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The notion of quasiminimum for a variational integral was introduced by
Giaquinta and Giusti in [6] and [7] in connection with direct methods for
establishing the regularity of minima for nondifferentiable functionals of
integral type. It was shown in [7] that solutions te a large class of elliptic
differential equations and variational inequalities are quasiminima for rather
simple variational integrals, and thus their Holder continuity can be estab-
lished with direct methods. We first recall the definition from [7]:

DEeFINITION. Let Q be a domain in the Euclidean space R" and let F be a
Carathéodory function on Q x RY x R¥" satisfying

IE[P—alul*—g(x) < F(x, u, §) < a(|¢|”+[ul) +g (x)

where g is a given nonnegative function and a, «, p are nonnegative constants
withp>land 1 <a<np/n—p)if p<nli<a<+ooifpzn Let Q> 1.

A function ue WP (Q; RY) is called a (local) Q-minimum for the func-
tional

F(u; Q) = [ F(x, u(x), Vu(x))dx
2
if for every open set A4 with compact closure in Q and for every

ve WLP(Q: RYy with v(x) = u(x) outside of A we have % (u; A) < Q.Z (v; A).

Clearly, due to the absolute continuity of the integral and the outer
regularity of Lebesgue measure, this is equivalent to the statement that for
every e Wi'?(Q; R¥) with compact support in 2 we have

F(u; {x; @(x) #0})) < QF (u+9; {x; @(x) # 0}).

* Partially supported by the Swedish Natural Science Research Council (NFR).

[155]



156 P.-A. IVERT

In the present work we will study scalar-valued quasiminima (N = 1)
under the presence of obstacles, i.e. we will impose a restriction ¥, (x) < u(x),
v(x) < ¥, (x) on u and on the comparison functions v, where ¥, and y, are
prescribed obstacle functions. If these are regular, then, as was pointed out in
[7], the problem can be reduced to a problem without obstacles for the
modified functional

F'u, Q=Fu, Q+FW,; D+ F (¥,; Q)

and thus the Hdlderness of u can, if in addition |{Fy,| and |Py,| are
summable to some power larger than p, be established directly. However, we
are concerned with irregular obstacles, which may even be defined only on
lower-dimensional manifolds. Our aim is to establish criteria and a priori
estimates for the pointwise continuity of a quasiminimum. These criteria will
be in terms of the (1, p)-capacities of one-sided level sets of the obstacles
(Theorem 2.1), and we also include the question of boundary regularity in
our investigations. Concerning the latter, we obtain a criterion for the
regularity of a boundary point which is somewhat weaker than the ones
deduced by Maz'ya [12] and by Ganiepy and Ziemer [5], which generalize
the classical Wiener criterion ([14], [15]). However, since we do not have
any Euler equation for our variational problem, their methods do not seem
to carry over.

The present work originates in some investigations on nonlinear varia-
tional inequalities ([8]) of the form

Y fa*(x, u(x), Vu(x))(aau _ @ )dx < [b(x, u(x), Pu(x))(u(x)—v(x))dx
a=10 Xy axa o]
assumed to hold for all ve W'?P(Q) with Y, (x) <v(x)<¥,(x) and v
—ueWyP(Q). All the main results of [8] are contained in our present
results. In this connection we wish to mention the work of Frehse and
Mosco [4], announced in [3]. They are concerned with quasilinear variation-
al inequalities with a one-sided obstacle, and they obtain very precise
continuity criteria, also related to the Wiener criterion. Similar results for
vector-valued solutions of elliptic variational inequalities of diagonal type
were obtained by Karlsson ([9], [10]). Finally we want to mention the
Harnack inequality for quasiminima, proved by Di Benedetto and Trudinger
[2].

The methods employed in the present work go back to De Giorgi [1]
but are also highly influenced by [2].

Basic notation

We study real-valued functions in the Sobolev space W'?(€), i.e. functions in
IP(Q) having first-order distributional derivatives in I”(Q2). Here 2 is a
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domain in the Euclidean space R". We limit ourselves to the case 1 <p <n,
but remark that Lemmas 2.1, 2.2 remain valid for p=1. When x,e R" and
¢ > 0, we denote by B,(x,) the n-ball (not necessarily contained in Q) with
center at xo and radius g. £,(xy) is the intersection B,(xo) N 2.

