GEOMETRIC AND ALGEBRAIC TOPOLOGY
BANACH CENTER PUBLICATIONS. VOLUME 18
PWN = POLISH SCIENTIFIC PUBLISHERS
WARSZAWA 1986

LUSTERNIK-SCHNIRELMANN CATEGORY;
A GEOMETRIC APPROACH*

L. MONTEJANO

Mexico

In 1934 a new topological invariant was defined by Lusternik and
Schnirelmann [8] as a result of their research into the calculus of variations,
in particular, as a result of their study of the geodesics of a surface. This
invariant, called the category of a space, gives important information about
the existence of critical points and has received a lot of attention over the
years from very different points of view. See, for example, the survey article
of 1. M. James [7] concerning the algebraic topology viewpoint and the
articles of Palais [11] and Takens [14] concerning the relations between the
category and the existence of critical points. Our purpose is to show that
there is a considerable amount of geometric topology involved in the study
of this invariant and, of course, that the combination of these techniques
with the classical ones give rise to beautiful and interesting results and
problems.

Although most of our definitions and results can be stated in a more
general setting, we will restrict ourselves by expository reasons, to the
compact PL case.

§ 1. The category and the simple category

Let P be a compact polyhedron, the category of P, cat(P), is the smallest
integer k such that P can be covered with k subpolyhedra each of which is
null homotopic in P (or equivalently, each of which can be deformed in P
into a single point). Thus, cat(P) =1 if and only if P is contractible,
cat(P) £ 2 for P a suspension and the category of spheres is two.

Two simple but important propositions follow.

ProrosiTioN 1.1. Let P be a compact connected polyhedron. Then
cat(P) < dim P+ 1.
Proof. Let T be a triangulation of P and let T be the second baricentric

* The paper is in final form and no version of it will be submitted for publication
elsewhere.
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subdivition of 7. Suppose dim P = n. Let T, be the subcomplex of T which
is the disjoint union, over all k-simplices of of T, of St(s¥, T”). Since |T;| is
the disjoint union of contractible pieces, it is null homotopic in P. Therefore,
Tl [T, ..., |T]) i1s a cover of n+1 subpolyhedra each of which is null
homotopic in P. =

This mequality is the best possible, in particular, the category of the
n-projective real space, RP" is n+ 1. It is also easy to see, looking at the
cellular decomposition of RP", that cat(RP") < n+1. Let us suppose that
RP"=K,u...uK,, where each K; 1s a null homotopic subpolyhedron
of RP" and k <n+1, then j*: H*(RP" Z,) — H*(K,. Z,) is t(rivial,
where ji: K; - RP" is the inclusion, 1 <i<k. Hence, by exactness,
H*(RP". K,, Z,) » H*(RP", Z,) is an epimorphism. Let 3,, ..., be any
clements of [I*(RP", Z,). We can pull each 7, back to H*(RP", K,, Z,) and
hence pull the product y,-y,-... 7, back to H*(RP". K, u...UK,, Z,) =0,
thus proving that 3,-7,-...-3 =1 which is a contradiction because
H*(RP". Z,) is a truncated polynomial ring of hcight n.

"Using the same idea of the proofl of Proposition 1.1, it is possible to
prove inductively that if P is a p-connected compact polyhedron then
cat(P) £ 1 +dim P/(p+1).

ProrositioNn 1.2. If P dominates R then cat(P) = cat(R).

Proof. Let g: R— P and f: P— R be PL maps such that fy ~ 1d. If P,
is a null homotopic subpolyhedron of P then g~ '(P,) is a null homotopic
subpolyhedron of R because the inclusion ¢~ '(P,) © R is homotopic to
fy: ¢ '(P;)— R which is homotopic to a constant map due to the fact that
P, is null homotopic in P. Hence any null homotopic polyhedral cover of P
can be pulled back to a null homotopic polyhedral cover of R. =

An important corollary of Proposition 1.2 is that

The category is a homotopy invariant.

Associated with the notion of category is the notion ol geometric
category. The geometric cuategory of a compact polyhedron P, gcat(P), is the
smallest integer k such that P can be covered with k subpolyhedra each of
which i1s contractible (in itself).

An casy modification of the prool of Proposition 1.1 (add arcs to make
each |T;] connected) shows that

ProrosiTiON 1.3. Let P be a compact connected polyhedron. Then
gcat(P) < dim P+1.

