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1

P. C. Rosenbloom and D: V. Widder [8] studied a system (v,),=0,.,.. oOf
polynomial solutions of the heat equation w, = u,,. These “heat polynomials”
are given by

(2] gk yn—2k

Sk (n—2k)!

(n=0,1,2,..., (x, e R?, [n/2] = largest integer < n/2). They proved that
expansions Y a,v, are convergent for xeR, |t| <o if

lim sup(2n/e)]a,|?" = 1/o.

n—+w

v,(x, t) =n!

This result has a remarkable consequence: D. V. Widder [13] showed
that a solution of u, = u_, which is analytic in a neighbourhood of (0, 0) can
be continued into a strip R x {teR: |t] <o} (see also Colton [1]).

The results on the system of heat polynomials have been the model for
investigations on equations of second order with singular coefficients, with
small parameters, of higher order, etc. (see e.g. Haimo [3], Lo [6], [7].
Kemnitz [4], [5], Givens-Lo [2], a survey is given in [10]). Usually a system
of polynomial solutions u, is defined explicitly and the convergence result for
Y a,u, follows from appropriate estimates for the functions u,. In [11] the
polynomials are not given in an explicit form, they are only defined via a
recursion formula, but the convergence result is still based on an estimate for
the polynomials.

If more general differential equations are studied it is not easy to give an
explicit representation of the solutions u, and to find appropriate estimates
for these functions. Therefore it seems to be desirable to have an alternative
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method which is based essentially on the differential operator belonging to
the equation. In [12] such a method is described for differential equations of
the form u, = Lu with ‘

r—1

(1) L=L,:=Dy+ ) b;Di (ref{2,3,...},bjeR),
j=1
r—1 ) .
(2) L=L;:=D+ Y 4x Dy (re{2,3,...], 4;eR).
j=1

(We use the notation D, = d/0x, D, = d/ct)

In both cases L™ (me N) is regarded as a bounded linear operator in an
appropriate scale of Banach spaces. Estimates for ||L™| allow to define a
family of bounded operators T(¢) which is used for the definition of a system
(u,) generalizing the heat polynomials. It is sufficient to know that the
functions u, are given in the form T(t) x".

In the following the main features of this method are described for the
equation D? = L,u with p<r and L, as in (1), and it is shown that the
equation

r=p r-1
(3) Y n;DP* u+DPu=Du+ ) Ax'D7u  (p=1,r>p,n;, LeR)
j=1 =1

J J

interpreted as a perturbation of Du = L,u can also be discussed on the
basis of a family of bounded linear operators. C. R. Givens and C. Y. Lo [2]
studied equation (3) in the case p =1, r = 2 by considering it as a singular
perturbation of the generalized heat equation wu,.+2vx™'u, =u, (for this
equation see e.g. Haimo [3]). The case 4, =... = 4,_, = 0 (interpreted as a
perturbation of Dfu = D u) was discussed in [11].

2

Let !,‘.M (r, pe N, r > p, s > 0) be the space of complex sequences (a;);=0.1.2....
with

@l s =Y I ((Pk) )17 < o0
k=0

An injective map j: I;,, — C®(R) can be defined by

e o]

@)=Y ak) 'x* for xeR.

k=0

The space X, ,,:=j(l},s then becomes a Banach space if the norm

”f”r.p,s = ”]- ! (f)”l.r.p.s
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is used. (Spaces of this type also appear in connection with the Ovsyannikov
theorem, see Steinberg-Treves [9].)

Lemma 1. If feX,,,. meN, then f™eX, ,, for 6€(0,s) and

(4) 1SN 5.0 < (pm/e)?™ (s/a)' " (s —a) " "™ || f1I,,p.s-

Proof. As in the case p=1 (see [12]), the proof is based on the
inequality

' m+1 n n
(5) ( m-)' < (i) (saa) ('_e’) for m, neN, m>=n, s, ¢ >0, s >o0.
m—n)! g —

If (@)el} 5, the inequality (5) implies

s o]

[ 9] k !
2 1awenl (PR)) 71707 = 3, lail ((Pk)Y)” ‘f's""”( =

i/r
k=0 :

< @M . (PP ()1 (5 — 3) P
If L, is the operator defined by (1), the following estimate for ||L7 f||, 5.
is a consequence of Lemma 1:

LEMMA 2. For c¢(0, s) and &€ > 0 there exists mpe N such that
L5 fllr.p.a < (rpm/e)®™ (s/0)'" (s — &)~ P" (L + &)™ || fIy. s

for mzmg, feX, ;.
Proof. The assertion follows from (4) and

m! a o a, _ ay+2a,+t...+ra
;Ibll Hbyl 2ol 7T HID T "Mr.p,o-

LS Mg < 3

Now L} (meN) can be interpreted as bounded linear operators Lj:

X, ps— X, .0 and it is possible to define operators T, (e B(X, ., X, .. by
a tpm+q '
T.(1) = — Iy €0, 1,...,p—1
q( ) ,,,Z=:0 (pm+q)! b (q 1 D })

for [t| <(s—o)/r (L denotes the injection X, ,, = X, ., B(X, ;s X, o) the
Banach space of bounded linear operators with the operator norm).

