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We discuss the spectral properties of the Schrédinger operators | = —~4+V
with Stepanov almost periodic potential V in the nonseparable Hilbert space
B*(R") of Besicovitch almost periodic functions. The equality of spectra of /
in B*(R"} and L*(R") is proved, as well as the spectral mixing theorem. The
spectra of / are shown to be essential.

0. Introduction

Almost periodic Schrodinger operator /= —A4+V commands increasing
interest (see for instance [1, 3. 337]). While an effective general theory is
absent, analysis of many special cases has revealed subtle and often surpris-
ing spectral properties of | as well as of its discrete analogue. The present
paper presents a different kind of contribution: we do not study specific
examples but offer an alternative approach, based on the study of / both in
the usual space [?(R") and in the nonseparable Hilbert space ol Besicovitch
almost periodic functions B?(R"). For over 20 years now, since Burnat's basic
paper [4], it has been known that B%(R") is a natural space to study the
periodic Schrddinger operator. Extending the results of [4-9, 20, 30] we give
here basic properties of almost periodic operators in B2(R"). “Foundational”
questions such as the characterization of the domain of self-adjointness of /,
properties of some functions of ! or the essentiality of the spectrum were
settled in L?(R") long ago, but had to be adressed directly here. It is hoped
that further analysis of specific examples in B?(R*) will contribute to the
understanding of the spectral properties of . We mention below some of the
open problems in this area.

The study of Schrodinger operators in nonseparable Hilbert spaces arose
from the research of Burnat [4-9], who analyzed tihe spectral properties of |
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with periodic potential ¥ in B*(R?). This study is motivated by the desire to
find such functional Hilbert spaces, called spectral spaces, in which [ can be
defined as a self-adjoint operator and which contain various classes of non-
square integrable eigenfunctions of ! as orthogonal eigenelements. Such
“generalized” eigenfunctions, associated with points in the continuous spec-
trum, are of direct physical interest and are useful for the physicist even if
their existence and precise properties have not been rigorously investigated.
It is clear that spectral Hilbert spaces will in general depend on the potential,
will usually be nonseparable and that it may be necessary in some situations,
such as in multi-channel scattering, to consider whole families of them so as
to classify various types of behaviour of eigenfunctions at infinity. For a
number of cases, including multi-channel scattering, spectral spaces have
been constructed by the author [20, 21]. The general problem is to find, for
a given Schrodinger operator, “all” its spectral spaces in the sense that it is
possible to obtain the eigenfunction expansion of any L? function in which
there appear only eigenfunctions belonging to the considered spectral spaces.

This program is completed in four cases: (1) for V periodic, with one
spectral space B?(R') (see Appendix), (2) for V(x,y) periodic in xe R
V(x, y)— o as |y| —» o, ye R' (cf. [20]), (3) for potential scattering, with two
spectral spaces, I?(R") for the bound states and B*(R") for the perturbed
plane waves (see [28]), and (4) for operators with compact resolvent, V(x)
— o0 as |x| — oo (this case is trivial from our point of view, since all
eigenfunctions appearing in the expansion are L? functions). However, even if
the eigenfunction expansion cannot be proved, the spectral analysis of [ in
the spectral spaces is of independent interest, as it may yield new results for
L*(R”) theory. We present an example of such an application, the spectral
mixing theorem (Section 3). This asserts that given Stepanov almost periodic
potentials V;, i =1, ..., N, and appropriate cut-off functions g;, e.g. character-
istic functions of disjoint open cones, the “mixture” defined by the potential
V. = ZL o; V; satisfies

mix

Cj O'(“A‘FVJ CO—('_A+Vmix)9

i=1

an inclusion with transparent physical meaning (spectra in L*(R")).

We also note that in his studies of almost periodic pseudodifferential
operators Shubin [29-32] used the Hilbert space B?(R*) to derive an
expression for the density of states and to analyze the spectral asymptotics.
Perturbation properties of spectra of periodic Schrédinger operators, result-
ing from the B? analysis, are presented in [5, 10]. Moreover, the space
B?(R") and analogous spaces of almost periodic sequences b*(hZ*), h > 0,
have been employed to study the approximation of the spectrum of [ by the
spectra of its finite difference analogues [22].
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One of the main problems arising in the study of / in nonseparable
Hilbert spaces is the relationship between the spectra of ! in various spectral
spaces. The first result in this direction was Burnat’s proof of the equality of
spectra of ! in B*(R® and I*(R% for the case of periodic locally square
integrable V (Burnat [4, 6]). Such an equality for almost periodic pseudodif-
ferential operators was proved by Shubin [30]. For Schrodinger operators.
his result covers the case of smooth almost periodic potentials. We generalize
these results by treating Stepanov almost periodic V. Note that in multi-
channel scattering the relationship between the spectra of ! in the spectral
spaces is given by the HVZ theorem [21].

Recently Krupa and Zawisza [24, 25] have shown that the relationship
between L?(R") and B?(R") can be analyzed using the ultrapowers of Hilbert
spaces and of self-adjoint operators acting in them. For an ultrafilter U, a
Hilbert space H and a self-adjoint operator T in H let Hy and T, denote the
ultrapowers of H and T with respect to U. Furthermore, let 4 and U denote
the operators given formally by ! in L?*(R*) and B*(R") respectively. Krupa
and Zawisza show that U is unitarily equivalent to Ay restricted to an
invariant subspace of I*(R"),. Moreover, A is unitarily equivalent to Ay
restricted to an invariant subspace of B*(R"),. This unexpected symmetry
puts the Burnat-Shubin theorem on the coincidence of spectra in a general
abstract framework.

Another extension of that theorem is contained in a remarkable paper of
Kozlov and Shubin [23], dealing with random elliptic operators. The nonse-
parable Hilbert spaces arising there are not the spaces of almost periodic
functions.

When V is periodic, the analysis of / in B2(R") is very much simplified.
In particular, the almost periodic eigenfunctions of /, called Bloch waves,
form an orthonormal basis in B*(R"), and thus there is a direct connection
between the spectral resolutions of ! in *(R*) and B*(R") provided by the
Bloch waves expansion of any L*(R") function (see Appendix). For almost
periodic potentials this connection is certain to be much more difficult. Our
results show that the resolvents of ! in [?(R) and B?(R") are integral
operators with the same kernel and, furthermore, that for any continuous
function 6 vanishing at infinity the bounded operators 0(/) in the two spaces
may be “reconstructed” from each other (Section 2).

