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I. Introduction

Historically, Lie groups originated from Sophus Lie’s investigations of diffe-
rential equations around 1875. A problem that he studied and gave funda-
mental contributions to was:

Given a system of differential equations, to exploit knowledge about its
invariance group towards its integration. See p. 176-177 of [Li2].

The present paper deals with a special aspect of Lie’s problem about the
interplay between differential equations and their invariance groups: We
shall study how the invariance group of a differential operator D acts on the
eigenspaces {u|Du = Au} for ieC.

To facilitate the formulation of our problem we introduce the following
(standard) terminology:

DerINITION. Let & be a set of endomorphisms of a topological vector
space E.

(@) & 18 topologically irreducible if the only closed &-invariant subspaces
of E are |0} and E.

(B) A continuous linear operator A: E — E is an intertwining operator for
S if SA = AS for all Se &.

(y) & is scalarly irreducible if the only intertwining operators for % are
scalar multiples of the identity operator on E.

The topological vector spaces that we shall encounter below will be
spaces of C*-functions. We shall always equip them with their standard
topology: uniform convergence of the functions and each of their derivatives
on compact sets.

ProBLEM. Let D be a linear partial differential operator on R", and let n
be a representation of a Lie group G on C*(R") such that n(g) D = Dn(g) for
all geG.

[301]
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Since each eigenspace &;:= {feC*(R")|Df = Af}, AeC, is invariant
under m, we get by restriction a representation @, of G on &;. Is n,(G)
scalarly irreducible?

As we shall see, the answer to the question of the problem is yes for
some of the classical partial differential operators of mathematical physics

and the natural representations of their invariance groups. Those include the
Laplace operator on R", ie¢.

A= 3*oxi+ ...+ oxt,
the generalized wave operator on R", i.e.
O=0,=0/dx{+...+ 0*foxE— 0% 0x2y — ... — ¥/ oxE,

the heat equation operator on R'*" ie. d/0t—4, and the Schrodinger
operator on R'*" ie. i~'é/dt— 4.

Our main result, Theorem 1, gives a general condition for a representa-
tion on an eigenspace of a constant coefficient partial differential operator to
be scalarly irreducible. As corollaries we get new irreducibility results for the
operators [1, d/dt—A4 and i~ ' ¢/dt— A. It might be mentioned that topologi-
cal irreducibility implies scalar irreducibility in this setting (Theorem 4).
Information about other aspects of eigenspace representations can be found
in the survey articles [He3] and [Stl].

I would finally like to thank the University of Warszawa for its kind
invitation and support of my visit.

II. Notation etc.

o x>=C,x,+...+x, for {=(,,...,{)eC"” and

x=(xy,..., X)) eR".
e, C™(R") is defined by

e (x):=exp{, x) for {eC" and xeR".

V€ = the complexification of the vector space V.

M, (C), resp. M, (R) = all n xn matrices with complex, resp. real, entries.

X' = the transpose of X.

V =(d8/0xy, ..., 6/dx,).

Cl[¢,, ..., L,] = the ring of all polynomial functions from C" to C.

Terminology. If @ is a subgroup of the group of difftomorphisms of R",
we define the natural representation R of @ on C*(R") by

R(@)f:=foe ' for ped and feC*(R").
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III. A sufficient condition for scalar irreducibility

In this section we state a general sufficient condition for scalar irreducibility
of a set of operators on an eigenspace for a constant coefficient partial
differential operator (Theorem 1). The set of operators that we have in mind
will be the operators in an infinitesimal representation of a Lie group. Our
applications of Theorem 1 to specific partial differential operators and
invariance groups are of this nature (see Section V).

THeoreM 1. Let Q be an open, convex, nonempty subset of R". Let = be
a map of a finite-dimensional complex vector space V into the continuous linear
operators on C*(Q) of the form

[ (X) [1(x) = (u(X) f(x}+0(X)Vf(x), x> for feC*(Q2), XeV, xeQ,

where ui: V—-C" and o: V— M_(C) are complex linear.
Let pe C[{,, ..., {,] be an irreducible polynomial of degree > 0, and let
&, be the eigenspace

Eo:={feC(Q|p(V)f =0].
If n, p and V are related as follows:
(1) & is invariant under w(V),
(i) dim{XeV|p(X)+o(X){ =0} =dim V—(n—1)
for all {ep™1(0) with Vp(l) #0,

then the restriction to &, of the set of operators {0/0x,, ..., 8/0x,, n(V)} is
scalarly irreducible.

Remark 2. Any irreducible polynomial pe C[{,, ..., {,] has the follow-
ing 3 properties:

() p has no multiple factors.

(B) The set {{ep '(0)|Vp()#0} is dense in p '(0) (see Remark
on p. 12 of [Mi]).

(» p~'(0) is connected (see Remark on p. 105 of [Mi)).

