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1. Introduction and results

This paper concerns the existence and nonexistence of classical solutions for
the equation

(1) Flul=F(u,D*uy=¢g(x) iInQ, u=¢ on 0Q

in a given bounded domain 2 in R" and arbitrarily assigned smooth
boundary data. Here the real function F(z, r) is defined on RxR"*" (R"*"
denotes the n(n+ 1)/2-dimensional space of real symmetric n xn matrices)
and satisfies the ellipticity condition

(2 0<F,‘j(zar)éiéj€/llé|2

for £eR"\O, (z, r)e R xR"™", A a positive constant.
Without loss of generality we assume that F(0, 0) =0. The short
notation

oF O F *F

F‘»- = —_— F = s z.ij :——az ar“, uu' =uxl.xj,
ij

or. e o or

ij ij pq
etc. is used and summation convention is understood.

Our basic assumption is that F(z, r) is twice differentiable and F(z, r) is
a concave function of (z, )e R xR"™", i.e.

3) Foo(z, I+ 2F, 45(z, )07+ Fj 5y (2, ) EVEM < 0

for (n, é)eRxR"2 and (z, )e R xR"*".
Under the fundamental assumption (3), Trudinger [12] (see also [4])

[169]
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proves the existence and uniqueness of a classical solution ue C**(2) n C%!(Q)
for the uniformly elliptic equation (1). Our purpose is to extend this result of
Trudinger to a class of nonuniformly elliptic equations (1).

Let. us recall that in the quasilinear case Serrin [11] introduced an
important class of “regularly elliptic equations™ which, as far as the Dirichlet
problem is concerned, behave similarly to uniformly elliptic equations. For
equations which are not regularly elliptic it is necessary to impose significant
restrictions on the curvatures of the boundaries of the underlying domains in
order for the Dirichlet problem to be generally solvable.

Thus, following Serrin [11], we will introduce and investigate the class
of “fully nonlinear regularly elliptic equations” (1). For equations which do
not belong to the above class we will prove some existence and nonexistence
theorems depending on the geometric properties of the domain £.

In [9] we introduced the scalar function E(x, z, p) for the more general
equation

4) Flul=F(x,u,D?u)=0 in Q

by E(x,z,p) = F(x,z, p®p) —F(x, z, 0) for (x, z, ppe 2 x R x R", where the
matrix p@p is {pp;}ij-1-
We say that the equation (4) is regularly elliptic provided that

(5) Y(p) E(x, z, p) 2 |p| S, Fij(x, z, p@ p)+|F(x, z, 0)

for xeQ, |zl < M and |p| = L, where ¥: (0, oc) —» (0, o0) is a continuous
strictly concave function satisfying the condition

© [ =
tP(1)
and S, F;; =traceF;;, M, L are positive constants,
ExaMpLE 1.
() Srluy <)+ 2 (Ueye )+ oo+ foluy ) = fo(x, u).

The functions f;(t) are defined, twice differentiable and strictly concave for

te R. Moreover, f;(0) =0, f(¢) = C;/t/lnt, C; =const >0 when t is suffi-
ciently large and f;(¢) have the asymptotes aq;t+b;, 0 < g; < o0, for t - — 0.
In this case

E(p) = f1(pD)+ ... + £,(p?) = C (ipy)/In' 2 |py| + ... +|p,l/In'/?|p,])
= C'|pl/In*/?|p|

and S, F;(p@p) =filpD+ ... +£ (P <C", {folx,w) C" for xeQ,
|zl £ M and sufficiently large p. Hence (5) holds with ¥ = ClIn'/?t and
]'m dt/(C*tInt) = oo. Consequently, (7) is a “fully nonlinear regularly elliptic
equation”.



DIRICHLET PROBLEM FOR NONLINEAR EQUATIONS 171

We will prove the existence of a classical solution for the equation (1)
under the more restrictive condition

(8) ¥ (p) E(z, p) = |p!

for |z| < M, |p| = L, instead of (5), where E(z, p) = F(z, p®p)—F(z, 0) and
¥ is the same function as in (5).