As was mentioned above, for periodic V the operator U has pure point
spectrum. No examples of almost periodic potentials are known for which
the spectrum of 2 in B?(R*) would have a continuous component, but
presumably such potentials exist. Recently Choinacki [15] exhibited exam-
ples with at least one point in the spectrum which is not an eigenvalue.
Further study of such examples is very much needed.

The plan of the paper is as follows. In Section 1 we recall the definition
of the space B*(R*) and define in this space the Schrédinger operator I In



124 J. HERCZYNSKI

Section 2 we prove the equality of spectra and in Section 3 the mixing
theorem. In the Appendix we discuss the cases of periodic potentials and of
first order operators.

Results presented here extend a part of author’s thesis [20], written
under the supervision of Professor Marek Burnat. 1 am deeply grateful to
Professor Burnat, who has been my teacher for many years, for his help and
friendly criticism. His ideas form the backbone of this paper.

1. Spectral analysis in B*(R)

We start by recalling the definition of the Hilbert space B*(R"). Let Trig(R")
denote the space of trigonometric polynomials, 1.e. of finite linear combina-
tions of exponents exp(i {4, x>), Ae R*, where {:, -> is the scalar product in
R, and let CAP(R") denote the space of (uniformly) almost periodic functions
on RY, ie. those functions f whose translates T, f, te R*, (T, f)(x) = f(x—1),
form a precompact set in the topology of uniform convergence. Clearly
Trig(R*) < CAP(R"). Simply put, B*(R") is the completion of Trig(R") in the
norm induced by the scalar product (f, ¢)pz = M, {f(x)g(x)}, where
M, \h(x)}, the mean of an almost periodic function h, is defined by

(1.1) M {h(x)} = lim ! - | h(x)dx.
T —a () x| <T

Here w, denotes the volume of the unit ball in R” (for the existence of the
above limit and other properties of the space CAP(R") see, for instance,
Levitan and Zhikov [26]). We shall follow Bass [2] in showing that B%(R") is
a space of functions.

Let M?(R") be the Marcinkiewicz space of complex-valued locally I*
functions for which the seminorm

1 1/2
1.2 | = (limsu — x de)
(1.2 Al = {timsup = § 17 (o)
is finite. In this seminorm M?(R") is complete [27]. In order to obtain a
Hilbert space with the scalar product mentioned above, we have to consider
the set

P’(R) = {fe M?(R*): lim [ f(x)Pdx exists},

v
T_’(Lw\‘T |x|<T

which is not a linear subspace of M?(R"); however, as Bass has shown, the
closure in the seminorm (1.2) of any linear subset of P?(R") is again a linear
subset of P?(R'). Thus we have some freedom in forming Hilbert spaces
contained in P%(R"), which we shall employ in Section 3. Putting E
= Trig(R*) or E = CAP(R"), and writing E, = {fe E: {||f]ll = 0}, where the
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closure is in the seminorm (1.2), we obtain the quotient space B?(R") = E/E,.
Elements of B?(R") are classes of functions; if Fe B*(R") and feF, we say
that f represents F and write F =(f). The scalar product

(1.3) (F, G)gz = lim s | f(0g(x)dx

Tox @y TV <
for F =(f), G =(g) makes B*(R") a Hilbert space, with the orthonormal
Fourier basis consisting of the elements (exp(i {4, x))), i€ R*. Every element
F can be expanded in a Fourier series F ~ Y, f,exp(i {4,, x)) convergent in
norm to F, |FI2, = ¥, If)

We say that a function on R is B2-almost periodic if it is a limit of
trigonometric polynomials in the norm ||-||52, i.€. il it represents an element
of B*(RY).

There is an alternative way of viewing B?(R*). With pointwise multipli-
cation CAP(R") i1s a (commutative) Banach algebra. Its space of linear-
multiplicative functionals, called the Bohr compactification of R* and denoted
by bR', has a natural group structure. R* can be densely embedded in bR* by
a group homomorphism. Any almost periodic function on R* extends unique-
ly to a continuous function on bR" and the characters of bR are extensions
of the exponents exp(i (A, x>). Thus, clearly, B(R") ~ L*(bR", du), where du
denotes the normalized Haar measure. This approach is often useful (cf. [15,
32]) but will not be employed here.

We shall now define the free Schrédinger operator I, = —4 in B*(R").
Let

G (Uo) = [F: F~ T frexp(Co, xD) LI ISl? < +00}
and put " "
WU, F ~ ZMnlzf" exp(i 4,, x> for F~ anexp(i iy X).

The operator 9, is self-adjoint, with pure point spectrum [0, + ac). Moreo-
ver, ¥ ={F: F=(f),feTrig(R")} is an essential domain of W,, W,(f)
= (—A4f) for feTrig(R").

The natural question arises in what sense 2, is a differential operator.
Recall that if Ag = —4 in L?(R"), then the domain &(A4,) of A, consists
precisely of functions f € L2 (R*) for which the distributional laplacian — Af is
in [*(R"). The following lemma gives the analogous characterization of

o (AUy).

Lemma 1.1, (a) If [ is a B*-almost periodic function whose distributional
laplacian g = — Af is also B?-almost periodic, then (f) is in “(W,) and
WUy (f) = (9)-

(b) If Fe (W), then F is represented by a C™*-function f such that — Af
is B2-almost periodic and W, F = (— Af).
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Proof. (a) Suppose that —Af =g in the sense of distributions. We have
to show that for all teTrig(R") we have (U,(1), (f))p2 =((1), (9))s2. Let
0eCy(RY), o(x)=1 for |x|<1, @(x)=0 for |x| =22, and put @r(x)
=T " o(T 'x), T>0. Then

(W (1), (NN)p2 = lim [z (x)(—A1)(x) f (x)dx

T—ao

= lim [(—der)(x)f () dx

T—x

= lim {@r(x)t(x)g(x) dx = (1), (9))p2,

T—o

where the first and last equalities follow from the definition of B%(R"), the
second equality employs the fact that suppgrad ¢; < {x: T<|x| < 2T} and
the third uses ¢rte Cg(RY).