However, the geomelric calegory is not a homotopy invariant and does
not always agree with the category as the following example of Fox shows

Exampie 1.4 (Fox, [5]). Let K be the polyhedron obtained from the
sphere S? by an identification of three different points a,, a,, a;€S?. Then
calt(K) =2 but gcat(K) = 3.
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Clearly, K can be covered with three contractible subpolyhedra. We will
prove that it is impossible to cover K with two contractible subpolyhedra A4
and B, thus proving that gcat(K) = 3. Let ¢: $? — K be the quotient map.
b =qld,) =qla;) = qla;) and suppose beB. It Is easy to sec. since
ay, uy, u3eq '"(B), that ¢ '(B) is the disjoint union of 3 contractible
subpolyhedra B,, B,, B, such that ¢;e B;, i = 1, 2, 3, and that S2—¢ '(B) is
connected. Also S?—¢~ '(A4) is connected but since g ' (A)uqg '(B) = S? we
have that S2—¢g '(A)c g '(B) and therefore we may assume that §?
—¢ '(A) < B,. Then, the connccied set S?— B, is contained in ¢ '(A) but
hence a, and «; belong to the same component of g '(A) which is a
contradiction.

Now we will show that cat(K) = 2. Let A4 be the subpolyhedron of K
shown in figure la. The closure ol K— A 1s contractible and hence null
homotopic in K, lurthermore, although A4 is not contractible, it is easy to see
from the following sequence of figures that A is null homotopic in K. Since
K is not contractible, we have cat(K) = 2.

Fig. |

Also, it 1s easy to see (filling up the three horns of K) that K has the
homotopy type of S? v §' v §' which is a suspension and consequently has
category and geometric category (wo.

Another interesting fact 1s that, although gcal(K) =3, gcat(K x/1)=2
= cat(K). Let n: $? xI — K x1I be the obvious quotient map and let D,. D,
and Dy be pairwise disjoint disks in S% centered at «,, g, and a; respectively.
Let A=n(D;xI)u(D,x[0.3/4])w(D; x[1/4.1])) and B the closure of
(K xI)— A, then |A, B} is a contractible polyhedral cover of K x 1.

For a compact polyhedron P, we have that gcat(P) = gcat{P xI) >
.oz geat(PxI"y = ... = cat(P). It is clear that this sequence must stabilize
somewhere. Let us define the simple category of P, scat(P), as follows:
scal (P) = Min {gcat (P x{")!. We will prove that the simple category is

nz0
a simple homotopy invariant that differs from the category in at most
one unit.

TheoreM 1.5, Let P be a compact polyhedron. Then

cat(P) < scat(P) < cat(P)+1.
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Proof. Since cat(P) = cat(P x I") < gcat (P xI") for every n > 0, we have
that cat(P) < scat(P). Let cat(P) =k and let {P,, ..., P,} be a null homo-
topic polyhedral cover of P. Let n be a sufficiently big integer and for
I<i<k let T =P xI"x[i,k+1]cP;xI"x[0,k+1] and T =P;

k+1

xI"x[0,i] c P;xI"x[0,k+1]. It is easy to see that U(T’UT)

=PxI"x[0,k+1] and for every i=1,2, ...,k ' T,., = Q. Smce P, is
null homotopic in P, we may assume that n is so big that for every
i=1,..., k the cone of P;, denoted by cP;, is contained in P xI"x/i} in
such a way that the base of cP; coincides with P; x {0} x {i}. Furthermore,
we may embed another copy of the cone of P;, ¢P;", in PxI"x[i, i+ 1/3],
by pushing (cP,—P; x{0} x{i}) off PxI"x[0,i] in such a way that
T neP! =P, x{0} x{i} and R = T/ ucP is a contractible subpoly-
hedron of P xI"x[0,i+1/3]. Similarly, cP” 1is obtained from cP; by
pushing (cP,—P; x{0} x{i}) off P;xI"x[i,k+1] in such a way that
TncePT =P;x{0} x{i} and R = T ucP; is a contractible subpolyhe-
dron of PxI"x[i—1/3,k+1]. Note that for every i=1,..., k-1,
RFfNnR,,=@Q. For every i=1,...,k—1, let 3 be an arc from R/ to
R, in such a way that R, =R, Uy UR,, is a contractible subpoly-
hedron of P xI"x[0, k+1]. Then {Ry, Ry, R,, ..., R,_;, R{} is a contra-
ctible polyhedral cover of P xI" x[0, k+ 1] and consequently gcat(P x I"*!)
£k+1=cat(P)+1. =