For instance, for the equation (7) the conditions (5) and (8) are equiva-
lent. More generally, they are equivalent for the equations

Fy(u, D2u)+F,(u, D2.u) =g(x), x=(x',x").

Let us formulate the following existence theorem.

THeOREM 1. Let the function Fe C** (0 <a < 1) satisfy (2), (3), (8). Let
g, o C2(Q) and let Q be a bounded domain in R" with a C* smooth boundary.
Suppose F is nonincreasing in z for each re R"*". Then there exists a unique
solution ue C(Q) N C?*() of the b..p. (1).

Let us consider a wider class ol nonuniformly elliptic equations (1),
including equations which are not regularly elliptic. We now suppose that

®) E(z, p) = Clpl’

for |z} < M, |p| 2 L and some positive constants C, 6.

ExampLE 2. The equation (7) with the same functions f;(¢) as in Example
1, but now we suppose that f;(t)=C;t*, C;>0, 0<B<1/2 for i
=1, 2, ..., n and sufficiently large t.

In this case the equation (7) is not regularly elliptic, while E(z, p)
> Clp|'~ % for large t.

For the wider class of equations (1), (9) we have the following existence
theorem under the additional condition that the domain £ is convex.

THEOREM 2. Let the function Fe C** (0 <o < 1) satisfy (2), (3), (9). Let
g, o C*(Q) and let Q be a convex bounded domain in R" with a C*® smooth
boundary. Suppose F is nonincreasing in z for each re R"*". Then there exists
a unique solution ue C(Q)~ C*(Q) of the b.v.p. (1).

To show that the result in Theorem 1 is in many ways the best possible,
we need a more sharp nonexistence result than in Theorem 2 in [9] for the
general equation (4). '

More precisely, we suppose that

(10) Y(p) E(x, z, p) < |p| S, Fij(x, z, p® p)

for xeQ, |zl 2 M and |p| = L, where M, L are positive constants, E(x, z, p)
=F(x,z,p®p) —F(x,z,0) and ¥ is the same function as in (5).
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Suppose the following conditions on the asymptotic behaviour of the
coefficients F;(x, z, p@® p), F(x, z, 0) hold for large values of |p|:
Fij(x,2, p@®p)/S, Fij(x,z, p®p) = f(x, 9 +0(1)
(1Y)  F(x, z, O)/lipl S, Fi;(x, z, p@ p)] = f (x, )+ 0O (1)
o = p/ipl.

Here f%(x, 8), f(x, d) are continuous functions of their arguments. Using
the matrix

as |p| — oo,

F(x,0) = fYx, 9] =1

as in [9] we introduce a generalized mean curvature by

A—1
(12) H(y,v=)Y LFy, Vik+vF(y, vvH

i=1
where ye dQ2, v denotes the unit outer normal to 02 at y, ky, k,, ..., k.
and 4,, 45, ..., 4, are respectively the principal curvatures and principal

directions of 0 at y and H is the ordinary mean curvature at y.
Then we have the following nonexistence result depending on the
generalized mean curvature.

THEOREM 3. Let Q be a bounded domain in R" whose boundary is of class
C? and let F be a real smooth function satisfying the conditions (2), (3), (10),
(1.

Moreover, let F be nonincreasing in z for (x,r)eQxR"*" and
F(x,z,0<0 for z> M, |pl = L. If the geometric condition

(13) Xy, 2 —f(y,v

fails at a single point y of the boundary surface, then there exist smooth
boundary data for which no solution of the Dirichlet problem is possible.

For more details and examples for Theorem 3 see [9].

The paper is divided into two parts. In the second part we treat the a
priori estimates required by the existence theory. Theorems 1, 2 are proved
by means of reduction of equation (1) to a uniformly elliptic equation, using
the local boundedness and Holder continuity of the second derivatives of the
solutions of the regularized problem.

