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Introduction

In this paper we present the form of the conical differential of a solution to
the Signorini variational inequality with respect to elastic coefficients, body
forces and surface loads.

In Section 1 we recall known results [3, 5] concerning the conical
differentiability of the projection in a Hilbert space onto a closed convex
subset. Several examples are presented. In Section 2, under some assump-
tions, the conical differentiability of solutions for a class of variational
inequalities with respect to perturbations of the right-hand side as well as of
the bilinear form is obtained. In Section 3 abstract results of Section 2 are
applied to the Signorini variational inequality.

1. Differentiability of the projection

Let K be a closed convex subset of a separable Hilbert space H. For a given
element fe H we denote by Py (f)e K the projection of the element f onto
the set K, i.e., the element v = Px(f) is the unique element which satisfies the
following variational inequality:

{yeK,

1.1
(D O—foz—Du >0, Vzek.

It can be verified that the mapping Px('): H— K < H is Lipschitz conti-
nuous, i.e.,

(1.2) 1Pk (fO)— P (Ll <y —Lfollw,  Vfy, freH.
Therefore the projection operator Pg(-) is differentiable on a dense subset of
the space H — this follows by the generalization of the Rademacher

theorem [5].

[287]
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DeriniTiON 1. Let Vi, V, be two Banach spaces, let
(1.3) F: V-V

be a continuous nonlinear mapping. The mapping (1.3) is said to be conically
differentiable at ve V; if there exists a continuous and positively homoge-
neous mapping

(1.4) 0: V-1,
such that for ¢ > 0, ¢+ small enough,
(1.5) YweV,: F(v+tw)=F@)+tQw)+o(t;w)

where Ho(t;w)[lyz/r — 0 as t — 0, uniformly with respect to we V; on compact
subsets of the space V.
We present some examples of conically differentiable mappings.

ExampLE 1. Let Q « R" be a given domain. We take

(1.6) H=L%(Q),
(1.7) K={zel*(Q)|z(x) >0 ae. in Q).
Let us recall that
(1.8) Vs D2 = }[)y(x)z(x)dx, Vy, ze L*(Q).
In this case
(19) Pe(f) =max{0,f} = f*, Vfel*@)
where
(1.10) T (x) =max {0, f(x)} for aa. xeQ.
It can be verifed that for ¢t > 0, + small enough,
(1.11) Vwe L?(Q): Px(f+tw) = Pe(f)+iQ(w)+o(t; w)
where
0, xeQ~,
(1.12) QW) =<{wx),  xeQ,
wt(x), xeQP,
and
(1.13) Q" = (xe| f(x) <0},
(1.14) Q7 = {xeQ|f(x) =0},
(1.15) Q% = (xe Q| f(x) =0}.

Let us note that if for a given element fe L?(£2) we have meas Q° > 0 then
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the mapping L*(2)2wi—Q(w)e L*(Q) is not linear, therefore the projection
operator Pg(-) is not differentiable.

ExampLE 2. Consider

(1.16) V, = L*(0, 1),

(1.17) V, = {ze H' (0, 1)|z(0) = 0!,
where

(1.18) H* (0, 1) = {ze L*(0, 1)|dz/dxe L2(0, 1)}.

The mapping F: V; —» V¥, is defined as follows: for a given element
felL*(0, 1), the element F(f)eV, is a unique solution of the following
variational inequality:

F=F(fleK = {zeV;]z(1) = 0},
(1.19) LdF (dz dF

1
— [ )dx = —F)dx, Vzek.
o dx \dx dx) * gf(z )dx €

The solution to (1.19) is given by

1

x g
(1.20) F(fig=~| g(f(S)—3S(§)rLf(r1)dﬂ)dsdé

1
 +3xmax {0, [nf (n)dn}.

0

From (1.20) it follows that the mapping
(1.21) L2(0, 1)af —F(f)eH' (0, 1)
is not differentiable at f*e L?(0, 1) if and only if

1
(1.22) [n/*Onydn = 0.
0
In thuis case we have for t > 0
(1.23) Ywe L2(0, 1): F(f*+tw) = F(f*)+1Q(w)
where

1

x &
QwW(x) =—]| g(W(S)—3sb['1W('1)d'7)deé

1
+3x max {0, {nw(n)dn}.