For a measurable function u defined in 2 we use the notation

Aio(xo) = {xe Qy(x0); u(x) >k},  Ag,(xo) = {xeQ(x0); u(x) <k},

M, (xo) = esssupu(x), m,(xo) = essinfu(x) and w,(xo) = M, (x0)—m,(xo).
0y(xp) 2,(x0)

The argument “x,” in B, (xo), A}, (x¢), etc. is often omitted when there is
no fear of confusion.

If ue W"?(Q2) and if S is a relatively open subset of the boundary a2,
the number supgu(x) is defined as the infimum of the set of numbers k such
that the function n(x)(u(x)—k). belongs to W3 ?(Q) for every Lipschitz
continuous function n on Q vanishing on 662\S. Similarly for infgu(x). Thus,
if S=@, we have supsu(x) = —oo and infgu(x) = +oo. Here (u(x)—k).
denotes the positive part of u(x)—k, that is, max (0, u(x)—k). We also use the
notation a v b = max(a, b) and a A b = min(a, b).

For a measurable set E, |E| is its Lebesgue measure, and the symbol f
stands for arithmetic mean value:

ju(x) dx.

i—u(x)dx = 5l

1. Auxiliary lemmas

Our first lemma is a variant of Lemma 54 in [11], Chapter 2:

Lemma 1.1, Let 1 < p<n, ue W'r(Q), Xo€ 2 and 0 < ¢ < 1. Suppose
that for arbitrary numbers k greater than some k and for arbitrary x, € 2, (xo)
and ¢,, 0, with 0 < g, <, < g, the function u satisfies the inequalities

| IPu(x)Pdx

A,0,(*1)
< [(e2—01)7" _f (U(X)-—k)pdx+|k|”|A,"02(xl)|+)_PQ;—p+pa]
Ak.qz(xl)
where y and A are nonnegative constants, and 0 <a < 1.

Then there exists a number ¢, > 0, depending only on n, p, y and a, such
that

My(xo) S k+¢ [IBol™t | (w0)—k) 4] +c; (A° + Ikl 0)
Ay 20(x0)

for every k > k.

Proof. Fix a representative (pointwise defined function) for u and let
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X1 €£2,(xo) be such that

u(x;) =lim { wu(x)dx
r=0 0(x)

(which holds for almost all x,).
Put,for v=0,1,2,..., 9,=2 "9 and k, = k+(1—2"")m, where m is
a positive number to be determined later. Put

Jy= | (@@-k)dx= [ (u(x)—k,)5dx.
YL R x1)
The Hélder and Sobolev inequalities yield

v+l |Akv+1-0v+1|p,u[ j' (u(x) kv+l)npl(n p)d ]l-—PIn
ﬂ"v-i-l(xl)

<c(m, DAy, oy, "' J  IPu)IPdx

Aky+ 10y +1

+Qv_+pl _‘. (u(x)—kv+ 1)pdx:|.

Ay s 10941
ThUS (Sil’lCC Qv_+p1 ? (Qv—ev+ l)_p)
Jus1 <c(n, p, '}’)IAuH l,q,"’/n Loy 81 T+ 1k, 1|p|Ak‘,+ 1-0v| + AP gy Pt PT]
<c(m, p DAk, o) [ovE1 Ttk 1 —K)P 1Ay, o)
P g1 P4k o],
Now [Ay,, o] S (kyay=k) 20, = 20" O m™2 ], and

(kv+l_k) lAk v+ 100y | 2p(v+l)J Qv+lJv,
SO
Jysi Sc(n, p,7)- 2202 m P Join(ooP T, 4+ AP gh"PHP 4 K|P gl).

Put M, =B, (xy)|™"

My.1 S cn, p, 7, 0) 207 m™ 21 MR- (M,+ 27 02 + K] ¢}).
Put a, =2""-M,:
a1 S com™ PPl (o, + A7 07+ (K 07,

where ¢, depends on n, p, ¥ and o.

Now choose 6, depending on m, so that com P"gP" =1, ie. 6
= (3co)” np P

Choose m so large that

(i) 470" < 6, ie. m= (3co)"?* Ag°,
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(ii) kPP <0,  ie. m3=(3co)”?’ |k, and
(ii) @ < 6, ie. m> GeoP [IByx)l ™' [ (u()—k)\dx]"".