\\

’
T‘I:

o

x-

o
- —

>

Fig. 2

Next we will prove that if K and L are compact polyhedra with the
same simple homotopy type then scat(K)= Min {gcat(K xI")} =

nz0

Min igecat (L x I")} = scat(L). First we need to review a little about

nz0

Q-manifolds. Let @ be the countable product of closed intervals, that is,
Q=1,x...xI,x..., where each I; is a copy of the closed interval [0, 1].
The following factorization of the Hilbert cube Q will be useful. Let I" = I,

xIyx...xI,and let @, =1,xI,,yx...,insuch a way that @ =1"xQ,, .
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A Q-manifold is a separable metric space modelled in Q. It is well known
that for every polyhedron K, K xQ is a ¢-manifold and conversely, every
Q-manifold is homeomorphic to K xQ for some polyhedron K. Furthermore,
two @-manifolds K xQ and LxQ are homeomorphic if and only if the
polyhedra K and L have the same simple homotopy type. For more about
Q-manifolds see [2].

Let P be a compact polyhedron and let % be an open subset of P xQ
homeomorphic to a compact Q-manifold cross R. An splitting of % consists
of

(a) Two closed Q-submanifolds of %, m, and m,, such that m, v m,
= 9 and,

(b) A compact bicollared subpolyhedron 4 of P xI” such that m; n m,
=Ax Qn+ 1-

CHAPMAN SpPLITTING THEOREM 1.6 ([2]). Let P and % as above. Then
there is an splitting of 4 for which the inclutions AxQ,,, & m, and A
X Q.+, S M, are homotopy equivalences (and consequently there is a strong
deformation retraction of w; onto AxQ,,.,, i =1, 2).

Now we will use Theorem 1.6 to prove

TheoreM 1.7 ([10]). The simple category is a simple homotopy invariant.

Proof. Let K and L be compact polyhedra with the same simple
homotopy type and suppose gcat (K) = k. It will be enough to prove that, for
n sufficiently big, Lx " can be covered with k contractible subpolyhedra. Let
{Ky, ..., K,} be a contractible polyhedral cover of K and let h: LxQ — K
xQ be a homeomorphism. We will first show that for every i=1, ..., k
there is a compact contractible subpolyhedron B; of Lx I™ such that h™ (K,
xQ) < B; xQ, +. Let N; be a regular neighborhood of K; in K and let U;
be the following open subset of LxQ. U; = h™'((Int N;— K;) xQ) = (Fr N;
x Q) x R. Applying the Chapman Splitting Theorem, there is a bicollared
subpolyhedron A4; of LxI"™ such that A; xQy +y splits homotopically U;.
Moreover, A; is the boundary of a compact subpolyhedron B, of Lx I"™ which
has the following properties: h~* (K; x Q) < B; xQn +1 and B; is contractible
because there is a strong deformation retraction of U,, which is contractible,
onto B; xQ, . Let n=Max{n| i<k}, then {B;xl,,x...xILli<kj
is a contractible polyhedral cover of LxI". This completes the proof of
Theorem 1.7. =

There are some interesting questions concerning the geometric category and
the simple category
(1) Is |gcat(Pj—gcat (P xI)| <1 for every compact polyhedron P?

(u) Is there a compact polyhedron P with the property that gcat (P x I)
# scat (P)?
(i1) Is there an integer N, possibly depending on the dimension or/and
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the connectivity. such that for every compact polyhedron P, scat(P)
= gcat (P x I")?

(iv) When is gcat(P) = cat(P), gcat(P) =scat(P) or scat(P) = cat(P)?
What if P is a closed PL manifold?

§ 2. The strong category

In 1967 Tudor Ganea [6] introduced the [ollowing homotopy invariant
which 1s called the strong caregory. Let P be a compact polyhedron, then

Cat(P) = Min gcat (K)| K is a compact polyhedron of the same

homotopy type as P!.
The following properties of the strong category follow immediately

THEOREM 2.1. Let P be a compact connected polyhedron. Then

(i) Cat(P) < dim P+ 1,

(1) cat(P) < Cat(P) < scat(P) <cat(P)+ 1, and

(i) If =, (P) is free or free abelian then

Cat (P) = Min {gcat (P xI")) = scat(P).
n=0

It would be interesting to know if scat(P) = Cal(P) for every compact
polyhedron P. In particular, cat(P) < 2 il and only il P admits a coHopl
structure [7], if this is the case, then n,(P) is free and therefore Cat(P)
= scat (P).

