep only those. For 3-complexes this check is always possible, but it
involves the classification of surfaces (see [S-T, pp. 208]). Hence we get an
enumeration, indeed (observe that this does not work in dimensions = 4).

§ 6. Hierarchies. In the last section we saw a number of different
presentations for 3-manifolds. In order to attack specific problems in the
realm of 3-manifold theory it is good to have such a vaniety of presentations
at hand. However, as far as the classification problem is concerned, one
obstacle remains for all of these presentations since for none of them the
isomorphism problem is solved. Hence in order to classify 3-manifolds still
more internal structure seems to be needed. In the case of surfaces, M2, this
internal structure is provided by the set of all curves in M2 Thus the idea
suggests itself to consider, for any manifold M" the set of all codim 1
submanifolds as some sort of internal structure. However, we have to face
the problem that this set might be infinite and indeed it is in dimensions 2
and 3. (even if we consider istopy classes only). Essentially two methods have
been worked out to deal with this sort of infinite sets —both for surfaces, M2,
and for 3-manifolds, M“, as well. Loosely speaking, one of these methods
consists in constructing an appropriate finite base, and the other one in
turning the set in question into an appropriate metric space. In chapter I we
saw how nicely the second method (applied to singular submanifolds) works
for the study of surface-diffeomorphisms. Here we deal with the first method.
This method initially was worked out by Haken and led him eventually to a
program for solving the classification problem for Haken 3-manifolds.

The starting point for Haken’s program [Hak 2] is the surprising
discovery that in 3-manifolds there are actually only a few possibilities to
produce sub-surfaces at all. Two of these procedures are well known. They
even produce an infinity of (isotopy-classes of) surfaces and are easily
described as follows.

Adding handles. Let S be any surface in M?> (orientable, but not
neccessarily connected), and let k be any (non-singular) arc in M® which
intersects the surface, S, in a finite number of points. Define S" = (N (k U S)
—0M)~, where N( .) denotes a small neighborhood in M>. Then we say
that S’ (or rather its components not homeomorphic to components of S) is
“obtained from S by adding handles”.

Twisting surfaces. Let S be given as above, and let A be an annulus or
torus in M? which intersects the surface, S, in curves which are neither
contractible in A nor in S. Finally, let & be any diffeomorphism of M? with
support in N(A). Then, in general, h"(S), n > 1, defines an infinity of pairwise
non-isotopic surfaces in M>, We call these surfaces the “surfaces obtained
from S by twisting along A”.

It turns out that these two procedures are “essentially” the only ways of
producing infinities of surfaces in M?. This claim can and will be made
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precise. For this, however, we first have to introduce an internal
characterization of surfaces obtained by adding handles. The following
definition will provide us with such a characterization.

DerintTioN. An (orientable) surface S in M3 with S ~ndM = 8S is called
essential if it is not the 2-sphere and if the inclusion S = M induces an
injection I1, (S, dS) — I1, (M, dM) of relative fundamental groups.

Observe that a surface obtained by adding handles can never be
essential. Vice versa, it follows from the loop-theorem [Pa 1, St] that any
inessential surface definitely is obtained by adding handles.

Moreover, a 3-manifold, M3, is called irreducible if every (PL or
differentiable) 2-sphere in M? is the boundary of some 3-ball in M? (in a
similar way it is defined when a manifold 1s boundary-irreducible, see [Hem].
In the following we let the notion *“irreducible” include both these
properties).

DerFiNiTION. A Haken 3-manifold is an orientable, irreducible 3-manifold
which contains at least one essential surface.

The important feature about Haken 3-manifolds is the existence of at
least one essential surface. This excludes a number of cases, e.g. lens spaces
and a number of 3-manifolds obtained by surgeries along knots (see e.g. [Th
1] [Ha-Th 1]). On the other hand, every 3-manifold with non-empty
boundary is a Haken 3-manifold, provided it is irreducible. This even holds,
more generally, for all those irreducible 3-manifolds which have infinite first
homology [Hem, 6.6.]). In particular, knot spaces of all non trivial knots are
Haken 3-manifolds.