0

We need the following notation. For a given element ye K we denote by

(1.24) Nk(y) = lveH|(v, ¢—y)n <0, VoeK]},

19 — Banach Center 1. 19
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(1.25) Cx(y) = {ve H|3t > 0 such that y+tveK)

the normal cone and the tangent cone, respectively. Furthermore, for a given
element fe H we write

(1.26) Sk(f) = (e Cx (P (M| (f~ Pk (f), v}y = 0}

where Cy(y) is the closure in H of the tangent cone Cg(y). It can be verified
that the set Sx(f) is a closed convex cone.

Let us assume that there is given a continuous mapping f(-): [0, 8)
— H which 1s right-differentiable at 0, i.e., there exists an element f'(0)e H
such that

(1.27) | lim||(f (=) = (O))/x —f" (O)||s = O.

t|0

Write y(t) = Px(f (7)), y(r) = (y(r)—y(0))/r and observe that in-view of
(1.2), lI7()g < C for all te(0, 8) for some & > 0, where C is a constant.

ProrosiTioN 1. Every weak limit point y of y(1) for T — 0 satisfies
(1.28) ye Sk (f (0)).
The proof of Proposition 1 is given e.g. in [3].

DeriniTiON 2. The set K is called polyhedral if the following condition is
satisfied for all feH:

(1.29) Sk(f) = e Cx (P (NS Px(f), v)u = 0}.

‘THEOREM 1. Let us assume that the set K is polyhedral. Then for T > 0, 1
small enough,

(1.30) Pg(f (1)) = Pg(f(O))+ tPsyipion (f (0)+0(1)
where |lo(t)|lg/t — 0 as 1 = 0.

The proof of Theorem 1 is given in [3, 5]. We present an example which
will be useful for us in Section 3.

ExaMpPLE 3. Let 2 < R" be a domain with smooth boundary I' = Q2. Let
I. be a part of the boundary I'. Let us recall that the Sobolev space H'*(I",)
is defined [4] in the following way:

(1.31) CHYA(T) = {heLX(I)|3¥e H'(Q), ¥, = h).

Let H < HY?(I') be a closed linear subspace. We assume that there is given
a symmetric bilinear form b(-, -): H x H — R such that

(1.32) oy iz, < b(h, Yy < By llAliGy2¢y,

O<a, <p, <+, VheH.
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We write

(1.33) h* = max !0, h,

(1.34) h™ =max !0, h!. Vhel*(I').

and we assume that the following conditions are satisfied:
(1.35) () h*,h eH, VheH,

(1.36) (i) b(h*,h")<0, VheH,

(1.37) (i) HnCy(I') 1s dense in Cy(I,),

where Co(I") denotes the space of continuous functions with compact
support on I.. The pair {H, b(-, )} is a so-called Dirichlet space [5].
We denote by K < H the set

(1.38) K ={heH|h(x)<0 ae. on I']

¢l
Let us define the mapping Py (-): H — K < H in the following way: for any

element. f e H, the element p = P (f) is a unique solution of the following
variational inequality:

(1.39) {pEK’

b(p—f, h—p) >0, VheK.

In this case we write (p, h)y = b(p, h), Vp, he H. Using the results obtained
by F. Mignot [5] it can be verified that the set (1.38) is polyhedral, therefore
the projection P4 () is conically differentiable. The mapping Q(-) takes the
form Q(w) = Ps (W), VweH, ie,

(149 {E(Q ? vi‘:V)he—Sngf?)’O, VheSg(f),

where

(141) Sx(f)=theH|h(x) <0 ae. on Z(p), b(p—f, h) =0},
p = Px(f),

(142) Z(p) = (xellp(x) =0}.

2. Differential stability of solutions to
an abstract variational inequality

Let W be a Hilbert space; denote by W’ the dual space. Given a continuous
linear mapping Re L(W; H), we denote by U the closed and convex subset of
the space W of the form

(2.1) U= {peW|RpecK c H}.
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Let there be given a symmetric bilinear form a(-, -): Wx W — R which
is continuous and coercive, i.€.,

(2.2) a(e, ¢) 2 allolly, «>0, VoeW,

(23) la(e, ¥) < Mllollwl¥llw, Vo,yeW.

In this section we consider the differentiability properties of the mapping
(24) Waf-lIl(fleU c W,

where for a given element fe W’, the element IT(f)e U is a unique solution
of the following variational inequality:

25) {H (NeU,
' a{l1(f), o= (N) = {f, o=N(f>, VeeU.
where ¢-. ) denotes the duality pairing between W’ and W.