As for Theorem 3, its proof is very close to the proof of Theorem 2 in
[9] and is omitted in this paper.

2. A priori estimates

To prove Theorems 1, 2 we will use the following comparison principle (see
Th. 17.1 in [4], p. 443) for general fully nonlinear equations

F[u] = F(x,u, Du, D*u)=0 in Q.
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THEOREM 4. Let Q be a bounded domain in R" and let
u, ve C°(Q) N C2(Q) satisfy F[ul>= F[v] in 2, u<v on 9Q where

(i) the function F is continuously differentiable with respect to the z, p, r
variables;

(ii) the operator F is elliptic on all functions of the form Gu+(1—0)v,
0<0<1;

(iii) the function F is nonincreasing in z for each (x, p, r)e Q@ x R" x R"*".
Then u<v in Q.

The proof of Theorem 4 is given in [4], p. 444.
Let us now consider the regularized problem

(14) Fe[u] = F(u, D*u)+¢(F;;(0, 0)u;;+ F,(0, O)u) = g(x)

in Q, u=¢ on 0Q.

The equation (14) is uniformly elliptic and there exists a solution
ute CO1(Q) nC**(2) (see [12], p. 41). We will prove that the solutions u*
are equicontinuous with their first and second derivatives on compact
subsets of Q.

Let us begin with an estimate of the maximum absolute value of the
solutions u°.

LeMMma 1. Let Fe C? satisfy (2), (3), (9) and suppose F is nonincreasing in
z for re R"*". Then the estimate

sup(u| < Ko
7]

holds, where the constant K, does not depend on e.

Proof. Let Q  {xeR"; |[x—Xx,| < R}, xo¢Q and a positive constant N
satisfy the inequality

N > max || +(max|g (x)|/C)*.

From the comparison principle, Theorem 4, for the functions u* and v = N(|x
—xo|2—R%?—1) it follows that u* > v on dQ and

F¢[v] = F¢(v, D*>v] = F*(0, D*v) = F*{0, 2N&%) = C(2N)¥?
2 g(x) = F*[u]
in Q and hence
w>2v> —-NR*+1) in Q.
Let us now define the function ¢ as a solution of the b.v.p.
(15) Fi;(0,0)¢;;+F.(0,00¢ =g(x)(1+¢) in Q,
¢=¢ on 0Q.
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The linear b.v.p. (15) has a unique solution ¢*e C**(Q) and |¢c2(m < C,,
where C, does not depend on &. From the concavity of F we immediately
obtain the inequality

Fe[¢°) < F(0, 00+ F2(0, 0) ¢+ F; (0, 0) ¢
=g(x) = F[w]. .
Since ¢° =2 u° on 0, from the comparison principle, Theorem 4, it follows
that ¢* > «* in Q. Lemma 1 is proved.

For convenience, further we will omit the index e.
LEMMA 2. Let the hypotheses of Theorem 2 hold. Then the estimate

sup|Duf| < K
[

holds, where K, does not depend on e.

Proof. We first observe that the function ¢ defined in Lemma 1 is a
global upper barrier for the operator F and arbitrary smooth domain Q. To
construct a global lower barrier for the operator F we need the following
simple lemma.

LemMma 3. Let a continuous strictly concave function ¥: (0, o) — (0, o0)
satisfy (6). Then for any positive constants B, q, 8, v, there exists a constant

3(B, q, q, o), 0 <& < 8y, and a nonnegative function he C2[0, 8] satisfying
the conditions

K=y, h <0, h0=0 h(@e):=§

and /—h'[¥(/—h")=qh.

Proof. From the concavity of ¥ it follows that the function w(t)
= \/f/ 'I’(\/f) is monotonically increasing and thus there exists a well-defined
inverse function w™'. Let a constant y > y, satisfy the inequality

© dt

(16) JZDT((IT) <

So.