(b) Suppose Fe %(W,), Wy F = G. We shall construct a B2-almost perio-
dic function f such that fe C*(R"), (f) = F, —Af is also B%-almost periodic
and (—4f) = G. The proof is an extension of Marcinkiewicz’s [27] proof of
the completeness of M?(RY).

Observe that there exists a sequence t, of trigonometric polynomials
such that ||(t,)— Fllzg2 — 0, |[(—4t,)~—Gl|g2 — 0. Let '

d(f)=supT™" [ |f(x)*dx.

T>a lx|'<T
By passing to a subsequence of ¢, we can assume that there exists a sequence
of positive numbers a, such that:

() ay > 2, a,+1 > 2a,,

(i) da(ta—tns1) <277 dy (= A(ta—1444) <2777,

(i) lim (a,)™> Y | Hea (P + Ve, ()2 + |4, (%)} dx = 0.
n—o i=tla,- 1 <|x| <ap,+1
Let Q,=1x: a, <|x{ <a, ), Q,=x:a,+1<|x| <a,,,—1}, and let @,
be a sequence of C3(R") functions such that supp ¢, = 2,, ¢, equals 1 on £,
and sup,[|® ¢l < +o0 for any multiindex a with |x| <2. Put f(x)
=Y, @n(x)1,(x). We claim that this C*-function is B*-almost periodic and
satisfies (f)=F, (—4f)=G.

Note first that if g(x) = —) @,(x)4r,(x), then |||—A4f—g|ll =0. This
follows from the properties of ¢,, (iii) above and the obvious inequality
T j I—Af(x)—g(x)lzdx < (an)_v Z _thA(pn_z <V[m V¢n>|2dx
|x| <T j=1

for a, < T<a, ..
We have to show that |||t,— flll — O, ||| — At,—gll| — O. Since f is built out
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of t,’s in the same way as g out of — At,’s, these assertions are analogous; we
consider only the first of them. Let f(x) = Y Xa,(X)1,(x) where x, denotes

the characteristic function of Q,. Property (iii) above implies that ||| f — f]l|
= 0. Following [27] we now show that |||t,— /]Il = 0. Fix n and suppose
a < T <a,, Then assuming k > n we have

T [ If0—t(Pdx < T [ |f(x)—r1,(x)}*dx

x| <T |x| <a,

k—1
+Y T j(tj(x)—t,,(x)lzdx+ T | it(x)—t.(x)?dx.
j=n Qj a <|x|<T

The first term tends to 0 as T— oo. We shall estimate the second term (the
last term is analogous). We have

1

2 i
” lfj—tnlldx) ! < Z (J lts—ts+1]2dx)”2

s=n £

-1

2 172

< E a;/-Fldas(ts_ts+1) !
s=n

g a}'{’-zl 2—H+1
where we have used (ii) and a;,, > a;. Repeated use of (i) implies that a;,,
< 2tlikq j<k, so using g < T the second term can be estimated by
k-1 k-1
Z T—va;+1 2—2n+2 S Z 2(j+1—k)v2—2n+2 S 2—2n+3
j=n j=n
independently of k, i.e. of T. We can thus take the limsup in T and the above
estimates show that |||t,— f]|| = 0. The proof of the lemma is accomplished.

Our aim now is to define the Schrédinger operator W = W, + V using
the Kato—Rellich theorem. We assume that V is a real-valued Stepanov
almost periodic function. Recall [25] that the space S* AP(R*) of Stepanov
almost periodic functions is the completion of Trig(R*) or CAP(R") in the.
norm

I1.£il, = sup ({ 1/ (x+y)Pdy)"”,
_ xeR® @
where Q = {x: =3 < x; <3, i=1,...,v}. Alternatively one may character-
ize S AP functions as L’:OC (R’) functions for which x s f (x+ °) is a (uniformly)
almost periodic function on R" with values in I”(Q). In this paper we
consider the case v > 3, and assume VeS?AP(R") with p>v/2 (p=2ifv

= 3). To prove the relative boundedness of V with respect to ¥, we need the
following lemma.

LemMMA 1.2. Suppose that W is a uniformly locally IF (R") function, p > v/2
(p=2if v=23), and that G(x, y) is measurable on R’ xR’ and satisfies the
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Cexp(—a|x—yl), Ix—y > 1,
- x—yl <1,

condition
|G (x, y)| < { .
Cexp(—alx—y/lx—y"~ 2,

(1.4)
with a > 0. Then for any fe M*(R") the function
u(x) = W(x) [ G(x, y) f(y)dy

RV
is also in M*(R") and |[|ull] < C@ WIS, where C(a) =0 as a — o0.
Proof. Let
LX=W(x | G pf(dy

jx—y <1
and let I,(x) be defined analogously with the integral over (y: |x—y| > 1}

exp(—oalyl) |f{y+x) 4
|y’(v—e)/2 |y,(v—4+s)/2

We have
() < IWEIC |

Iyl <1

I/ (y+x)|* dy

and therefore
Iylv— 4+¢

() < C@W ()
Ivl <1

where for sufficiently small e > O the integral is almost everywhere convergent
and C,{x) - 0 as 2 — oc. Integrating both sides over |x: |x| < T! we obtain
|f (x)f?
LGP < Cy@ [ [ IW(x—p)iP = dxdy.
. b1 x=yl <T vl

!
x| <T

Estimating now the inner integral by the integral over |x: |x| < T+1!,
reversing the order of integration and applying Holder’s inequality to the
integral over {y: |y| < 1}, we obtain, for sufficiently small ¢ depending on p,
§f M Pdx < Co@IWI; | 1f ()7 dx
jx] <T |x] <T+1
whence the estimate [||/]|| < C(@)[[WI,llIflll follows immediately. I, can be
estimated in a similar way, which ends the proof of the lemma.