THEOREM 1. (a) If 0 <o <, ge {0, 1, ..., p—1} and (a)€l} ,,, then the
series

@€x

(6) Y a (k) L)X

k=0

is convergent in X, ,, for |t| <(s—oa)/r.
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If (@)el},,,. then the series (6} is absolutely convergent for
(x,)eR x(—g, 0).The convergence is uniform on compact subsets of
R x(—9. 0.

Proof. Let

n

f =] ((ak))EXr,p,sa fn(x) = kz ak(k !)_1 xk-
=0

Then || f~fll,ps— 0 as n— oo and therefore | T,(t) f— T, () f)l,.,, — 0 as n
— . This gives (a). Part (b) follows from the fact that for s >0 and R >0
there exists C > 0 such that supyy<g|f(x)| < C||fll,, for feX, ..

The functions T,(f)x* are polynomial solutions of the equation Du
= L,u. It is easy to see that the polynomials T;(r)x" are the heat polyno-
mials if p=1,r=2 b, =0.

3

As mentioned before C. R. Givens and C. Y. Lo [2] studied series expansions
of solutions of

U +(2v/X)u,+e*u, =u, (€>0,v>0).

For the system (P,, J,=0,1,2,.. given by

n R 2h(n) F(v+12+n) *lk+m—1)1kme2m (ne M),

k/IF(v+1/24+n—k) ,,,Z::O mlk—m—1)!
they proved the convergence of Z:o:oa,, P,,.{(x,t) in R* if
lim sup(2n/e) |a,|'/? = o < 1/(2e).

Combining the technique used above and an estimate proved in [11] it is
now easy to get an analogous result for equation (3).

Polynomial solutions of (3) which correspond to the polynomials P,,,
can be defined by

(7 Upgmalx, ) = Z Apg (O Ly X

(n=0,1,2,...,¢=0,1,..., p—1, L, the operator (2)), with A4, , uniquely
determined by

kptg

Ao t) =tYq!, A (D)= Z Cik.q v,

i=p
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r-p
Z r’jDrp-’-jAk+l,q+DlpAk+l,q=Ak,q fOI‘ k=0, 1,2,...
j=1
The system (7) was discussed in [11] if A, =...=4,_, =0. From [11] we

now take the following estimate for the polynomials A, : If |5t <&’ for j
=1,...,r—p, then

(r=p YV (p+ Dk +g ( pll
® lA""‘(t)Ig( p 8) (p+1) TP =P+ e

for teR, k=0,1,2,...,4g=0,1,...,p—1.
The polynomials U, ., can be represented in the form

Un.q.n,/l (x: t) = Sq (t) x™

with S ()e B(Y,, Y;) for appropriate Banach spaces Y, (s > 0). For the
construction of Y, we use the space I! of complex sequences (a,);=o,; 2,.. With

@l := D las* < 0.
k=0

An injective map j,: I; — C*(R) is defined by

(@)=Y a((rk)t)~ 1 x™,
k=0

and the space Y,:=j,(I!) becomes a Banach space if the norm

A= Wi (s

is used. (The notation Y, would be more precise, but there is no danger of
misunderstanding.)

LemMa 3. Let L, be the operator (2). For 6 > O there exists C > 0 such
that

9) ILZ flls < Cs™™(1+8)"|Iflls for meN, feX,s>0.
Proof. If f =}j.((a)), then

(L3 f) Z AGesm Mk, m, A)((rk) 1)~ 1 x™
with
m—1 r—1
Mk, m, 2= T] (1+ X A,k +rv) ! (rk+rv+)1)7).
v=0 j=1

It is easy to see that M(k, m, A} can be estimated in the form

IM(k, m, )| <const-(1+8™ for k=0,1,2, ..., meN.
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This implies

I flls SCA+)™ ¥ Maysml s K CA+)"s™™ 3 lafs* = C(1+8)"s™ ™| fll;.
k=0

k=0
A combination of the estimates (8) and (9) gives
Lemma 4. If inj <é& for j=1,...,r—p and

-— p
(ue) (p+1)P*! <5,
P
then an operator S (t)e B(Y,, Y)) (g€ {0, 1, ..., p—1}) can be defined by

Sg(0:= ) An, (0 L]
m=0
for teR.

Tueorem 2. If In)l <& for j=1,...,r—p,

— 4
(r pps) (p+1)P+! <5

and ()€ ll, then:
(a) The series

xX

Y a{(rk)!) ' S x™  (ge 0,1, ..., p—1})

k=0
is convergent in Y, for teR.
(b) The series

a

Z ak((rk)!)—l Uk.q,n,,l(x’ t) (qe {Os la ey P‘l})

k=0
is absolutely convergent in R>.

Proof. Similar to the proof of Theorem 1.
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