By (ii), the strong category is either the category or the category plus
one. Both possibilities may occur as the [ollowing example of Berstein and
Hilton [1] shows.

Let f: S™— S" be a map and let $"u,e™ " be the space obtained by
attaching an (m+ 1)-cell to §” by the map f. At this point, our main interest
is to find a space for which the category and the strong category does not
coincide, therefore we will study the category and the strong category of this
kind ol spaces.

Clearly, Cat(§" v, e™” Y < 3 and if f is homotopic to the suspension of
a map g: S™ ' - 8" then Cat(S"u,e™" ') < 2. In fact, we will prove that
the converse is true but first we need the following proposition.

ProposiTioN 2.2. Let P be a compact connected polyhedron. Then
Cat(P) < 2 (scat(P) < 2) if and only if P has the (simple) homotopy type of a
suspension.

Proof. If P is (simple) homotopy equivalent to the suspension of a polyhedron
K, ZK. then it is clear that (scat(P) < 2) Cat (P) < 2. Suppose now that P can
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be covered with two contractible subpolyhedra A and B. W¢ will prove that Pis
simple homotopy equivalent to 2 (4 B). Let X =(4 x|0})u((AnB)xI)u
U(Bx{1})c PxI and let =: X — P be the projection. Let g: X - 2(A N B)
be the obvious quotient map. Since 7 and ¢ are cell-like maps then, by [4],
P and X (A4 n B) have the same simple homotopy type. =

Prorostrion 2.3, Let f: S"—S" be a« mup, m>nz=3. Then
Cat(S"u,e™ ) < 2 if and only if there is a map g: S™ 1 - 8" such that
is homotopic 10 Xg, the suspension of g.

Proof. Clearly Cat(S"uge™"!) < 2 because S" Uy ™! ~ Z(S" 1y, e™).
Suppose now that Cat($”u,e™ ') < 2. By Proposition 2.2, S"u,e™"! ~ XZ
for some polyhedron Z. Also H, (XZ) = Z for = = n and * = m+1 and zero
otherwise. On the other hand Z is connected because n,(2Z)=0. Let Y
= Z/Z" where Z' is the -skeleton of Z and let g: Z— Y be the quotient
map. Note that q,: H, (Z)— H_(Y)is an isomorphism for = # 2 and H,(Y)
= H,(Z)®F. where F is a [ree group. Since Z is simply connected, then
there is a homotopy equivalence 4: Y — (V'S?) uge” ! u, e™ for some maps f3
and x. (see [1] for more details about ). Let m: (VS?)uze” 'y e
— 8" 'u,e™ be the map which collapses (VS?) to a single point. Then
niq: Z— S"" ' U, e™ is a map which induces isomorphisms in homology and
consequently we have ZZ ~S"u e™" ! = S"u et 228"y, e, Let
h: "L e™" ! = 8"Uy ™! be a cellular homotopy equivalence. Since m > n,
we may assume that h: (S"u,e™ !, S = (SY Uy e™" ! §" is a homotopy
equivalence of pairs. Let us consider the [ollowing diagram

!
q me+1

/(Snufem”|5n)'—_-‘(s :')

(8™ s") h l”'
/ ! n me» n m+

PN (s ™ s — 9 e (s™ )

where ¢ and ¢ are the quotient maps and # is the unique map such that
h g = gh. Note that k" is also a homotopy equivalence. Furthermore, f’ and
(Zg) are the attaching maps which correspond to f and Xg. Since h'¢'f’
~ +q(Zy) and since ¢ M, (S"Ugem " S o, (S"T %) is an
iIsomorphism, hf' and (Xg) represent up to sign, the same element in
n,,,H(S"uI‘,e’"”, S%, but hence f ~+2ZXg. That is, f is homotopic to a
Suspension. m

Exameir 2.4 (Berstein-Hilton [1]). Let f: §°— S? be the map which
represents the element of order 3 in 74(S°) = Z,,. Then Cat(S* u;e’) =3
but cat(S* u,e’) = 2.