Let now Ay, = —A4 be self-adjoint in I*(R"), and for ImAi > 0 Ilet
Go(x, y, A?) denote the Green function of A, i.e. the integral kernel of (4,
—A%)~ 1 As is well known, Go(x, v, A?) satisfies the condition (1.4) with o

}Im 4, and depends only on |x—y|. Moreover, for any fe C'(R") n L*(R"),

the function u(x) = {Go(x, y, A?) f(y)dy is in C*(R") and satisfies — Au(x)

—22u(x) = f(x). Using this we can prove
LemMMa 1.3. Let VeSPAP(R), p > v/2 (p =2 if v=3). In B*(R"), multi-

plication by V is an WU,-bounded operator, with relative bound 0.
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Proof. We first consider (;—4i%~!. By Lemma 1.1, the operator
f—=[Go(x, y, A3 f(y)dy is bounded in M?(R’), transforms CAP(R") into
CAP(R") and so defines a bounded integral operator in B?(R"), which we
shall denote by R(i?). One shows easily that on 2 =/F: F
= (f), feTrig(R")}, R(4*) = (Uy—A4A?)" 1, so by continuity (Uy—4%)~! is an
integral operator with kernel G, (x, y, 4%). In the same way we show that the
kernel V(x)Gy(x, y, A%) defines a bounded integral operator in B?(R") whose
norm tends to 0 as ImA — oo. To define the (unbounded) operator V in
B2R), let 2(V)=9,) and given FeP(V), put VF
= (V(x) [Go(x, y, ) g(y)dy) for (g) =(Uy—A*)F. By the above, V is well
defined and the norm of V' (,—A42)~! is arbitrarily small for Im A large. This
proves the lemma. '

The Kato—Rellich theorem and Lemma 1.3 show that A = W,+ V with
F (MW = 2(W,) is self-adjoint. We are justified in calling U the Schrodinger
operator in B2 (R") since for any smooth CAP function f, A(f) = (— Af+ V).
Since S” AP functions are uniformly locally If, V is also relatively bounded
with respect to Ay in I>(R"); let A = Ag+ V.

Suppose now that V satisfies the following regularity condition: outside
a closed set § of measure O consisting of isolated points, curves, etc. V is
continuous, and for any open domain Q c R*, Q c R*\S, V is a Lipschitz
function on £ (this condition is assumed throughout). In [10] it is proved
that the Green function G(x, y, 4%) of 4, ie. the integral kernel of (4—4%) !,
for sufficiently large Im4, ImA > K (V), satisfies the estimate

exp(—w|x—y|)
Ix — y|?

with 0 <w <3(ImA—K(V)), v—4+v/p < <v—2, the constant C depend-
ing on ¥, 12, @ and B. Moreover, the following estimate holds:

IG (x, y, A)—Gql(x, y, A < C

exp(—wl);—yl)”V(_\H)_V(_)”p
|x—yl

with 4>, @, B and the constant C as above. (1.5) implies that for
VeSPAP(RY), G(x+7, y+1, A?) is uniformly almost periodic as a function of
1, for fixed x # y. The regularity condition on V and the exponential decay
of G(x,y, A" at infinity can be used to establish that for any
feC(R)nC'(R*\S) n L*(R"), the function u(x) = [G(x, y, A%) f(y)dy is in
C*(R*\S) and satisfies —Au(x)+V(x)u(x)—2A%u(x) = f(x) for xeR'\S.
Therefore analogously to Lemma 1.3 we obtain

(1.5 1G(x+1,y+7,4)—G(x, y,4}) < C

LEMMA 1.4. Let V be as above. Then for ImA > K(V), (A—A4H)" ! is an
integral operator in B*(R’) with kernel G(x, y, A?). '

We see that (4—A4%)"! and (W—A%)"! are integral operators with the

9 — Banach Center t. 19
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same Kernel, though acting in quite different spaces. This property can be
established for other functions of operators. For instance. if V =0,
Ve C®(R"), then the results of Davies [17] show that K,(x, y), the integral
kernel of exp(—1tA4) in [*(R"), satisfies the condition (1.4), and so exp(—tA)
and exp(—t) are integral operators with the same kernel. More general
results of this type appear in [23, 25].

The spectral analysis of 2 is a challenging mathematical problem: only
relatively simple results are known. In particular, Burnat and Palczewski
[11] have shown that the spectrum of 2 is essential, i.e. isolated eigenvalues
have infinite multiplicity. We generalize this result below.

Let m(V) be the almost periodicity module of V, i.e. thc additive subgroup
of R* generated by {i: M, |V(x)exp(—i {4, x))! # 0}, and let I'(V)
= R*/m(V). Let BZ, ye I'(V), be the natural mutually orthogonal separable
subspaces of B*(R") invariant for 2,

B2 ={F: F~ Y fiexp(i {4, x))}.

Aey

We have
@ B! =B’(R).

yel'(¥)

Let 2, be the operator U restricted to B}. If V is periodic then the Bloch
analysis (see Appendix) implies that for any open subset U of R not disjoint
from the spectrum of A, U no (W) # @, the range of the spectral projection
ol A associated with U is nonseparable (in particular, this implies that
isolated eigenvalues have uncountable multiplicity and the spectrum is
essential). The same conclusion holds for general S? AP potentials ¥, as the
following lemma testifies.

Lemma L1.5. If V is not periodic then the spectrum o (20) of N, does not
depend on y and o () = o (). Moreover, for each ye I" (V) the spectrum of U,
is essential.

Proof. Let y,, y, be any two elements of I'(V). We shall show that
o(‘JIn) < a(2,,). Suppose Eca(U,,). Then there exists a sequence F,,erl ,
|Fallgz =1, F,e 2(M), satisfying [[(U—E)F,|lzz—0. We shall construct a
sequence G, with the same properties except that G, e szg this will complete the
proof of the first assertion of the lemma. Observe that there exists a sequence
p.€ R’ such that |p,| =+ 0 as n— o0 and p,+m(V)+7y, = y,: the existence of
p, follows from the fact that for nonperiodic ¥, m(V) is dense in R*. Let
G, = E, F,, where E; is the (unitary) operator of multiplication by exp(i (4, x}).
We clearly have ||G,llzz = 1, G,e #(W), G,e B2, so we have to show that

¥2?