It transpires from the proof of Theorem 1 that we do not need the
irreducivility of p, but only the 3 properties (), (f) and (y).

Remark 3. A result similar to Theorem 1 can be found as Theorem 6 of
[St2]. However, Theorem 1 is stronger on the following 3 counts: It can be
applied to Lie algebra representations, not just group representations. It can

deal with multiplier representations. The underlying domain need not be all
of R".

Proof of Theorem 1. The main ideas and the procedure are the same as
in the proof of Theorem 6 of [St2].

The reference to Bjork’s book should be replaced by a reference to the
remark on p. 39 of [HG]. =
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The next theorem establishes a connection between topological and
scalar irreducibility in the setting of Theorem 1:

THEOREM 4. Let Q he an open, nonempty, connected subset of R". Let
peC[{y, ..., {,] be a polynomial of degree =1, let &, be the eigenspace
Eo:=feC® (| p(V)f =0, and let ¥ be a set of linear operators on &,.

If the set of operators \éf0x,, ..., 6/0x,, &} acts topologically irreducibly
on &, then it also acts scalarly irreducibly.

Proof. Let A: £, — &, be an intertwining operator for ..
Take any {ep '(0); then e e&,. Since A commutes with §/0x; for
i=1,...,n we get

a/axj(e_cAec)-:O forj—_-l, 2,...,".

It follows from the connectedness of Q that there exists a constant ce C such
that Ae; = ce,.

We see that the eigenspace {fe & |Af =cf} is an invariant, nonzero,
closed subspace of &,, so by the topological irreducibility

(fe&o|Af =cf} =&y, ie. A=cl. u

1V. The general set-up of our examples

The specific examples that we shall encounter in the next section are special
cases of the following set-up:

Let R be a representation of a Lie group H on C*(R") of the particular
form

[R(h) f1(x) =e“™*f(o(h)"1x) for heH,fe C*(R"), xeR",

where e C*(H, C™) and ¢ is a continuous (and hence differentiable) repre-
sentation of H on R".

The derived representation = the infinitesimal representation dR of b
(= the Lie algebra of H) on C*(R") can be computed to be

[dR(X) f1(x) = {u(X), x> f(x)+ <o (X) Ff(x), x>
for Xeb, feC*(R") and xeR",

where y and ¢ are given by the expressions

d
p(X) =

¢ (expsX)eC", and
ds

s=0

d
o(X) = —do(X) = ~ L_o(e(exn:sX))‘e M, (C).

Finally, we are given a polynomial pe C[{,, ..., {,] of degree = 1 with
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the property that
p(V)R(h) = R(hp(V) for all heH.

Theorem 1 above has the following consequence:

COROLLARY 5. Let the set-up and the assumptions be as above in this
section, and let Q be an open, convex, nonempty subset of R". If

(1) p is irreducible or at least satisfies the 3 conditions of Remark 1, and
(i) dimg{Xebh|u(X)+6(X){ =0} =dim h—(n—1)
for all {ep™1(0) with Vp() #0,
then the set |¢/0x,y, ..., C/0x,, dR(h)} acts scalarly irreducibly on the eigen-
space | feC*(Q)|p(V)f =0}: in particular, \/7xy, ..., /dx,, R(H)} acts
scalarly irreducibly on [fe C*(R"|p(P)f = 0.

If R is the natural representation of H & GL(n, R) on C*(R") we find
that

u=0 and o(X)=—X" for all Xeh".

V. Applications
A. The Laplace operator

The first study of irreducibility of eigenspaces for the Laplace operator is
due to S. Helgason who in [Hel] proved that the eigenspace &,
= {feC*™(R"|Af = Af} is topologically irreducible under the natural action
of the group of rigid motions if and only if 4 # 0. He examined the special
case A = 0 further in [He2] where he showed that &, is scalarly irreducible
under the action of (the Lic algebra of) the conformal group (which is bigger
than the group of rigid motions).

We will here point out that &; for each Ae C is scalarly irreducible
under the natural action of the group of rigid motions:

THEOREM 6. The eigenspace {fe C*(R")| Af = Af} is scalarly irreducible
under the natural action of R" x SO (n) for each integer n = 2 and each Ae C.

Proof. The proof is a particular case of the proof of the next theorem. =

Remark. The result above about 4 can be generalized to the setting of
the action of the Cartan motion group of a symmetric space of the
noncompact type. See Theorem 6.6 of [He5] and Theorem 8 of [St2] for
details. 4 would be associated to the symmetric space SO(n, 1)/SO(n).

B. Generalized wave operators

Let us, for integers n > 2 and pe ]0, n[, consider the generalized wave
operator

D = Dn.p = azlaX%'*' v +(‘32/(-’x§—82/(-7\)(;+1— P —-02/6‘)(,%.