A o(x1)

Then as long as «, < 8 we also have a,,, <4(a,+A7 0" +|k|Po”) < $(0+0
+0) =0, that is, a, < 0 for all v, which implies that lim M, = 0. Thus if

y=@®

m > (o)’ max([|B,I"* [ (u(x)—k)}dx]"", Ag®, Ikl @),

920(10)
we have for almost all x; € Q,(xo)

u(x,) = lim [|Bov|"' [ (w(x)—k,)dx+k,
vo@® B, (x1)

< limk, =k+m,

V= an

1€2,., (x4l
|B

avl

which proves the lemma with ¢, = 2"7(3¢,)"?”.
The following lemma will be used to estimate the modulus of continuity
of a quasiminimum:

LeMMA 1.2. Let f and p be nonnegative functions on [0, 4], p nondecreas-
ing, and suppose that f(g) < M for ¢ <4 and that for some 0 with 0 <6 <1

f@)<6f(40)+ple) for all ¢e[0, 1].
Then, for all ¢c[0, 4], the following inequality holds:

4
¢ ‘j;"_a_l p(r)ydr, where a = loli(glﬁo).

o
g a
flO < Me®+—

Lemma 1.2 is proved by induction. The stated inequality holds trivially
for ge[1, 4], and it is easily seen that it holds for ¢/4 whenever it holds for

¢. We note the following consequences of the lemma, leaving the details to
the reader:

P . 4*-
limp(g) <e¢ implies limf(g) < —s,
00 -0 4*—1

p(@) = O(¢’) when ¢ —0 implies f(g)=O0(¢*"’) if B#a,
1
p(@) = 0(0") when ¢—- 0 implies f(0)=0 (Q" log E)

We will now state the basic facts about Riesz potentials and capacities
that will be needed. The reader is referred to e.g. [13] for more complete
information on these topics.

The Riesz kernel R, is defined by R, (x) =3n "*¥2 T ((n—1)/2)|x|' " If
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i is a positive Borel measure in R", we define its Riesz potential "U, by
"Uy(x) = { Ry(x—p)du(y).
x

Similarly, the Riesz potential U{ of a function f e L[P(R") with f(x)> 0 is

U{(x) = | Ry (x—y) f(»)dy.
r

For p > 1, the outer (1, p)-capacity of a set E — R" is defined by

C1p(B) = inf { | f(x)Pdx; fe IP(RY), f> 0, U{(x) > 1 on E},
R

and the inner (1, p)-capacity by
¢1.p(E) = sup {[ [ *U,(0)* dx]™""; p probability measure
xr

with support in E}.

Here p’ is the exponent conjugate to p: 1/p'+1/p=1.
It is known that ¢, ,(E)’ < C, ,(E) with equality at least for all Suslin
sets, especially for all Borel sets.

Exampies. 1. If 1 <p <n and E is Lebesgue measurable, then C, ,(E)
= c(n, p)|E|* P with a constant c(n, p) > 0.

2 If 1 <p<nand E is a k-dimensional ball of radius r, then C, ,(E)
= c(n, k, p)r"~?, where the constant c(n, k, p) is strictly positive if n—p <k
<n.

We will use the expression “quasi-everywhere” (q.e) or “for quasi all x”
when the exceptional set has outer (1, p)-capacity zero.

Now it is well known (see e.g. [12]) that if ue W!P(), then the limit

d(x) =lhm § u(y)dy
e~0 0,(x)
exists for quasi all xe Q2. From now on we will identily u with its canonical
representative . Hence it will make sense to consider inequalities for u
imposed on sets of positive capacity even if the Lebesgue measure is zero.
We will also make use of the following lemma:

LemMma 1.3. Let B be a ball of radius Ry and let ve W'-P(B). Let also u be
a probability measure supported in {xe B; v(x) = 0} and let k > 0. Then if A,
= {xe B; |v(x)| = k}, we have

k|4, < cR" [*U, (2)|Pv(2)l dz
B

where the constant ¢ depends only on n.
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Proof. Suppose first that v is smooth. If x, ye B and v{y) =0, then

Vv(y+t )
|x— ¥l

We introduce polar coordinates around x and extend Fv to be zero outside of
B (then it is of course not a gradient any more):

lx=y|

bl < |

0

dt.

jlv(x)ldx Ir" Y _[le(x+t§)|dxdcr¢dr

sn—10

(2R)"

jl —z|' " P () dz.