I(A—E)G,llpz — 0. Suppose that F, ~ Y, fuexp(i {Au, X)), where i ev;.
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Then
(QI_E) Gn—Epn(QI_E)Fn ~ ank(z <’lnk’ pn>+|pnlz)exp(i <A'nk+pm x)),
k

hence

(A= E) G, |52 < (A~ E) Fyllaz+ 1>+ 1Pl (E il Al 22
k

and we have to show that the series in the last term is bounded uniformly in
n. But

Y ol 1nid® < T sl > (Ad* + 1) = 1Yo F 125+ 1,
k k

and using Lemma 1.3 we see that there exists a constant b > 0 such that
IVFE,llg2 < b(J|UF,Jlg2+1). Hence

U Follpz < (b+1)||UF )52 +b

which is bounded in n as |(U—E)F,||zgz — O. ,

Now suppose that E is an isolated point of the spectrum of U, ye I'(V)
fixed, and let F be any corresponding normalized eigenelement, Fe B2, UF
= EF. Choose a sequence p,e m(V) with |p,| — 0, p, # 0. Arguing as above
we deduce that F,=E, F is a normalized sequence in B satisfying

|| A—E)F,llg2 — 0. The second assertion of the lemma follows when we notice
that F,— 0 weakly, so E cannot be of finite multiplicity. The lemma is
proved.

When V is periodic we have the direct integral decomposition L*(R")
~ | BZdy (cf. [28]). For nonperiodic V the difficult problem of “noncom-

rwy
mut(a;ive” integration over I'(V) is discussed by Bellisard and Testard [3],
who do not obtain the results of the above lemma. This points to a relative
simplicity of nonseparable space approach.

We end this section with two simple results on the spectral properties of
2A. We say that the interval (a, b) is a gap in the spectrum of A if
(a, By na (W # Q. Since, as we prove in the next section, o(A) = a(A), the
following result is included in the more general result of Wong [34].
However, with the theory we have developed so far its proof is immediate.

LEmma 1.5. Suppose (a, b) is a gap in the spectrum of 9[, with a >
—||Vl|g2. Then b—a < 2||V||g2.

Proof. Let E >0, and choose AeR® such that |4 = E. Putting F
= (exp(i (4, x))), we have ||F]|zz = 1, and ||( ™ — E) Fl|z2 < ||V||z2 which guar-
antees that o (W) N(E—||V||gz, E+||V|lg2) is not empty. This proves the
lemma.

Our final result in this section concerns eigenfunctions. We say that ug is
a classical eigenfunction of | associated with the eigenvalue E iff
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uge CY(R)nC*(R*\S) and — Aug(x)+ V(x)ug(x) = Eug(x) for xeR*\S. In
general we cannot expect that every eigenclement of U is represented by a
classical eigenfunction. However, the following weaker result holds.

LEMMA 1.6. Suppose that F is a normalized eigenelement of W associated
with the eigenvalue Eco(N). If F is represented by an S* AP(R") function, then
it is also represented by a classical almost periodic eigenfunction.

Proof. Let F =(f), feS?AP(R"). Clearly, (M—1%)"'F =(E—A>"'F,
hence the function

g(x) = (E= A% G (x, y, A*) f(y)dy

represents F, F = (g), for any natural k, where G, is the kth iteration of the
Green function G(x, y, A%). For sufficiently large k, G, has no singularity at x
=y, and since it vanishes exponentially for |x—y| large, and G,(x+7, y
+1, 4%) is @ CAP function of t, we conclude that ge CAP(R"). Applying the
integral operator once again, we find that the function

g(x) =(E-2)[G(x, y, gy dy

is also in CAP(R"), and (§) = (g). No element of B?(R") can be represented by
two distinct CAP functions, so § = g everywhere. We conclude that g(x) = (E
—A)[G(x,y, A% g(y)dy, hence g is a classical eigenfunction of I representing
the element F. ‘

2. Equality of spectra

In this section we prove the main result of the paper.

THEOREM 2.1. Suppose Ve SPAP(RY), p>v/2(p=2if v=3). Then (%)
= g(A).

Proof- We do not go into all the details of the proof since, as was noted
in the introduction, several variants of this theorem already exist in the
literature. Consider first the inclusion o() < 6(A). Let ¢, for T >0, be a
family of C& functions equal to (w, 7"~ '? on |x: |x| < T} and 0 on
{x: {x| > T+1}, with equibounded derivatives. For F = (f), f e Trig(R"), we
have ¢r feC§(R’), and |lor fllL2 = IFllp2, I(A—E)or fllL2 — |I(W— E) Fl|52
as T — oo, lor any real E. Therefore if E ¢ a(A), i.e. if there exists a constant
Cg such that for any ge 2(A4), |(A—E)gl||.2 = Cgllgll.2, we have by the
above |[(U— E) Fl|gz = Cg||F||g2 for the elements F represented by trigonomet-
ric polynomials. Hence E ¢ o ().

'To show the inverse inclusion, let y, be a family of CAP(R") functions
satisfying the following conditions:

(A ¥,=20, and Ve >03IN Vn> N VxeR' y,(x)# 0 implies that x
satisfies ||V (- +x)—V()ll, <e.
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(b) Writing 8,(a) = M, {y,(x—a)¢,(x)}, we have for any We CF(R")
Lim {W(x)8,(@)dx = W(0).

The explicit construction of such ¥,’s is given in [19]. We now proceed
analogously to the first part of the proof. For fe CT(R), let f, = f*xy,,
where * denotes convolution. f;, 1s in CAP(R") and represents an element F,
=(f)e Z(W. It is enough to show that

bm ||F,llpz =[lfll.z  and  lim [|(A—E) F,lipz = |(A—E) fll.2.

n— @ n—saw

The first of these follows from (b), and the second will follow if we show that

im (H,— UF,, F)sp2=0 and lim (H,—AF,, UF,)g2 =0,

n—-o n—®

where H, = ((Af) *y,). Consider, for example, the first of these. We have
(HH_QIFrn Fn)Bz

[ 1§70 V) - V(X Walx—Wn(x—t)de de’ dx.

|x| <T R RY

= lm
T-chv Tv

Let S > 0 be such that supp f < {x: |x| < S}. Using the boundedness of f we
have

(H,— UF,, F)z2| < C lim | { | V@e=V(e+x)

T+ @, T" <5 |41 <5 {x+i| <T
XY, ()Y, (x—1t)dxdt dt.
L]
Estimating the inner integrals by the integrals over {t': |t| <2S! and
{x: |x| < T+S8}, and using Holder’s inequality for the integral over {t: Jt|
< 8§}, we have the bound

) 1
< C; lim
TV
T Wy lt| <28 |x| <T +8§

V)=V +p¥n () Yalx—t)dxdr’.