As far as the classification of Haken 3-manifolds is concerned the
following finiteness result due to Haken is crucial:

Theorem (Haken). Let M? be a Haken 3-manifold without any essential
annulus and torus (such 3-manifolds are called “simple 3-manifolds”). Then,
given an integer n =1, there are only finitely many, pairwise non-isotopic
essential surfaces in M> whose Euler characteristic is greater than —n. Further-
-more, this finite set can be effectively constructed.

The proof of this theorem is contained in [Hak 1]. (See also [Ja-Oe])

Now, the set of (isotopy classes of) all essential surfaces in the Haken 3-
manifold M?> can be considered as a geometric homeomorphy-invariant. For
simple 3-manifolds this invariant can be determined effectively, for then, in
light of Haken’s theorem, this set is computable. Although the above
geometric invariant already reflects some of the topology of Haken 3-
manifolds, it does not determine their homeomorphy type completely - it
only “approximates” it. A much better approximation is the set of all
hierarchies. Indeed, hierarchies were used as a technical tool in the inductive
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proofs of almost all important theorems about Haken 3-manifolds. In the
study of exotic homotopy equivalences between Haken 3-manifolds [Joh 1] a
variant of Haken’s hierarchy-concept was introduced, which explicitely takes
into account the existence of essential annuli and tori. It resulted the concept
of great hierarchies. Since this concept also yields a language in which
Haken’s classification program can be formulated more conveniently, I am
going to describe the concept of great hierarchies first. For this purpose the
notion of the characteristic submanifold in Haken 3-manifolds ts needed. In
order to give this notion observe first that small neighborhoods of essential
annuli and tori in M? belong to the class of I-bundles and Seifert fibre
spaces. Both of the latter 3-manifolds are defined by the property that they
are foliated by curves — in the first case by arcs and in the second case by
circles.

Let us now call a system of /-bundles and Seifert fibre spaces in M? a
fibered submanifold of M?>. Then it turns out that any two essential fibered
submanifolds always can be isotoped so that afterwards their union is a
fibered submanifold again. Moreover, the set B(M?):= {isotopy classes of
essential, fibered submanifolds in M?>}, together with the partial ordering
induced by the inclusion, not only has a maximal, but even a greatest
element. (For the proofs of all this and the notion “essential”, in particular,
the reader is refered to [Joh 1], see also [Ja-Sh].) This greatest element is
called the characteristic submanifold, V, of M?.

The characteristic submanifold, V, of the Haken 3-manifold, M?, is a
system of I-bundles and Seifert fibre spaces and (0V—JM)™ consists of
essential annuli and tori. Besides a number ol other pleasent properties, the
characteristic submanifold is constructable (in finitely many steps) and
unique, up to isotopy. Its complement in M? consists of simple 3-manifolds
alone (besides some trivial components which we neglect in the following for
simplicity — we neglect boundary-patterns as well) [Joh 1].

A great hierarchy, Y, is now, by definition, a finite sequence of codim 0
submanifolds, M = My > M, > M, > ... M,, with the following properties

(1) M, =system of 3-balls or empty, and

characteristic submanifold in M,;, i i=even,
(2) (M;—M,, ;)" = «small neighborhood of some essential surface in M,
with minimal Euler characteristic, if { = odd

(note that this is an informal definition — for the precise version, involving
boundary-patterns, 1 have to refer to [Joh 1] or to the survey article
[Wa 3]).

Now, from Haken’s finmiteness theorem and the above mentioned
properties of characteristic submanifolds, it follows immediately that the set,
M(M?3), of all great hierarchies in M3 is finite. Moreover, this set is non-
empty for Haken 3-manifolds [Hem]. In the next section we will see that
with the set IM(M?), together with its attaching data, we now actually have
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the geometric homeomorphy-invariant at hand which is constructable and
which determines the homeomorphy-type of Haken 3-manifolds, M3,
completely.