20 — Banach Center t. 19
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It commutes on C*(R") with the natural action of the subgroup G = R"
%SO, (p, n—p) of the group of affine motions of R" (the Poincaré group
when n=4 and p=1).

The question about topological irreducibility of the eigenspaces of []
under G has apparently never been settled, but for scalar irreducibility we
have

THEOREM 7. Let n > 2, let Q2 be an open, convex, nonempty subset of R"
and let 1eC.

The eigenspace {fe C*(Q)| Jf = Af} is scalarly irreducible under the
infinitesimal action of R" x_ SO (p, n—p).

Proof. We shall apply Corollary 5 with
PCos s L) =0+ + =8 — - =04,
b= so(p, n—p),
=20, and a(X) = — X" for Xeso(p, n—p)°.

We leave the verification (easy) of condition (i) of Corollary 5 to the
reader, and concentrate on (i) that reduces to

dim {Xeh€| X' =0} =L(n—1)(n—2).

Let ¢ = n—p. Denoting k x| matrices by X,, it is known (see e.g. [ Hed4,
p. 446]) that

be = {(; ?’)G M,(C)
Pq a4q

Introducing the vector space isomorphism & = ¢ — o(n)€ given by

,p(pr qu):( X qu)
X;ﬂq qu —X:Dq _qu

and the vector {':=({y, ..., {,, —{pey, ..., =) €C, we get

er.v = _pr’ an = _X:n}'

dim{Yeh| Y { =0} =dim{Xeo(n)| o~ (X){ =0}
T Xpp Xpq c Xpp qu' _
_dlm{(—xlpq qu)eo(n) (X'Pq _-qu)c—o}

=dim {Xeo(n)| X'{' = 0}.
Since o(n)€ = {XeM,(C)| X' = — X} we see that condition (ii) is true if
dim {XeM,(O)| X' = — X and X{ =0} =4(n—1)(n—2)
for all {eC"\ {0}.

So let {eC"\ {0}
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Since { # 0 one of its components is different from 0, say the first one;
1
normalizing { we may assume that the first component is 1. Writing { = (C')

where {'e C""! and

0 Xy ... X,

X = A ;

—x,
where X'egl(n—1,C) and X"=-X, we pget X{(=0< X'{
=(xz, ..., X,)', and so
dim {Xegl(n, C)| X' = —X and X{ =0}
=dim{X'egl(n—1, C)| X" = — X'} =dim(o(n—1)) = dimgo(n-1)
=(n—1)(n—2)/2

as desired.

C. The differential operator 2x0/0r+ A

In this section we shall, for any ae C, study eigenspace representations
of the partial differential operator

d
Da:=2a5+A on R'*",  where n>1.

As special cases we get the heat equation operator (x = —4) and the
nonrelativistic Schrédinger operator for a free particle (a = i).

Our invariance group G will be the universal covering group of the
(2n+ 2)-dimensional real nilpotent Lie algebra

g=span{H,K,,...,K,, Py,..., P, Z}
which is characterized by the commutator relations
[K;, P;]]=6,;Z and [K;, H]=P fori,j=1,2,...,n

For any aeC the invariance group G acts on C®(R'*") via the
representation =, which is given by the following identities for all
feC®(RY™™, (t, x)eR'™™", to, ze R, x4, vER™

[r.(exp to H) f1(t, x) = J(t—t4, x),
[ (exp xo- P) f1(t, %) = 1(t, x—xo),
[7.(exp 22) £1(¢, x) = exp(ez) £ (¢, %),
[n,(exp v- K) £1(t, x) = exp(a( (v, x)—4 v, v30) f (¢, x—t0),
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where we have used the abbreviations
Xg'P=xoy Py+ ... +x0, P, for xo=1(x01,..., Xo)€ R" and
vK=0v,K,+...+7,K, for v=(vy,...,0,)eR".
It is easy to check that D, is invariant under the action of =,.

Remark. This is of course well known (see e.g. section 6g of [Ba]). It
might be added that when n =3 then our invariance group G is a subgroup
of a central extension & of the Galilei group, viz. % without the space
rotations. Although we below could work with 4 instead of G, we wish to
point out that our irreducibility result does not need the action of the full
group %, but only the action of G.

THeorReM. If aeC\|0) and AeC then the restriction of m, to the
eigenspace | fe C*(R'*")|D, f = Af) is scalarly irreducible.

Proof. We shall use Corollary 5 with
p(t, &) =2at+ &2~
h =span (K, ..., K}
R = the restriction of =, to the subgroup H = exp b.

Since p is an irreducible polynomial it remains to check condition (ii) of
Corollary 5: We find

0
uw-K)=a(0,v) and o(v-K)= —(0 8) Yve R".
Condition (i1) reduces to

S-0)(E)-of-om-teso--

which is true when a # 0. »

dim{ve c"
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