ExampPLE 4. Let Q2 < R" be a bounded domain with smooth boundary
= 0Q. We take

W=H'(Q), H=H"D),

(2.6) Rop =9|;, VYoeH'(Q),

(2.7 K ={heH'Y*(I'}|h(x) 2 0 ae. on I'};
then

(2.8) U=lpeH (Q)|¢l,=0 ae. on I'}.

ExampLE 5. Let I', < 0Q be a given part of the boundary of the domain
Q < R% Let

(2.9 W = H (Q; R?), U= {(pE W|RepeK],
(2.10) H=HY(,), K= {the HY*(I';)) | h(x) €0 on r,i,
where

2
(211) (R} (x} = @,(x) = Z @i ()n;(x), xel,,

Yo =(¢,, 9,)e H' (Q; RY),

and n = (n,, h,) denotes the unit outward normal on 0.

In this section we prove that the conical differentiability of the mapping
(2.4) is equivalent to the conical differentiability of the projection mapping
Py H-KcH.

Let us consider the variational inequality (2.5). We assume that the
operator R maps W onto H and that 0c K < H, therefore

(2.12) ker Rn U =ker R.
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Write

(2.13) W, =ker R, W,=Wj;
thus

(2.14) W =W, oW,

and there exists an inverse operator R™'e L(H; W,). We define a scalar
product ((-, ')y in the following way:

(2.15) ((hy, o))y = a(R™"hy, R"' hy),  Vhy, hyeH.
We introduce the projection operator
(2.16) Py: H-KcH

in the following way: for a given element e H, the element p = P ({) is a
unique solution of the variational inequality
{p = Px(§)eK,

(p—¢ . h—phy 20, VhekK.

For a given element fe W', we denote by &(f)e H the unique solution of
the variational equation

(2.17)

(2.18) (®(f), Wa={f,R""h), VheH.
Let us note that the linear mapping
(2.19) Waf-®(f)eH

iIs continuous.
Now we are in a position to decompose the variational inequality (2.5)
in the following way: the solution y = IT(f) to (2.5) takes the form

(2.20) OUf)=y+y:;, x»eW,i=1,2,
where y, e W, 1s a unique solution of the variational equation

ylewl,
a()’n'l):(fa ?1>, VnEWI'
The element y,e W, is given by

(2.22) Y2 = R“Px(cb(f))_

Using (2.20)2.22) we obtain the following

LemMma 1. The mapping (2.4) is conically differentiable if and only if the
projection operator (2.16) is conically differentiable.

(2.21) {

Finally let us consider the variational inequality

V&M

(2.23)
as(yav QD—}’:)? <j;:a (P-ye>ﬂ V(PEU,
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where £€[0, d) is a parameter, 6 > 0. Here a,(-, -): WxW — R denotes a
family of bilinear forms such that conditions (2.2), (2.3) are satisfied uniformly
with respect to the parameter ¢c[0, §). We denote by A,e L(W; W’) the
linear operator given by

(2.24) (A,z, > =a.(z, 9), Vz,pecW.

Furthermore, we denote by ((-, -))y the scalar product of the form ((h, n)y
=ay,(R""h, R"'y), Vh, neH.

We assume that the mapping (2.16) is conically differentiable, i.., for
7 > 0, 7 small enough,

(2.25) VYhe H: Py(E+1th) = P (&)+10(h)+0(7)
where ||o(7)||g/T1— 0 as 1 — 0.

THEOREM 2. Assume that
(i) there exists an operator A'e L(W; W’) such that

(2.26) im ||(4, — Ao)/e — Allywwy = 0,
£l0

(i) there exists an element f'e W' such that
(2.27) liln(‘)lll(fe —fo¥e—fllw = 0.

Furthermore, assume that (2.25) holds. Then for ¢ > 0, ¢ small enough, the
solution to (2.23) satisfies

(2.28) Ve = Vot+ey +ole) in W

where ||o(¢)llw/e — 0 as ¢ = 0. The element y'e W is given by

(2.29) y =M (f'=A"ye)+ R 1 Q(®(f" = A'yo))

where for any @ c W' the elements Il1,(©), () are unique solutions of the
variational equations

(2.30) %”1=”1(9)€W,
. aO(nls r’)=<@’ r’>9 VVIEW;
b = P(O)e W,,
(2.31) -1( )€ 2 y
4, (RS, Ry =(O, R 'h>, VheH.