Since
T dt <2°F dt <o
Lo gt g2

(16) follows when y i1s a sufficiently large positive constant. We consider the
positive monotonically increasing function

S

0= 5

and the inverse function

° dt
-1.
G L (0, gw"(qt))—’(% o).
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From (6) we can choose 6 < j, dtflw'(qr)), & sufficiently close to
J',, dt/(w™*(qt)) for the estimate

Vo~ 1(gG ~ 1(8)

d
i ﬁ > B+ 1/[29% (o~ ' (qy))]

Yo~ 1@y
to hold. Let us consider the functlon h given by h = [ “H6—s)ds. It is
evident that h> 0, h(0)=0, K =G ' (6—0) =7y > yo,

K= —1/G (G '(6—1) = —w ' (gh) <0,

ie. heC2[0, 8] and gh' = w(—h") = /—h'/¥(/=H).

Moreover,
s Y tdt
h(d) =[G ' (6—s)ds = — -
@=jae @@

_ 1 Yo lue"ten g
w1 1
= 1/[2g* PH(VsI[o20s O+ e J i) B.
Vo~ lgn

Lemma 3 is proved.
Let us go back to Lemma 2 and define the function d(x) as the distance
from x to the surface dQ. In the domain €, = {xeQ; d(x) <d,} the

function d(x) is of class C* when d, is sufficiently small (see [11], p. 421, or
[4], p. 381). Consider now the barrier function ¢(x)—1h(d) in the domain
Q;, where h is defined in Lemma 3 with y, = max(l, L), f =4 max|¢|
+4N(R?*+1), q = n* AmaxiK,|+4max|g|+2max|F(¢, 2D*¢)|+1 and J,
=d,.

Then ¢—1h <u on 0Q; and from the concavity of F we obtain the
inequalities

FL6—4h] = F(d—%h, ¢y—4h"d,d;—4h d,)
> 4F (9, 2D §)+4F($, —H'd,d)+4F (9, —h' dy)

/_hlf
> $F (¢, 2D? ¢)+——__711'Fu(¢, —hd)hd;
4 ( /")
—h" " A {Fre ) Ak W

=%F(¢,D2¢)+W 4; 1—k;d

> g(x) = F[u].

Here {Fg.} is the matrix {Fg (¢, =W d;}}, ky, ..., k,—y and 4, ..., 4,_; are
respectively the principal curvatures and the principal directions of 0Q at the

point y{x) on 0Q nearest to x. Also we use an important identity to calculate
F;;d;; (see [11], p. 422, Lemma 1).
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From the comparison principle, Theorem 4, it follows that ¢ (x)—23h(d)
is a global lower barrier in Q,.

Let us now consider a barrier construction when Q is a convex domain.
We choose h(t) = y(26t—1t*) = 0 for 0 <t < where 6 <d, and

y > [4max|@| + N (R*+1)]/6> + [4 max|g| + 2max |F (¢, 2D* ¢)|]*°.

_Then ¢—1h<u on 0Q, and our previous calculations yield the following
estimate:

o1 i (Fke) Ak
FL4—4h] > 4F (6, 207 ) +1F (9, o) +} 3 ke
i=1 i

= (29" —dmax|F (¢, 2D? ¢)| = g(x) = F [u].
From the comparison principle it follows that ¢—1h is a global lower
barrier for u in the convex domain Q.

By means of standard barrier technique we obtain the gradient bounda-
ry estimate

sup |Dy] < K}
an

where K7 does not depend on e.

To prove Lemma 2 let us apply the comparison principle for the
functions u+u, k=1,2,...,n and v, = N, ([x—x¢[?—R*—1).

