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1. Introduction and statement of the results

The study of the differential operator G, = D+ x2D2—AD,, ieC, (x, y)e R,
has played an important role in the development of the theory of pseudodif-
ferential operators with multiple characteristics. Grushin ([3], [4]) proved
that G, is hypoelliptic when A¢2Z + 1 whereas it is not hypoelliptic when
Ac2Z+1. This result was extended in [3], [4], [8], [1], and many other
papers (see for example [7] and the references given there). Let now Q be an
open subset of R"*2, n > 1, with coordinates (s, x, y), se R, and denote the
dual coordinates by (o, &, 5). G, defines a differential operator P, in 2 by the
formula P,u(s, x, y) = (DZ+x*D}—AD)u(s, x, y). Of course P, cannot be
hypoelliptic. When x # 0, the characteristic set of P, is a smooth involutive
manifold and the results of [9] show that, when x # 0, P, propagates
microlocal C* singularities along two-dimensional leaves on which s, o, &, n
are constants. In this note we give some results about what happens when x
= 0. Denoting wavelront sets by WF, we prove the following results.

THEOREM 1. If Ae C\(2Z+1), P, propagates C* singularities in the
direction of &/dy. More precisely, assume that ue 7' () and that ge WF (u),
with x(0) = 0. If WF (P, u) does not meet an open conic neighborhood I of ¢
and if A¢2Z+1, then the connected component of the set (¢+(0, 0, h,
0.0.0eR*** heR) T through ¢ is contained in WF (u).

THEOREM 2. Assume that Ae2Z+ 1. Let F* be closed subcones of T* Q2\0
suchthat n20=x=¢ on F*. If Ae2Z" + 1, one can find ue &' (Q) such that
WF(uw) =F" and PyueC*(Q). If —Aie2Z" +1, one can find ue &'() such
that WF(u) = F~ and P,ue C*(Q).

Remark. Theorems 1 and 2 show that, for P,, the lower order term plays
an important role in the propagation of C* singularities when x =0.
However, it plays no role in the propagation of analytic singularities, as the
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following very special case of a result of Grigis, Schapira, SjOstrand [2]
shows.

THEOREM ([2]). Denote analytic wavefront sets by WF,. Let 4 be any
complex number. Assume that ue 2'(S2) and that ge WF (u). If WF, (P, u) does
not meet an open conic neighborhood I' of g, then the connected component of
the set {g+(0, hy, hy, 0, 0, 0)e R***, (hy, h,)e R*} N T through g is contained
in WF, (u).

The plan of this paper is the following: In Section 2, we prove Theorem
1 by integration of estimates of Carleman type, following the method of [9].
Section 3 is devoted to the proof of Theorem 2.

2. Proof of Theorem 1
Theorem 1 will be deduced from the following estimate of Carleman type,
the proof of which is based on results of [6] (see also [10]):

ProrosiTioN 1. If A¢2Z+ 1, there exists me Z* such that the following
holds: if K is a compact subset of R? one can find a constant Cy ; such that
the estimate

(1) lle” vl|L2(r2) € Ck,.lle” DF G, vl 2n2)
holds for all yeR and all ve C§{(K).

Proof of Proposition 1. Put G(y, n) = D2+ x2(n+iy)>—A(n+iy),
(7, me R®. We will show that the estimate

¥ PN Dl < C (P2 + )N MG, (v, mwl|
holds for all we #(R,) and all (y, n)e R* if A¢2Z+1 and |Re | < 4N. Here
N is any positive integer and || || denotes the L*(R,) norm. This of course

will imply (1) if one takes w(x) thial to the ~partial Fourier transform of
e” v(x, y) with respect to y. Since G,;(y, ) = G_,(~-7y, —#n), (2) is a conse-
quence of

3 T < Co2 H YV TYHIG @y, mwll
for all we #(R,), n>0,yeR, A¢2Z* +1, Re A <4N.

To prove (3), put Q,(y, n) = e” ™2 G, (y, n)¢"**'%. Then

0a(, ) = “’:.:i” [X (X* + 0X)+(1 - Hn],

where X = D,+inx, * means adjoint with respect to the L?*(R,) scalar
product and w = y/(—vy+ixn). Therefore the results of Section 3 of [6] imply
that (3) holds with G,(y, n) replaced by §,(y, n). Hence (3) holds. This
completes the proof of Proposition 1.
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To obtain Theorem 1 from Proposition 1 we shall use the technique
of Sjostrand [9], which we recall briefly. Write ¢’ =5, t" = (x, y), t = (', "),
=0, t"=(, 1), 1t=(t,1"). Take 0 £y eCF(R") and choose a symbol
2, F,1)eSY4,,(R" x R") x R") with support in a set |t'—F'| <const and
equal to Y ((¢'—D) [T Y¥) 1" if |72 1. If ze ¥ (R""?) and WF(z) does
not meet the set ' = 0, one defines

rrlz(t, TI) - j‘el'(l'—r,t')x(lt’ F, T’)Z(t_’, t,n) d'TI,

which belongs to C*(R"*2 x R"). The following result is contained in [9].