The proof of Theorem 2 is given in [6].

3. Sensitivity analysis of the Signorini variational inequality

This section is devoted to the sensitivity analysis of solutions to a

system of equations of elliptic type with respect to perturbations of the right-
hand side and functional coefficients of the elliptic operator. The system
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under consideration describes the deformations of plane elastic solids. We
start with the description of the mathematical model. We will use the
summation convention over repeated indices i, j, k, [ =1, 2.

Let us consider the deformations of a plane elastic body of reference
configuration @ — R%. Assume that the body is subjected to body forces f
= (f1, f>) and that surface tractions P = (P,, P,) are applied to a portion I',
of the boundary I' = 322 of the body. We assume that the body is fixed along
a portion Iy of its boundary, and that frictionless contact conditions are
prescribed on a portion I', of the boundary 0Q.

Let w = (uy, u,) and o = {o;;}, i, j = 1, 2, denote arbitrary displacement
and stress fields in the body. We consider Hookean elastic materials, i.e.,

(3.1) Gij(x) = Cijkl(x)uk,l(x), xeQ,

where (¢4 (x)}, i, J, k, | =1, 2, denote the components of Hooke’s tensor C
at xeQ; w,, = 0w/dx, and we use the summation convention over repeated
indices i, j, k, | =1, 2. We assume that

(3.2) Cijni (x) = Cﬁu(x) = Ciiij (x), VxeQ,
Cijkl(.)ELw(Q)) Vla.fs k91=152
and that there exists a positive constant oy > 0 such that

(33) cij“(X) e"je“ = aoe"je,' Vxe Q,

Jj?
for all symmetric matrices [¢;]; ;.
A stress field ¢ = a(x) is in equilibrium at a point x in the interior of Q
if
(3.4) —0;;,;(x) = filx), xeQ,i=1,2,

thre o-ij.j = Zf=1 (‘JO'U/axJ, i == 1, 2.
A displacement field u = u(x) satisfies the kinematic boundary condi-
tions on Iy if '

(3.5) u(x)=0, xely,, i=1,2.
If P is the traction applied on I';, the stress produced there must satisfy

If the body is unilaterally suported by a frictionless rigid foundation and
the portion I', of the boundary 0f2 is a candidate for the contact region, i.e.,
contact occurs at a portion Z < I'; which is not known a priori, the
unilateral boundary conditions are given by

(3.7) un<0, 0,0, o,un=0, 6,=0 on ;.
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Here o,, 6, denote the normal and tangential components of the stress tensor
a, respectively.

Now let u denote a specific displacement field of the body, which
corresponds to an equilibrium state of the body for given data: body forces f
and tractions P. The displacement field u is a unique weak solution of the
following nonlinear system:

(38 _(Cijk)‘(x) uk.l(x)),j =filx) inQ,i=1,2,
(3.9) ;=0 only i=1,2,
(310) Cipt U ;= Pi on FI’ i= 1, 2,

u; n; < 0, O, = C"‘f“ uk'z nj n; < 0, O, N; = 0 and
(3.11)
C,'j“ uk,]nj =a,n; on .rz.

Let us recall [S] that a weak solution uc H'(Q; R?) to the system (3.8)-
(3.11) satisfies the variational inequality
ue l,

5
G12 , {a(u, o—w=(F, o—uw., Veel,

where the bilinear form a(-, -), the element F, and the convex closed set
U c H'(Q; R?) are defined as follows:

(3.13)  a(z, 9 = jDZ---C----D‘de = [Cija(x)z; j(x) @r 1 (x) dx,

(9]

Vz, pe H' (Q; R?),

(3.14) (F, @)= [f-pdx+ [ P-@dl, VYeecH'(Q;R?,
Q r
(3.15) U= {pcH' (Q2;R)|¢=00n Iy, ¢-'n<0 on I',}.

We assume here that fe L2(Q; R*), Pe L?>(I',; R?) are given elements, and
that meas I'y > O; therefore there exists [2] a unique weak solution of the
variational inequality (3.12).

We combine Example 3, Example 4 and Theorem 2 in order to obtain
the form of the conical differential of the solution u to (3.12) with respect to
the functions

(3.16) {Cijue L2(Q), e L*(Q), Pie L*(Iy), 0, ), k, 1 =1, 2}.