Let Z: n5(S%) — ng(S?) be the suspension homomorphism. Since 75(5?)
=Z,, n,(S*)=2Z,, and f: S®— S? represents the element of order 3, this
element is not in the image of X and consequently, by Proposition 2.3,
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Cat(S> uje”) = 3. Next we will prove that cat(S* Uje’) = 2. Berstein—Hilton
original proof uses the fact that the category of a space is less or equal than
two if and only if the space admits a coHopf structure. Obstructions to the
existence of coHopl structures had been investigated, particularly in
connection with spaces of the form S™u,e™"!. This analysis involves the
study of the homotopy groups of a wedge of spheres. We will present here
another proof.

Given a map g: S®xS?—S% we have associated a map g: §°— S>
as follows. Let us think in S*® as the suspension of S2, that is, S3 =
§2x[—1,1)/~, where (x,1)~(x',1) and (x, —1)~(x/, —1) for every
x, x'eS% Let q: S x[—1,1]— §* be the quotient map and let us denote
by vo=q(8? x{—1}) the south pole of S>. Also let us think in S° as

0B" = 8(B* xB’) = B* x§* Uy ., §° x B®. Define g|B* x5* by

—(x ) - q(g(x/”x“: y)a 1—||xl|) 1f X # 0, and
g g($? x{1}) if x=0.

Furthermore, g|S* x B® is given by

F(x, ) = a(g e, YD, lIyll=1) if  y#0 and
G =082 x {~1)) if y=0.

Note that §|S* xS% =g and that g~ !(vy) = §* x {0} = §°.

Let us first identily the generator of nG(S3) =Zy,. Let h: §3 x8*—§?
be the following composition of maps: S* xS? == SO(3) xS <% §2, where
7 i1s the covering map and ev is the evaluation map. Note that for every
peS? h|S*x{p}: $*—S* is homotopic to the Hopf map. The map h:
§¢ — S associated with h as above, represents the generator of 74 (S*) [16].
Consequently, a representant of the element of order 3 in ng(S?) = Z,, is
the map [ associated with the following composition f: S3x§2 %5 §?

x§2 25 SO(3) x5 = 2. Note that for every peS? f|8° x {p}: §° — 82 is
homotopic to 4 times the Hopf map, that is, represents 4 times the generator
of my(S?) = Z. Also note that f‘ (vy) is a 3-sphere contained in §°.

Let D* be the 4-disk in ¢’ obtamed by coning f ! ~ §? from the
origin of ¢’ and let X*<S*ujze’ be the followmg 4 sphere. X4 =
{vo} uD* =82 Uje’. It is easy to see that there is a strong deformation
retraction of $* Uje’—Z* onto S*—{v,} because D* e’ was obtained by
coning f '(vy) from the origin of &’.

Therefore S* Uje’ —Z* is contractible. Next we will prove that X* is
null homotopic in §* Use’. Let p be a fixed point of S? and let D} = B*

x {p} g {p}Sg‘ x {tpe B}/0 <t € 1} = §°. Clearly, D} is a 4-disk such that

oD} = f '(vy) = éD* and there is a deformation of D* in ¢’ onto D}
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keeping fixed dD} = dD*. Furthermore, f|D}: (Dt, dD%) —(S>, vy) repre-
sents in n4(S?) the suspension of 4 times the generator of 7,(S?) due to the
fact that f{S® x {p}: $* — S? is homotopic to 4 times the Hopf map and the
form in which we constructed f from f. It follows that 2* is null homotopic
in §* Use’ if the suspension homomorphism X: 73(S%) — m,(S?) sends 4 times
the generator of m,(S?) to zero, but this is so because m,(S%) = Z,.

Let A be a derived neighborhood of Z* in S* Uye’. Then {4, cI(S* Uye’
—A)} is a null homotopic polyhedral cover of $*Uje’ and consequently
2 =cat(S use’) # Cat(S? uje’) = 3. Note also that since =,(5° use’)=0
then scat(S’uje’) =3.

It would be interesting to know if there is a compact polyhedron P for
which 3 < cat(P) # Cat(P).

The coincidence between the category and the strong category was
studied by T. Ganea in 1967 [16]. He proved that for a p-connected
polyhedron P (p = 1) with the property that dim P < (cat(P)+1)(p+1)-3,
the category and the strong category coincide. Recently, M. Clapp and
D. Puppe [3] were able to prove that if dim P < (2cat(P)—1)(p+1)—3 then
cat (P) = Cat(P). Note that for spaces of category two both bounds are the
same and that the Berstein—Hilton example shows that these bounds are the
best possible. It would be important fo find examples showing that the
second bound is the best possible when the category is greater than two.