By (a) and (b), this tends to 0 as n tends to infinity. The theorem is proved.

The case of periodic ¥ shows that while ¢(W) and o(A4) are equal as
sets, their spectral nature may be quite distinct (see Appendix). The lemma
below suggests that the spectral measures of W and A for a given finite
interval are closely related. ¢ and ¥, are as in the above prool, except that
now we do not need the smoothness of ¢ (unlike Theorem 2.1, Lemma 2.2
requires the regularity condition on V).

LemMma 2.2 (Reconstruction lemma). Assume V is as in the above theorem,
and satisfies the regularity condition of Section 1. Let 6 be any continuous
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function on R vanishing at infinity. For any F; =(f)e B*(R"), i = 1, 2, we have
(21) (Fla oY) F2)32 = }_im (‘PT fis G(A)((PTfZ))Lz-

For any g;eC§(R"), i =1, 2, we have
22) (91, 0(A)ga)2 = lim ((gy *¥,), 6(W (g2 *¥,))p2.

n—ra

Proof. We consider only (2.2); (2.1) can be treated analogously. We shall
employ Lemma 1.3. Indeed, observe that both U and A are bounded below,
say by po. Choose u < o such that the resolvents (U—pu)~! and (4—p)~!
are integral operators with the same kernel G(x, y, u). By the Stone-
Weierstrass theorem, the function 6(t) can be approximated uniformly on
a(W and o(A4) by polynomials in (t—u)~!, so it is enough to prove (2.2)
when @ is such a polynomial. We treat the case 6(f) = (t— )~ !, since higher
powers of (t—p)~' are easier to deal with (the kernels of the operators (U
—u)~* and (A4—u)~* the iterated Green functions G,(x, y, ), have weaker
singularities at x = y and satisfy (1.5) with lesser f).

Given g;e C§(R"), i=1,2,let g3 =(A—u) 'g,, and let G;, = (g; *¥,), i
=1,2,3. Since (G, ,, G3,.)p2—(9,, (A—p)"'g;).2 as n— o, we have to
prove only that (G, ,, (W—u)~ ' G, ,— G, ,)a2 tends to 0 as n— co. We have

(G mr (U= )™ Go— G o)a?]

: 1 ! ’
< im —= | [{flg;(x=3)g2IG(x, y+5', =G (x—5", y, w)|
T—'wva |x| <T

XY, ()Y, (s)ds dsdydx

Fix ¢ > 0; then for sufficiently large » we have, by (b) (in the proof of
Theorem 2.1) and (1.5)

exp(—w|x—s—y|)
=

IG(X, .\’+S's ,u)—G(x-s’, Y, "l)l ll/lvl(s‘) <eC III"(S’).

|x—
Therefore putting

exp(—w|x—yl)

m09=lgy 0l (9= CJ=E 2

lg2 (y)l dy,
and H;,=(h=*y,), i =1, 2, we obtain
|(G1.ns (QI_IH)_1 GZ,n_G3.n)BZ| < E(Hl.m I{Z.u)B2 - 8(h1, hz)L2

as n— oo, which by the arbitrariness of ¢ proves the lemma.

Using the Reconstruction Lemma, we can give a simple proof that g(A)
is essential (an I? proof for V uniformly almost periodic is given in Avron
and Simon [1]).
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Lemma 2.3. If V satisfies the conditions of Lemma 2.2, o(A) is essential.

Proof. Suppose E is an isolated point of ¢() = o (A), of finite multiphici-
ty in I2(R"). Let F =(f) be the corresponding eigenelement in B?(R"), and
g, i=1,..., N, the corresponding eigenfunctions in [*(R"). Let 8 be a
continuous function with 8(E) = 1 and suppf no(A) = [E}. Assuming F, g;
are normalized we have

(F’ O(WF)p2 =1, ((P’l'fv G(A)(Qorf))Lz = Z ot £, gde2l?,

so the Reconstruction Lemma implies that

N
im Y [(@rf, g)e2l® = 1,
T-wi=}|
which is impossible since limy..[(¢rf, g)2}*> =0 for i=1,..., N. The
lemma is proved.

3. The spectral mixing theorem

The spectral mixing theorem proved in this section is a generalization of the
spectral cut-off theorem of Burnat [9] and together with perturbation results
[5, 10] is an example of applications of nonseparable Hilbert spaces to [2-
theory. We want to find conditions for cut-off functions g; under which for
any V,eS?" AP(R"), i =1, ..., N, the inclusion

N
Uoe(=4+¥W)ca(-4+) eV
i=1 i=1
holds, where the spectra of operators are understood as spectra in L*(RY).
The physical intuition behind this inclusion is as follows. Suppose ¥, describe
some infinite media (crystals or alloys). We want to find conditions under
which the energy properties of an electron moving in the medium composed
of large parts of the given N media cut out and “glued” in some way include
the properties of the electron in any of these (infinite) media. We note that
for v = 1, V periodic, Carmona [12] proved a similar inclusion (moreover, in
his case a(—d*/dx*>+ V) < g,.(—d?*/dx*+gV)).
We say that a cut-off function ¢ is admissible if it is C*(R") and the
following requirements are met:
(@) 020, 0, 02 P2(R"), llle(1L =)l =0, |||D*¢|ll = O for every multiindex
a with 1 <] <2, and |lig}j| > 0.
(b) There exist constants K,, K, > 0 such that for any CAP function f
we have K, [lleflil < I/l < K. llleflil.
It follows that for every admissible function ¢ and every f €e CAP(R’) we
have of € P2(R"). A typical admissible function may be obtained as follows.