Integrating with respect to du(x) we arrive at

k Al < j'lv(x)ldx cR"f“U (2)|Vv(z) dz,

which is the desired result. A simple approximation argument shows that it is
valid also for general ve W!-?(B).

2. Quasiminima in convex subsets of W!-?
We are now ready to describe precisely the assumptions under which we
shall work.

GENERAL AssuMmprions. 1. F is a Carathéodory function on Q xR x R",
ie. F(-, u, £) is measurable in Q for all (u, )e R xR", F(x, -, *) is continuous
in RxR" for almost all xe 2.

2. For some nonnegative constant a we have
(1P —alul®— f(x)" < F(x, u, §) < a(|¢]”+]ul") + f (x)

for all (x, u, )e Q2 xR xR", where f is a nonnegative function belonging to
the Morrey space L”""?*7(Q) for some ¢ > 0, i.c. there is a A = 0 such that

j f(x)Pdx < AP(diam E)""P*?°  for every measurable subset E of Q.

3. Y, and , are functions defined q.e. in Q with
—0 €Y, (x} <+, —0 <Y (x)€ +00, Y (X)LY,(x) qe
4. u, is a fixed element of W!?(Q2), and we put
A = {ve W' (Q); Y, (¥} <v(x) S Y2 (x) qe, v—uoe WP (Q)}.
Before stating our main results we have to introduce some further

notation and terminology.

Il — Banach Center t. 19
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We say that ue ¥ 1s a Q-minimum for the functional

F(u; A) = [F(x, u(x), Fu(x))dx
A
in A if, for every ve X, we have

F(u; (x5 u(x) # v(x)}) < QF (v; {x; u(x) # v(x)}).

u 1S a sub- Q-mmtmum for # in A if for every ve ) with v(x) < u(x) q.e.
we have Z (u; {x; u(x) # v(x)}) < QF (v; {x; u(x) # v(x)}).

u is a super-Q-minimum for # in A if for every ve K with v(x) = u(x)
ge we have F(u; {x; u(x) # v(x)}) < QF (v; {x; u(x) # v(x)}).

Clearly a @-minimum is both a sub- and a super-Q@-minimum.

Let

g.e.supy; (x) :=inf {r; C; ,ixeQ,(xo); ¥, (x) >t} =0}

Ro(xg)

and define q.e.infy,(x) correspondingly.
Throughout the rest of the paper we will use the notation

Izo(xo) = max( sup u(x), q.e.supy, (x)),

0B ix() 2p(x0)
I,(xo) = min( inf u(x), qe.infy,(x)),
0B y(xq) -Qa("o)

E (x5, 0,8 = {xEQ (x0); W1(x) = ky(xo)—e} L (Bp(xo)\g),
E;(xo, 0, 8) = {xeQ,(x0); ¥2(%) < lq (xo)+£} U (B, (x0)\ Q).
We are now ready to state

THEOREM 2.1. Let u be a Q-minimum in X for the functional F satisfying
the General Assumptions and let xye Q.
Then if

lim (k, (xo)—l (x0)) < 0 and liminfe?~™"C, (E;(xo, ¢, €)) > 0

e—0 e—0
for i=1,2 and for all ¢ >0, then u is continuous at x,.

Remark. Compared to the introductory definition of quasiminima, our
growth conditions are slightly less general. However, under the more general
conditions of the introduction one easily proves, following [7], that our
quasiminima are locally bounded where i, is bounded from above and vy,
bounded from below. Then the difference in growth conditions disappears.

Before going into the proof of Theorem 2.1, we will deduce some
lemmas for sub-Q-minima. The first ones follow easily from Lemma 1.1 via

an ¢lementary lemma of Giaquinta and Giusti. Lemma 2.4 is developed from
a lemma of De Giorgi [1].

LemMa 2.1. Let u be a sub-Q-minimum for % in A". Then there exists a
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positive constant c,, depending only on n, p, a, Q and a, such that if x,eQ and
0 <o <1 the following estimate is valid:

My(xo) S k+e,[[Bol™" [ (@(x)—kfdx]"+¢, (A" +kl @)
Ay 25(x0)

for every k= 122,, (xg)-
Proof. Let x, € ,(x,) and let r and R be numbers with 0 <r < R. Let %

be the (unique) Lipschitz function which is 1 on B,(x,), 0 in R"\Bg(x,) and
satisfies |Pn(x) < (R—7)"".