§ 3. Product spaces and the category

For cartesian products of compact connected polyhedra, the following
formula concerning the category is known

(3.1) cat (P, x P,) < cat(P,)+cat(P,y)—1
The same formula holds for the strong category, that is
(3.2) Cat(P, x P,) < Cat(P,)+Cat(P;)—1

In fact, if P, is not contractible, Takens [15] proved the following mixed
formula

(3.3) Cat(P, x P,) < Cat(P,)+cat(P,)—1

Equality does not always hold. Let S?u,e® be the space obtained by
attaching a 3-cell to S? by a map of degree p. It follows that 2, e® is a
suspension for every p and that cat(S?u,e’) =Cat(S2u,e’)=2if p# 1.
On the other hand, if p and g are muttually prime integers (S?u,e’)
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x(S? U, e’) contains (S u,e’) v (§*u,e’) as a deformation retract and so
cat((S? U, e*) x(S? U, e?)) = Cat((S? U, €?) x(S2u,e?) = 2.

There is a long-standing conjecture to the effect that for every compact
connected polyhedron P and any positive integer r > 1.

(3.4) cat(P xS = cat (P)+ 1

From 1.2 and 3.1, it follows that cat(P) < cat(P xS") < cat(P)+ 1, and
hence the difficult part of the conjecture consists in proving that for every
compact connected polyhedron P and every positive integer r

cat(P) # cat(P xS")

It is interesting to note that there is a polyhedron P for which
Cat(P xS') = Cat(P). In fact. let P = §* U, ¢’ be the Berstein- Hilton example.
Then cat(P) = 2, Cat(P) = 3 and by 3.3, Cat{P xS') < 3, but by proposition
2.2, since P xS' is not homotopy equivalent to a suspension, Cat(P xS')
= Cat(P) = 3. Furthermore, by Theorem 2.1, there is a polyhedron K for
which gcat(K xS') = gcat (K).

The conjecture 3.3 was solved by Singhof [13] when P is a closed PL
manifold and the category of P is not too small with respect the dimension
of P. Actually hc derived the prool [rom the following thcorem.

THreorem 3.5 (Singhof). Let M™ be a closed p-connected PL n-manifold
with cat(My=N, n=5 If N=2(n+p+4)/2(p+ 1), then there are N n-balls
which cover M.

CoroLLary 3.6, Let M be a closed PL n-manifold, n = 4. If cat(M) =
(n+5)/2, then cat (M xS') = cat(M)+ 1.

Proof. Suppose N = cat(M xS') = cat(M) = (n+5)/2. By Theorem 3.5,
there exists a cover |B,. ..., By! of M xS, where cach B; is an (n+ 1)-ball.
By means of a homeomorphism, we can assume B, is so small that B, n(M
x ta}) =@ for some aeS'. Then [B, n(M x{a})..... Byn(M x a})} is a
null homotopic polyhedral cover of M x ;a], which is impossible. =

Singhof's original proof of Theorem 3.5 will not be given here, instead,
we will use the following theorem, whose proof exploits the linear structure
between the k-skeleton of a polyhedron and its dual skeleton [9].

THeorem 3.7. Let P bhe a compact p-connected n-dimensional polyhedron
and let {P,, ..., Py! be a polyhedral cover of P. Then there exisis a polyhedral
cover 'R,. . ... Ry! of P such that

a) R, is null homotopic in P if P; iy so, 1 <i<N, und
b) R; is a derived neighborhood of N;, where

dim N, < Max ln—(N+D)(p+1),p], 1<i<<N.
Proof. We start the proof by proving the following fact: Let X, Y be
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subpolyhedra of P, |P,, ..., Py! be a polyhedral cover of X in P and dim Y
< N(p+1). Then there exists a polyhedral cover {R,..... Ry of XU Y in P
such that R, 15 a derived neighborhood of P, U N,, where dim N, < p,
| <1< N.The proofl is by induction on N. If N =1 then there is nothing to
prove. We will suppose it is true [or N—1, and prove it for N. Let T be a
triangulation of M such that K, L, T,, ..., Ty are subcomplexes of T which
triangulate X, Y. P. ..., Py, respectively. Let L' be the (N—1)(p+1)—1)-

skeleton of L and let L’ be its dual skeleton. Note that dim L” < p. Let R
N

~n(J P;). By induction, since dim L' <(N—1)(p+1), there is a
1

polyhedral cover !J,,....,Jy_,) of RUJ|L| in P such that J; is a derived
neighborhood of P, U N, where dim N, <p, | <i<N—1 Let R, be a
derived neighborhood of J;, | i< N—1, and let H be a subpolyhedron of