To this end we assume that there are given elements
(3.17) Cinas G L*(Q), i, j, k, 1=1,2, £€[0, d),
(3.18) fE fel* (), i=1,2, ¢€[0,9),

(3.19) P, PelL*(I'y), i=1,2 €e€[0,39),
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and we write

(320) at Ukl(x)zlj )q)k I(Y) X, 86[01 6); st (PEHl (Qa Rz)a

(3.22) “{X)@i(x)dx+ [ Pi(x)g;(x)dl’, VeeH'(Q; R,

2 1

=
0
(3.21) alz, ¢)= f ,'J“(x)z” (x) oy {x)dx, Vz, fPEHl(Q; Rz),
0
| i
‘.
=

(3.23) ff(Me@i(x)dx+ | Pi(x)@;(x)dl", Ve H'(Q; R?).

0 "1
We assume that
() the elements ciy,e L*(R), i, j, k, | =1, 2, e [0, ), satisfy the condi-
tions (3.2), (3.3), furthermore

(3.24) lgiflol ||(ijkz—c?ju)/8—iju”Lm(m = 0.
(ii)

(3.25) lm £ ~fVe ~flyay = 0, 1= 1.2,
(i11)

(3.26) lsiflg||(P,-—P?)/8—P,f]|L2“.1) =0, i=1,2.

Let e H'(Q; R?) be a unique solution of the variational inequality

wel,
(3.27) _
&, og—uw) = (F, p—u), Voel.

THEOREM 3. Assume that meas I'y > 0 and the conditions (i}iii) are
satisfied. Then for ¢ > 0, ¢ small enough,

(3.28) w=u"+eQ+0() in H'(Q; R?)

—0 as §— 0. The element Qe H'(Q: R?) is a unique
solution of the variational inequality

QeS,
a0, p—-Q) = —d(u’, p—Q)+(F, 9p—Q), Ve¢eS,

where the cone S = H'(Q; R?) is given by

where lo(e)l] ;1 . p2/%

(3.29) {
(330) S=!pecH'(2;RY) ¢ 'n<0 ae on Z(u°),a®u®, ¢) =(F°, o)),

(3.31) ZWO) = xel,|u®(x)-n(x) =0!.

Proof. We assume for simplicity that the outward unit normal n on I,
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takes the form

(3.32) n=(1,0 on I,.
We write
(3.33) W= {@ecH'(Q; R*)| ¢ =0 on Iy},
(3.34) H={he L*(I')|3yeH' (): Y|, =0, Y|, = h}.
Then the set (3.15) takes the form
(3.35) U ={pec W RpeK}
where
(3.36) Ro =0\, VoW,
and K is defined by (3.41) below.
Let
(3.37) W, = ker R,
(3.38) W, = lpe W|a’(z, 9) =0, Vze W,].
The inverse operator R™'e L(H: W,) exists, therefore the bilinear form
(3.39) b(h,, hy)=a(R" h,, R"'h;), Vhy, heH,
is well defined. We define a scalar product in the space H:
(3.40) {(hy, hy)))y = b(hy, hy), Vhy, h,eH.

It can be verified [6] that {H, b(-, -)} is a Dirichlet space, thus by the results

of Mignot [5] it follows that the projection in the scalar product (3.40) onto
the set

(3.41) K =!heH|h(x)<0 ae. on I',}

is conically differentiable and by Lemma 2 and Theorem 2 it follows that
(3.28) hoids. After some calculations, taking into account (1.40), (1.41) and
(2.29), it follows that the element Qe Win (3.28) is a unique solution of the
variational inequality (3.29) [6].

If the condition (3.32) is not satisfied we can use the following transfor-
mation:

Y1 =Ny +Ny0;, ¥Y2=—N,¢+N,0,,
where
n(x)=N(x) for aa. xel,,
Ny, N,eWt®(Q), Ni}(x)+Ni(x)=2c>0 ae on Q.
Then ¢-n=y, on I,.
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Concluding remarks

In this paper we derive the form of the conical differential of the solution to
the Signorini variational inequality [6] with respect to the right-hand side
and the functional coefficients of the elliptic operator. Using this result the
local behaviour of those solutions under deformations of the domain of
integration 1s investigated in [8, 9]. For related results concerning sensitivity
analysis of optimal control problems for distributed parameter systems we
refer the reader to [7].
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