From the concavity of F we obtain the inequality

Flutw] < F(u, D*u)+F,(u, D? wu, + F;;(u, D? u) ()i =g+
=C(N)¥2 < F(0, 2N,6%) = F(0, D*v,) < F[v,] in Q

and utu, > v, on 022, when N, is a sufficiently large constant. Consequently
utu, =2v, =2 —N,(R*+1)inQfor k=1,2,...,nand Lemma 2 is proved.
LEMMA 4. Let the hypotheses of Theorem 1 or Theorem 2 hold. Then

sup|d*®D?u| < K,
0]

where d(x) is the distance of x to 02 and K, does not depend on e.

Proof. To estimate D*u at a point ye 2 which we may take to be the
origin, whose distance to dQ is 2r, we make use of the function { = r*—|x|?
in |x|<r, { =0 for |x| =>r.

Let us consider in the domain Q" = {xeQ; u,(x) > 0} the function

w={*ul/m?> L N u2—u
where 7 1s a unit vector in R" and
m = Sl.lp Ck utt = i:k (Po) ut\‘ (Po) > 0

ot
for k > 2/68 an integer.
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From the concavity of F we obtain the estimates
iF(—2w, —2D*w)+4$F(—2u—2w, 4N, Du, ® Du,)
< F(—u-2w, —D?*w+ 2N, Du, ® Du,) < F,(u, D*u)(—2w~—2u)
+F(u, D*u)—m"* "2 F;;(u, D*u) [8k (2k — 1)(r* —|x|?)**~ 2 x; x; u
— 4k (r? — x| L ud 8 — Bkox; g, i (r? —|x|[H)* !
+ 2(?’2 - |x|2)2k urﬂ' urrj + 2()’2 - le 2)21: utr utﬂ'j]
—2.Nz F,-j(u, Dz U)utuﬂ-j < C3+C4 u.ﬁ./k.
Consequently
F[-2w] €2C3+2C,ut*—F(—2u—2w, 4N, Du, ® Du,)
2C3+2C,u2*—F (0, 4N, Du, ® Du,)

<
< 2C3 +2C,ul —(2N3? [Du))’ < F[N, (x>~ R* - 1)]

when N,, N, are sufficiently large.
Since —2w > N5 (]x]>—R*—1) on 8Q*, from the comparison principle it
follows that

w< Ny(R*+1) in Q%
Hence at p, we obtain the inequality m < Cs and r*u_(0) < C,, ie.
(17) d*®u, < Cs; in Q.

As in Evans [3] we will show the boundedness of u, from below.
Clearly from the concavity of F it follows that

g(x) < (1+¢&)(F;;(0, 0)u;;+ F, (0, O)u).

Let 2 be a suitable orthogonal constant matrix which defines a nonsin-
gular linear transformation y = xZ# so that under this transformation

Fy(0, O u, =ty =g(9—F,(0,0u> —Cs in Q.

From (17) it follows that d*/° u,k;k > —C,in 2, ie. |d*%u
=1,2,...,n Lemma 4 is proved.
LemMA 5. Let the hypotheses of Theorem 1 or Theorem 2 hold. Then

ulzp,0 < K(2)
where Q' € Q, B = p(Q) and K(Q') does not depend on ¢.

Proof. From Lemma 4 it follows that the equation (1) is uniformly

elliptic in ' with an ellipticity constant independent of & The proof of
Lemma 5 follows immediately from Theorem 8.1 in [12].

wonl S Cs for k

12 — Banach Center t. 19
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Proof of Theorems 1 and 2. The unique solvability of the Dirichlet
problem (1) follows from the comparison principle. '

The existence of solutions of the Dirichlet problem (1) follows from
Lemmas 1-5. Indeed, the solutions u* of (14) are equicontinuous with their
first and second derivatives on compact subsets of Q. Hence, by the usual
diagonalization process, there is a subsequence {uc"'} converging in  to a
solution u of (1) as ¢ — 0.

The uniform gradient bound, Lemma 2, guarantees that the convergence
is uniform in Q and hence u=¢ on Q. This completes the proof of
Theorems 1 and 2.
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