{Ty w L] such that H collapses to |[Tyu L”and XU Y < Hu( U R,). Finally,

let Ry be a derived neighborhood of H. Hence, {R,, ..., Ry} is our desired
polyhedral cover. This completes the inductive step.

We now return to the proof of Theorem 3.7. Let T be a triangulation of
P such that therc are subcomplexes T, ..., Ty which triangulate P,, ..., Py
respectively. Let Ty be the (n—(N — 1)(p+ 1))-skeleton of Ty and let Ty be its
dual skeleton. Note that dim Ty < (N —1)(p+1). By the first part of the

N-1

proof, there is a polyhedral cover R}, ..., Ry_,} of { U P;)u|Ty| in P such

1

that R; is a derived neighborhood of P U N;, where dim N; <p, 1 i< N-1L
Let R,,.... Ry _, be derived neighborhoods of R/, ..., Ry, respectively and
N

let Ry be a derived neighborhood of |Ty| such that UR,- = P. Since P

is p-connected, R; is null homotopic in P il P; is so, 1 < i< N. Furthermore,
Ry 1s a derived neighborhood of |7Ti| where dim Th <Sn—(N-1)(p+1).
By repeating this process, and using Lemma 1.63 of [12] in order to preserve
property b) in the process, we obtain our desired polyhedral cover. =

Zeemans ExGoLFING THEOREM 3.8, Let M he a closed p-connected PL n-
manifold and let X be a compact subpolyhedron of dimension ¢, ¢ < n—3 and
29 < n+p—2. Then X is null homotopic in M if and only if there exists an n-
ball B such that X <« B < M.

Proof of Theorem 3.5. Let |P,, ..., Py} be a polyhedral cover of M such
that each P; 1s null homotopic in M. By Theorem 3.6, we may assume that
P; is a derived neighborhood of N;, where dim N; < Max (n—(N = 1){g
+1), 4, and where ¢ =Min|p, n—3}, 1 i< N-1 Since dim N, <n-3
and 2dim N, < n+p—2, by Zeeman’s Engulfing Theorem there are n-balls
B,, ..., By such that N; c B;. Since P; collapses to N,, | <i< N, we may

assume without loss of generality that P, = B;, 1 <i < N. This concludes the
proof of the theorem. u
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Let M be a closed PL n-manifold and let B(M) be the smallest integer k
such that M can be covered with k PL n-balls. Theorem 3.5 can be restated
as [ollows: If M is a closed p-connected PL n-manifold, n > 5, with the
property that dim M < (2cat(M)—1)(p+1)—3 then cat(M) = B(M). Note
that this bound is exactly the same bound founded by M. Clapp and D.
Puppe [3] when studing the coincidence of the category and the strong
category of a polyhedron. Also note that, since homotopy spheres have
category two and B(M) = 2 if and only if M" is an n-sphere, Theorem 3.5
implies the Generalized Poincaré Conjecture.

As we have seen, to realize the category in terms of well-known pieces
(PL balls) can be very useful. We would like to finish this paper by stating
some characterizations of the category in terms of covers whose elements are
well known [10].

(a) Let P be a compact connected polyhedron, then cat(P) = smallest
integer k such that PxQ can be covered with k+1 open subsets each of
which is homeomorphic to @ x[0, 1) = (Q —*).

Let N" be a PL n-manifold with boundary. A boundary ball B of N" is a
PL n-ball contained in N" such that BnBdN" is a PL (n— 1)-ball.

(b) Let M™ be a compact connected PL m-manifold, then cat(M™)
= smallest integer k such that M™ xI” (n big enough) can be covered with k
+ 1 boundary balls.

(c) Let M™ be a closed connected PL m-manifold, then cat(M™)

= smallest integer k such that M™ xS" (n big enough) can be covered with
k+1 PL balls.
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