Let us conclude this section by finally noting that essential surfaces in I-
bundles and Seifert fibre spaces are classified [Wa 1, 2] [Joh 1, § 5]
Moreover, given any integer n = 1, it can be shown, by the method used in
[Joh 1, § 25], that there are only finitely many essential surfaces, S, in a given
I-bundle or Seifert fibre space with S < n, up to isotopy and twisting along
annuli and tori (see above). Since any essential surface, S, in M3 can be
isotoped so that afterwards S~V as well as SN (M—V)™ is essential, the
previous statement extends to all Haken 3-manifolds, by appealing to
Haken’s finiteness theorem. Hence for any given irreducible 3-manifold, M,
and any given integer, n > 1, there are finitely many surfaces in M with the
properiy that, up to isotopy, all (orientable) surfaces, S, in M with [xS| <n
can be obtained from this fimte set by iterated applications of adding handles
and twistings. E.g. all surfaces in $* can be obtained from the 2-sphere by
iterated handle-addings. This finally is the precise formulation concerning the
variety of surfaces in 3-manifolds aspired in the beginning of this section.

§ 7. Classification. As already mentioned in the introduction the
classification of 3-manifolds in the sense of Papakyriakopoulos [Pa] asks for
a complete enumeration without repetition. Since we already know how to
enumerate 3-manifolds (§ 5), it still remains to solve the isomorphism
problem for 3-manifolds. With other words, given any two 3-manifolds, M,
M’ we are asked to decide whether or not M and M’ are homeomorphic. In
order to present the solution of this problem for Haken 3-manifolds we better
reformulate it slightly, using great hierarchies. For this purpose let us fix
great hierarchies, Y 9, in the Haken 3-manifolds, M, M’, respectively.
Recall that 9 and M are given by some sequence of 3-manifoids, M = M,
SM, o...M,, resp. M'=My> M| >...M,, enjoying certain additional
properties. We let $H(IM, M) denote the set of all (isotopy classes of)
diffeomorphisms, h: M — M’, which map M to WM, ie. h(M;) = M;, for all
0 <i < m. Observe that the union (J $(M, M), taken over all pairs, (M, IN),
of great hierarchies, gives the set, $(M, M’), of all (isotopy classes of)
diffeomorphisms h: M — M".

Now, M and M’ are certainly homeomorphic iff $(M, M’} is non-empty
and the latter holds iff H(IN, M) is non-empty, for some pair (M, M). To
continue recall from § 6 that the set of all great hierarchies in a Haken 3-
manifold is finite and constructable. As a result it remains to decide whether
the set H(IM, M) is non empty, for the given M, M. We are going to
describe the solution of this problem first for the special class of Stallings
manifolds and extend this result then successively to the general case.

Simple Stallings manifolds. A Stallings manifold is, by definition, a
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3-manifold which is obtained from (wo copies, X, X', of one I-bundle over
some (orientable or non-orientable) surface by identifying ¢X with 6X’ via
some diffeomorphism. A Stallings manifold is therefore either the mapping
torus, T(f), of some surface diffeomorphism, f: S — S, or admits a canonical
2-sheeted cover which is a mapping torus. Thus w.l.o.g. we may suppose that
M = T(f) and M’ = T(g), for some appropriate surface-diffecomorphisms, f, g.
Moreover, since M and M’ are supposed to be simple 3-manifolds, it follows
from [Joh 1, § 6] that f and g have to be pseudo-Anosov and that the
characteristic submanifolds in M and M’ are empty. In particular, the great
hierarchy of M, say, is simply be given by M = My =M, > M, > (), where
M, is a product [-bundle. M is obtained from M, by attaching the two
components of 0M, via f. Similarly with M’. It hence easily follows that
$S(M, W¥) is non-empty iff £ and g are conjugate, up to isotopy. Hence the
isomorphism-problem for simple Stallings manifolds follows from Hemion’s
solution of the conjugacy problem for the mapping class group of surfaces
(see Chapter II).

Simple 3-manifolds. In the case of simple 3-manifolds the isomorphism-
problem immediately follows from the following

THEOREM. Let M and M’ be simple 3-manifolds. Then (M, M) is a finite
and constructable ser.