136 J. HERCZYNSKI

For any open cone I' = R* and any r >0 let I', = {x: xeI', |x| >r}, and let
xr, denote the characteristic function of I',. Then if j is a nonnegative C¢§’
function with [j(x)dx =1, p=j *Xr, i1s admissible. Clearly, no function with
compact support is admissible.

We say that a finite family of admissible cut-off functions {g;}, i

=1, N, 1s admissible if ||lo;ofll = 0 for any i#j. It follows that for an
adnnssxb]e family {o;} and any f,eCAP(R’), i=1,..., N, we have
Zl IQIfEP2 Rv

If in the above construction of admissible cut-off functions we take
disjoint cones I'; and any r;, then the resulting g; will form an admissible
family. A family consisting of one admlsmble cut-off function is adm1551ble

We will prove the following theorem.

TueoreM 3.1. Suppose Ve SP AP(R"), and {o;} is an admissible family of
cut-off functions, i =1, ..., N. Let V, be a locally I’ potential vanishing at
infinity, and put

N
= Z o Vi+Vo.
i=1

Let A, = —A+V,, A, = —4+V,, be self-adjoint in [} (R"). Then for any i,
i=1,..,N, a(4) < a(A,,).

Proof. Given an admissible family {g;} we shall construct Hilbert spaces

B, and B? i=1,...,N, and we shall verify for them the following
assertions:

(l) Brmx @ Buz ’

(i) B? are invariant subspaces for the self-adjoint operator A, = —4

+V. in B%,,

(iii) the spectrum of U, reduced to the subspace B? is equal to the
spectrum of % = —4+V, in B%(R"),

(tv) o () < 0 (Ay,)
The result of the theorem will then follow upon application of Theorem 2.1.
We shall exploit Bass’s scheme discussed in Section 1. Let

N
={f=) ot ,eTrig(R)}, E ={f=qt: teTrig(R)}.
i=1

We have E,,, E; = P*(R"), so we obtain as in Section 1 the Hilbert spaces
B2, and B?, i=1,..., N. Assertion (i) above follows because {g;} is an
admissible family. Lct ‘II,,,,, = —A+V,, with domain 2(W_,) = {FeB,: F

= (f), fe E,,} be defined by U_. (/) =((—4+V, )f) for feE_,. This ope-
rator is well deﬁned Indeed, multiplication by Vo is a zero operator in BZ,,
and for f = Z, 1o t;e E_. we see, using property (a) of admissible functions
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that

N N
AL ()= Z ((_A.+ Vmix)Qiti) = z (Q,-(—A+ Vi)ti)-

i=1 i=1
This also shows that B? are invariant for . Let now J;: B*(R") — B} be
defined by J;(f) = (o; f). Property (b) of admissible functions implies that J,
are bounded operators with bounded inverses. Moreover, J; ! (U, ) = 2(A)
and J, WJ ' F =W F for FeB?, Fe 2(N,,). Hence U, reduced to the
subspace B} is essentially self-adjoint, so the same is true of 2L, in BZ,. Denote
its self-adjoint closure again by A, . We thus obtain assertion (ii). The
operators J; can now be used to establish assertion (iii). The final assertion
(iv) can be proved just as the easier inclusion of spectra in the proof of
Theorem 2.1. The theorem is proved.

When N =1 we recover the spectrai cutting theorem of Burnat [9]. If

the potentials ¥, are periodic, then ¥, reduced to B?, and hence also U,
in B2, have a complete set of eigenelements (cf. Appendix and the properties
of J)). It would be interesting to prove an analogue of Lemma 1.6 and using
it find the classical eigenfunctions representing these eigenelements.

Appendix

Here we discuss two simpler cases when the analysis of differential operators
with almost periodic coefficients in B%(R") can be carried much further than
for the Schrédinger operator with general SP AP potential. These are the case
of the Schrédinger operator with periodic potential and the case of the first
order operator i 'd/dx+q, gqe CAP(R), in B*(R). They are meant to illus-
trate the range of possibilities to be expected in the B?(R") analysis.

Let V be periodic with periodicity matrix o/, V(x+ o/m) = V(x) a.e. for
all me 2”, where Z is the group of integers. Let 0 be the Seitz—Wigner cell of
the periodicity lattice A = {x: x = &/m, me 2"}, ie. Q = {x: x is closer to 0
than to any other element of A}, and let |Q] denote its measure. The
Brillouen zone I is the Seitz—Wigner cell of the inverse lattice A’
= {k: <k, x>e2nZ for all xeA}. Putting M =2n(o/*)~! we see that
A =1tk: k=Mm, meZ’). We assume that V is locally I?, p>v/2 (p=2
if v=13), so.

Vix)= Y vnexp(i (x, Mm))
me2¥

with the uniformly locally I? convergence.
For yeI consider the subspace B? of B*(R"),

B = {(FeB*(R"): F~ Y faexp(i{x, Mm+y})}.

me Z¥
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B? are mutually orthogonal, their direct sum is B*(R"), they are separable
and invariant for 2. Moreover, under the isomorphism J,: B2 — [*(Q) given
by

J.F ! Y fmexp(i<{x, Mm}) for F~ % f,exp(i<x, Mm+7y)),

yE T A2

10/ I me 2"
the operator U reduced to B? is unitarily equivalent to A, in I?(Q),
A,u= —Au—2i {y, Vu)+[y? u+ Vu,

with periodic boundary conditions. A, is an analytic type A family of self-
adjoint operators with compact resolvents. The following theorem demon-
strates that nonseparable Hilbert spaces provide a full alternative theory of
periodic Schrédinger operators (for the -theory see Reed and Simon [28]).

THEOREM Al. There exist continuous on I' real-valued functions E, (y) and
B2(R")-valued functions F,(y) such that:

() F.(y)eB2n 2 (W,

(i) UF,(y) = E,(0) Fo(?),

(iii) F,(y) form an orthonormal basis in B*(R"),

(iv) E,(y) — o0 as n— oo uniformly on I,

(v) F,(y) are represented by classical eigenfuctions, called Bloch waves, of
the form f, ,(x) = exp(i <y, x}) W, ,(x), where w,, are periodic with periodicity
matrix .