LemMma 1 ([9)). If ze @'(R"*?) satisfies WF (z) < {(t, ©)e T* R"*2\0, 1"
= 0}, the following assertions are equivalent:

(1) ze H* microlocally near (t,, 14, 0).

(2) There exists a conic neighborhood V < R"*? x(R"\|0}) of (to, to) such
that (1+]t' T, z(t, T')e L2(V).

For later use we introduce, as in [9], the following notation: if
feC®(R"™?xR" and (t,, to)c R" 2 x(R"\[0}), we put

F;(to, o) = sup (ue R, (1+|t')* f(t, 7') is square integrable
in some conic neighborhood of (¢q, 75)}.

We can now prove Theorem 1. First it is no restriction to assume that
Q = R""? and we shall do so. If # # 0, P, is microlocally hypoelliptic since
A¢2Z+1 (see eg. [8]). Hence " =0 on WF(u) nI'. Therefore Theorem 1
will be proved if we can show the following:

(4)  Assume that we 7' (R""?) is such that ©" =0 on WF(w)nT, and
satisfies WE(P,w) T =@, 1¢2Z+ 1. If (5o, 0, yo, °, 0, 0)e I'\WF (w),
then the connected component of !(so, 0, yo+h,a®,0,0), heR' T
through (sq, 0. vy. 0, 0, 6% does not meetr WF (w).

When proving (4), it is of course no restriction to assume that s, = v,
=0. We may also assume that h <0, since a change of varnables
(s, x, y)—(s, x, —y) will then take care of the case h>0. Take
R,, R,, R > 0 such that the set

Fl = {(59 X, y’ 605 05 O)s IS' SI{ls le ng, —RS_VSO}

is contained in I'. Choose R,, R, so small that (s, x, 0, ¢°, 0, 0)¢ WF (w) if
(s, x,0,0° 0,0)el;. Then, by the results of [9], x=0 on WF(w)nT,.
Choose r > 0 such that y < —r on WF(w)~I";, and put a =(R+r)/2. We
will show the following:

(5) WFW)n T, dos not meet the slab —a <y < —r.
An iteration of the proof of (5) will give (4) for h <0, completing the
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proof of Theorem 1. To prove (5), choose a properly supported classical
pseudodifferential operator ¢ of order 0 such that WF (¢) = I' and such that
WF(I—¢) does not meet a conic neighborhood of I',. Also take
(t)eCF({t"eR?, —R<y< —r,|x| <R)) with8(t")=1if —a<y< —r
—e and x| <Ry/2. Put L,=DJP, with m as in (1), and g(t, )
= T,(ew)(t, 7). Let us apply (1) to 0(t")g(t, ) with y =vlog (z’>, where
veZ™. Since [L,, T,] =0, it follows that, if MeR,

(6)  const ||ty *FTOTMA (") gz, ) <A@, )+B(, 1)+ C(, ),

2
Lz(nr%,)
where

A, T) = |y MOT L ow(t, 7))

2
Lz(nrl,,)’

B(r', v) = [[<t'>* O ML, 0g(t, VI

L2(#)’
ci,t)= “(T’>v(y+a)_M[Li’ Olgr, T’)jliz(:l"eﬂz.y‘:—a:)a

where we have put # = li"e R*, —r—c <y < —rju it"eR?, |x| > Ry/2].
Let 4 be a small conic neighborhood of ¢° in T*R"\0, and put

E = {(s, 0)e R"x(R"\{0}), s| < Ry, ce 4}.

Since WF (L, ow)n Iy =@, Lemma 1 above implies that [g A(', ') dt’dt’
< w if 4 is narrow enough. But

[L:, 0= Y 0.(") D¢
lal €m+1
commutes with T,. Since y < —r—e¢ and x =0 on WE(w)n T, it follows
that _fE B(t', t)dt'dt’ < oo if A is narrow enough. If we now choose M so
large that

FTxDa(pw(ts ty>-M if (¢t,7,0erl, and |a| < m+1,

we obtain {C(t', 7)dt’'dr’ < o if A is narrow enough. Using (6) for every
ve Z*, we conclude, using Lemma 1, that (5) holds. The proof of Theorem 1
is complete.

3. Proof of Theorem 2

Put A* = D_+ixD,. Theorem 3.3.7 of [5] implies that there exists ue &' (Q)
with WF(u) = F* and A~ ue C*(2). Hence Theorem 2 follows immediately
for P,, since P, = A* A~. On the other hand P,,,A* = A" P, and A" is
microlocally hypoelliptic if # > 0, so Theorem 2 follows for P, if A1e¢2Z™* +1.
Using the change of varnables (s, x, y)+—(s, x, —y), one gets Theorem 2
when —1e2Z* +1. The proof is complete.
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