Proof. Consider the great hierarchies M: M =M,> M, o>...M,, and
M: M'=M,> M, >...M, We may suppose that m = n, for otherwise
H(IM, ) is certainly empty and we are done. Furthermore, we may suppose
that M 1s neither a Seifert fibre space nor a Stallings manifold for the
isomorphism-problem is already solved for these manifolds. Since M is
simple, it follows, moreover, that no essential Seifert fibre space or Stallings
manifold 1s contained in M. In particular, we may suppose that M, 1s not
empty but a (system of) balls. Observe, however, that M,, is not just a ball
alone, for it carries an additional combinatorial structure in its boundary,
which turns it into a polyhedron. This additional structure is given by

m, :='D) D, is a component either of dM,, n¢M, or of

oM, n(eM,—cM) ,0<i<m—1].

Observe that m, is a tesselation of dM,, by discs. Similarly, we define m,,.

Now, for any diffeomorphism, h, from $(IR, M), the restriction, A M,
maps m, onto m,,. With other words, h|M,, is a polyhedral isomorphism.
— Vice versa, the extension (if exists) of any polyhedral isomorphism M, — M,,
to some diffeomorphism M — M’ is unique, up to isotopy (an inductive proof
for this fact, using the combing process, can be found in [Joh 1, § 27]). In
this way the diffeomorphisms from $H(I, M) are completely determined by
their restrictions to M,,. In particular, it follows that $(9, YN) has to be a
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finite set since the set of all polyhedral isomorphisms M,, — M;, certainly is
finite (up to polyhedral isotopy).

It remains to construct H(IN, ). For this it suffices to know which of
the polyhedral isomorphisms M,, — M,, extend to diffeomorphisms M — M'.
We note that all even indexed manifolds from M resp. MM’ are simple. Thus,
in particular, the finiteness result above applies to all of these manifolds.
Using induction on the length of the great hierarchy, M it therefore remains
to decide when a diffecomorphism M;,, — M;,, can be extended to a
diffeomorphism M, —- M, 0<i<m—2. To work out such a decision
procedure recall the special way in which M, differs from M,,,. It follows
that the decision procedure is again easily obtained from the combing
process [Joh 1, § 27] since the latter is actually a constructive process.

Haken 3-manifolds. Let V and V’ be the characteristic submanifolds of
the Haken 3-manifolds M and M’, respectively. By what we have seen so far,
we may suppose that V and V' are both non-empty and that (M — V)~ and
(M"—V")" are non-empty and simple. In the following we restrict ourselves
to the worst case and let V be a (system of) Seifert fibre spaces in the interior
of M. Then the same holds for V', too, since otherwise $H(IN, M) = @ and
we are done. Now, (I, M) is non-empty iff there is some diffeomorphism
(M—V) = (M'—V')}" which extends to a diffeomorphism M — M’. But it
follows from the previous theorem that the set of all diffeomorphisms (M
—V) = (M —V’')", up to isotopy, is finite and constructable. Thus we only
have to check a finite number of given diffeomorphisms. Therefore the
isomorphism-problem for Haken 3-manifolds finally reduces to the question:
given a Seifert fibre space, X, when does a diffeomorphism h: 0X — X
extend to a diffeomorphism of X.

A necessary condition is that h preserves the Seifert fibration [Wa 1].
Therefore the previous extension-problem is easily reduced to the case that
the restriction of # to any component of X is a multiple of some Dehn twist
(along a fibre), which will be assumed in the following.

Now, if 6X is connected, then h extends ifl it is isotopic either to the
identity, or to an even multiple of some Dehn twist, according as the orbit
surface of X is orientable or not (this follows from [Joh 1, § 25]). Observe
that this criterion is easy to decide.