Let k > ky,(xo) and put v(x) = u(x)—n(x)(u(x)—k),. Then clearly ve ¥
and v(x) < u(x). From the General Assumptions we easily get

[ WWuPdx<e [ [(1=n(0) Pu(x)?+(Pn(x)"

Ay, R(xy) Ag, Rix1) '
+ 1 (x)7)(u (x) — k) +lu ()P + f (x)"] dx
whence

[ IPuxPdx<c | |Pux)Pdx+c(R—r~7 [ (u(x)—k) dx

Ar A, R\, Ax,R

+c |k|p|Ak_R| + C;np Rn—p+pa'.

We now add the term ¢ | [Vu(x)|?dx to both sides and divide by c+1 to

Akr
get

[ IPu()Pdx <8 [ |Pu(x)lPdx+(R=r)"% | (u(x)—k) dx

Ay r 4R Ag R

+1K|P| Ay gl + AP R P PO,
with 8 = c/(c+1) < 1. Lemma 1.1 of [6] yields

[ 1PuGNPdx < p[(R=)"7 | (u(x)—K) dx-+[k|? |4, gl +A? R"~*7°]

Ayr Ar,R

with a constant y that depends only on n, p, a and Q. The conclusion now
follows from Lemma 1.1.

The following two lemmas are immediate consequences of Lemma 2.1:

LeMMA 2.2. Let u be a sub-Q-minimum for % in A, and let ' be a
subdomain of Q. Then if q.e.supy,(x) < + oo and F is a subset of Q' with
positive distance to Q\2', then u is essentially bounded in F, and ess supg u(x)
is majorized by a number that depends only on q.e.supy,(x), dist(F, 2\Q"), n,
p, a, Q, ¢ and (jnlu(x)|”dx)”p.

LEMMA 2.3. If u is a sub-Q-minimum for & in X, xo€Q and 0 < g < 1,
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then
|A+. (x 1/p
M, (xo) < k+c, (—— 2 °") (M (x0) —k)+ 1 (" + Ikl 0

IBZQI
if k = kaq(xo).

We now seek an estimate for how large kK must be chosen to guarantee
that the ratio |[A4,7,,|/|B,,] is small enough:

LEMMA 2.4. Let u be a sub-Q-minimum for F in X, x,€Q,0 <o < 1. Let
o and @ be positive numbers, and suppose that for some number k, with
k3o (Xo) < ko < M, (x0)

Cl-p [(Bo(xo)\Q)U {XGQQ(XO)', u(x) < ko}] L

Then there is a number ne(0, 1), depending only on n, p, a, Q, o, 4 and 0, such
that if k = M, (xo) ~ (M, (xo)—ko), then

|Ak+,¢(xo)| < 0(l+(|Mzal+|ko|)Q+iQa)’
|Bp(xo)| M,,~k

Proof. Let u be a probability measure supported in Be(xo)\A,fo_o(xo)
with

Q

_[ *U, (X)Pl dx < 25'P'Q‘(ﬂ—p)l(p— 1
.

For v=0,1, 2,...,s, where s is a positive integer to be determined
later, we put

k, = M,, (x0)—2" V(Mzg (xo)—ko),

so that kvﬂ—kv =3(My,(x0)—k,). Put v,(x) =(u(x)—k,); in ,,(x,) and
v,(x) =0 in B,,(xo)\Q2. We apply Lemma 13 to v, and the set
A7 +1o(x0) (and we put, for short, T, = 4, \A;

v+10)

(kys1 — k)AL, o < co [IVu(2ldz+ce" [ IVu(z)|*U,(2)dz
TV TV

e[ | Ivu@lrdz]" (eI Ty

kvo

+0" [jﬂu (27 dz]' ")
Now, from the proof of Lernma 2.1, we see that

[ 1u@pPdz < c[0" " (Ma— k)P +IkJP AL, 25l +47 "7 77 7]

Ao

k M 10° V¥
sc@"“’(Icm»l—lcv)“’(1+(| o +IMaDet4e )

MZ —ks
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We put, for short, R = ([ko| +|M,,|) 0+ 40°, and get

R » p—
AL, .o < ca® (1 +—)(|Tv|'_”"+ " LU (2P dz]' '),
TV

1.e.