The operator WU has band spectrum. Moreover, the transformation
*0 P(RY) > Yomey [2(I) defined by

@a () = 21" fo(x) £, (x)dx

extends to a unitary operator on L[2(R") with inverse

@(x) =lim. Y [@.(3)f,,(x)dy

n=11T
which diagonalizes A: (A@),(y) = E, () G, (7).

Proof. We briefly outline the proof. To obtain the first part of the
theorem we need only show that F,(y) can be represented by Bloch waves:
this can be performed with the use of Lemma 1.6, since the elements of B;
are represented by S2 AP functions. The second part of the theorem follows if
we expand exp(i (4, x>) in terms of the Bloch basis and F,(y) in terms of the

Fourier basis, and apply these expansions in the Fourier inversion formula
(see [20] for details).

We shall now discuss the case of the first order operator h =i~ 'd/dx
+q, ge CAP(R). Defined as a self-adjoint operator H in IL2(R), it has
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absolutely continuous spectrum o (H) = 6,.(H) = R, its non-square integrable
eigenfunctions are

u,(x) = CXP(—igq(u)duHux), hu, = pu,,

ue R, and multiplication by u, in I?(R) provides a unitary equivalence
between H and H, =i 'd/dx. As we now demonstrate, the situation in
B%(R) is more interesting.

Let $=i"'d/dx+q in B*(R) be a self-adjoint operator with domain

2(9) = {F ~ Y a,exp(id, x): Y 14,a,)* < +0}.
If u, is in CAP(R), which happens exactly when
x> [q(uydu—M, {q ()} x
1)

is in CAP(R), then u, represents an eigenelement of $ in B?(R). However, the
uniform almost periodicity of u, is not necessary for this: it is enough that u,
is a Besicovitch almost periodic function, i.e. that it is a ||*||g2-limit of
trigonometric polynomials. Helson [18] (see also Chojnacki [13]) proved
that $ has either pure point or purely continuous spectrum, and established
criteria to distinguish these two cases. Our aim here is to rederive these
results in a very simple way. For every teR, let

x+t

®,(x) =exp(i [ q)du).

Since @, is in CAP(R) for any te R, we can define ¢(t) = M {®,(x)}. Let T
denote the translation, T, f(x} = f(x+1¢); T, extends to a group of unitary
operators in B?(R). Putting $, = i *d/dx with 2(H) = Z($), we see that
exp(it$Ho) = T,.
THeEOREM A2. The spectrum a($) = R of § is either purely continuous or
pure point according as the limit
T

1 .
(A.1) Thgnmﬁ__rlfp(t)l dt

vanishes or not. The latter case occurs exactly when ¢ CAP(R).

Proof. For any element G =(g(x)) of B*(R") and ucR, let G,
= (g (x)exp(iux)). Write I =(1).

Suppose Eco(9), and let G, be a sequence of normalized elements such
that ([($—E)G,Jlsgz — 0 as n— co. Then for any pue R we have |G, g2 =1
and |(H—E— )G, Mgz — 0, showing that E+pea(9). Hence o(9H) = R.

We shall now show that if § has an eigenelement, then its eigenelements
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span B2(R). Indeed, suppose that HF = EF, ||F|lz2 = 1. Then F,, for ueR,
are the eigenelements of $ associated with the eigenvalues E + y, so they are
orthonormal.

We will show that P, the projection onto the subspace of B?(R) spanned
by F,, peR, is the identity operator by proving that for any A€ R, ||PI,||52
= 1. Indeed,

HPIA”:z = Z'(F;u 11)32‘2 = ZKF, Il—p)lez = ||F||:2 =
M [

Using the Kato—Trotter formula we obtain exp(it$) = &, T, (this group
of unitary operators has the same form as exp(itH) in I*(R)).

Suppose that $ has pure point spectrum. Then for any element G in
B%(R) the trajectory exp(it$)G is precompact in norm, so the function
t —{exp(itH) G, G)p2 is CAP for any G. Putting G = I we obtain pe CAP(R),
and since ¢ (0) =1, the limit (A.1) exists and is nonzero.

Suppose now that the spectrum of $ is purely continuous. Then the
RAGE theorem (Reed and Simon [28]) shows that for any element G and for
any compact operator K we have

. 1T .
lim _jTHK exp(itH) GllZ,dt =0

so putting in the above G = I and K the projection onto the one-dimension-
al subspace of B?(R)} spanned by I, we conclude that the limit (A.1) exists
and is zero. The theorem is proved.

If u, is Besicovitch almost periodic, it represents an element U, of B*(R),
and since clearly &, I, U, = exp(iut) U, for any te R, it follows that U, is an
eigenelement and thus $ has pure point spectrum. The inverse implication is
not true; moreover, if for a given g with pure point spectrum all eigenfunc-
tions u, for all potentials Q in the hull of ¢ are BZ-almost periodic then they
are all uniformly almost periodic [14]. There are Q, therefore, for which an
eigenelement of § is not represented by a classical eigenfunction and
presumably this may also be the case for Schrédinger operators $. The
subtle not quite almost periodic but close to almost periodic behaviour of
eigenfunctions at infinity may require the introduction, for different almost
periodic potentials, of distinct nonseparable Hilbert spaces based on inva-
riant means on R" (see [16]).

Returning to the case of first order operators we note an interesting
open problem of connection between the eigenfunctions u, and the spectral
measure of § when its spectrum is purely continuous. Finally, we note that
Chojnacki [13] exhibited examples of ge CAP(R) for which the spectrum of
$ is purely continuous and aiso of g with pure point spectrum but with the
eigenfunctions u, not in CAP(R).
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Added in proof (June 1987). It can be deduced [rom a result of [3] and from an unpublished
result of W. Chojnacki that if V is a real almost periodic function on R such that for almost all
o in the hull of V¥, the operator —d?/dx?+V, in L?(R) has an eigenvector, then the operator
—d*dx*+V in B2(R) has a nonzero continuous component in the spectrum.