In order to generalize the previous criterion to the case of disconnected
boundary, let us first fix one component, T,, of 0X. Then, for each
component of dX different from T, choose a vertical annulus in X, joining
this component with T;,, and let d;, 1 <i < g, be the Dehn twist along this

annulus. Then, given h: 6X — 0X, it is easy to determine integers, n,, ..., 1,

with ( [] d')chl(@X —Ty)~ ~id. Then h extends iff ([Jd[')ch T, satisfies
1<€i<yq

the criterion above.
This completes our outline of the classification of Haken 3-manifolds.
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Remark on knots. The solution of the isomorphism-problem for Haken
3-manifolds especially solves the isomorphism-problem for knot spaces of
classical knots (i.e. differentiable embeddings of S! into S°). A slight
enlargement of this solution also covers the isomorphism-problem for pairs
(knot space, meridean curve). Such pairs determine knots completely, whereas
this is not yet known for knot spaces alone. In particular, the isomorphism
problem for knots is solvable, and hence knots are classified in the sense of
Papakyriakopoulos. Thus the question arises whether there are even models
for knot-types. For example, one might wish to give a list of knot positions
in §3 which shows as many symmetries as possible. The problem of whether
such a position exists for all knot types will be discussed in [Joh 2].

§ 8. Homotopy equivalences. Having presented the classification of Haken
3-manifolds we now turn to the study of homotopy equivalences between
them. The existence of characteristic submanifolds provides us with a
splitting result similar to those discussed for homotopy equivalences between
surfaces (see § 4). In order to describe this splitting result, let M and M’ be
Haken 3-manifolds (closed or not!) and denote by V and V' the characteristic
submanifolds in M and M, respectively. Then we have the following

THEOREM. Any homotopy equivalence f: M — M’ can be deformed into g
such that

() g(V)=V and g(M—V) =(M" - V"),

(2) g|V: V=V is a homotopy equivalence, and

) gIM—=V)": (M=V)" = (M =V")" is a diffeomorphism.
This theorem is one of the main results of [Joh t]. It gives the possibility to
split up a homotopy equivalence, f: M — M’, into homotopy equivalences
between [-bundles and Seifert fibre spaces (recall that V and V' consists of
those), and diffeomorphisms between simple 3-manifolds. The next step is to
study these pieces separately.

Homotopy equivalences between Seifert fibre spaces. As far as homotopy
equivalences between I-bundles and Seifert fibrespaces are concerned we note
that, besides some exceptional cases which we neglect, any such homotopy
equivalence can be deformed so as to leave the fibre structure invariant [Joh
1, § 28] (see also Waldhausen’s result concerning the case of diffeomorphisms
[Wa 1]). With other words, there is a horizontal as well as a vertical
contribution which together describe the whole homotopy equivalence in
question. In the case of diffeomorphisms these contributions are essentially
given by horizontal resp. vertical Dehn twists (along annuli and tori) [Joh 1,
§ 28]. The horizontal contribution also can be studied via the
diffeomorphism of the orbit surface induced by the original one, and for this
the results from chapter II are available. For exotic homotopy equivalences,
however, the precise horizontal contribution still remains obscure in the
presence of exceptional fibres.
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Diffeomorphisms between simple 3-manifolds. As in the case of surface-
diffeomorphisms, the existence of geometric structures is crucial in the study
of diffeomorphisms between simple 3-manifolds. Fortunately, the recent work
of Thurston, provides us with appropriate kinds of geometric structures. In
particular, Thurston announced [Th 3]:

THeoreM (Thurston). Every Haken 3-manifold (different from the I-bundle
over the Klein bottle) carries a hyperbolic structure.

In contrast to the surface-case, hyperbolic structures for Haken 3-
manifolds are difficult to construct (the proof of the previous theorem is still
not completely published yet; parts of it are contained in [Th 1, 2]).
However, having established their existence the impact of hyperbolic
structures on diffecomorphisms is much more drastic as in the surface-case.
The reason for this is the rigidity of these structures for simple 3-manifolds
[Mos, Pra]. As a consequence any diffefomorphism between simple 3-
manifolds 1s isotopic to an isometry (and hence to a periodic
diffeomorphism).

Altogether, this gives a rather precise, although not quite completed,
picture of the structure of homotopy equivalences between Haken 3-
manifolds, and we end this report by remarking that this picture can and has
been used rather fruitfully in a further study of 3-manifold problems.
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