- -1
IA,:;.ol"f“’ 1)<|A:v+l-0|p/(p )

R p/i(p—1) )
< cp™P D (1 +ﬁ) [|7;| + gPtn p= D j “U,(2)? dz].
20 s T

v

Summing over v from 0 to s—1 we obtain

+ (ple—1) W(p-1) R P "
SIAE JPI=D < o= (14 e+
| k.ol 0 ( M,, ks) (Q 5,,)

. = 1) R p/lp— 1)
<cd 7 grEtrm 1 (] 4 — :
h ¢ ( MZq_ks)

| AL, ¢ (xo)l < ¢ ({,_R
|B T §estoup My, —k, )

ol

ie.

Now we can choose s so large that C/(§-s'~ /%) < 6, which proves the lemma
with n =27°%

Proof of Theorem 2.1. Fix a point x,eQ and a positive number ¢. From
_the assumptions of the theorem, there are positive numbers § and g, such
that if ¢ < 0o, then ky,(xo)—l4,(xo) <&, and

Cy,,(Ei(xo, 40,8)) =2 670" F fori=1, ‘2.
Let o0 < go, and put
g =3 (Mg, (x0) +myy(x0)),
ko = min(u v kqu(xo); L, (X0) +),

ly = max (I-l A f4q (xo); kag (x0)—E).

Obviously k, and I, are finite numbers, my, < [o < ko < M,,, and kg
= E4o (xo), lo < 749(4’50)-

Since Iy < ko, at least one of the two sets Bj,(xo)\ Ay 2 (x0) and
Bjg(x0)\Ayy,20(%0) has Lebesgue measure not less than 3|B3,l, ie. its
(1, p)-capacity is not less than co" *.

We may assume that C, ,(B,(x0)\ Ak, 2(X0)) = c(n, p)@"~*, otherwise
we consider —u, which is a Q-minimum to the functional [F(x, —u,
— Vu)dx, with —, as inferior and —y, as superior obstacle.
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Choose 6 so small that ¢, 817 < 4, where ¢, is the constant from Lemma
2.3. According to Lemmas 2.3, 2.4 there is an ne(0, 1) such that

M, (x0) < (1 —g) Mg (o) + 2 o+ [(1Mag (o) +Ikol) 0+ 22°]-

Now, if ko < p+e¢, we add the trivial inequality —m,(x,) < —my,(x,)
and get '

(%) @, (xo) < (1 — g)ww (Xo)+ ¢ [(I M4 (xo)| +Imaq (xo0)l) 0+ A7) +g £.

Suppose, however, that ky > u+¢. Then p v If4o(xo) > pu+¢ and thus
E4o(x0) > ute, i40(x0) zp, b= ’240 (xo)—¢& > n.

Then u(x) = 1, on E,(x,, 40, €), and we can apply Lemma 24 to —u and
—l,. Hence there is a positive number #, which now depends on §, such that,

with | = my,(xo)+n(lo—ma, (o)),
| 4,20 (Xo)l < 0(I+(|m4e(xo)|+”o|)Q+AQd)

X
|B29| I_m4g

and we still get the estimate ().
Lemma 1.2 now yields
lim w, (x,) < Ce,
e—0
with a constant C independent of ¢, and since ¢ is arbitrary, the conclusion of
the theorem follows.

With the same proof, only by changing ¢ to p(4¢), we can derive an a
priort estimate:

THEOREM 2.2. Let u be a Q-minimum for & in X, let x,e Q and let p be a
nondecreasing function with lim, ., p(¢) = 0. Suppose that for ¢ < g,

ko(xo)=L(xo) < pl@), Cy,(Ei(x0, 0, P(@) > 8e" P fori=1,2.

Then u is continuous at x,, and the modulus of continuity for u at x,, w,(x,),
can, for ge(0, go), be estimated in terms of ky,(xo), l2,(x0). 8, P, G, 6, Q, 3, A
and _[920(,0) |t (x)|? dx.

Remark. After preparing this manuscript, the author was informed that
Ziemer [16] obtained the same criterion for continuity of quasiminima as the
ones in this paper and afterwards even a somewhat weaker one (personal
communication).
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