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1. Introduction

The question raised in the title has both a crisp negative answer (there are
counterexamples) and a surprising variety of positive ones (theorems). The
general setting in which the question can be meaningfully posed involves a
relatively recent research area on the interface between mathematics and
theoretical computer science. This area, which we shall refer to as informa-
tion-based complexity, i1s known also under aliases such as the general theory
of optimal algorithms and the information-centered approach to algorithms.
Information-based complexity seeks to create a general theory about prob-
lems with partial or approximate information and to apply the results to
specific problems. Some of the disciplines where problems with such incom-
plete information have arisen include computer science, economics, control
theory, signal processing, and geophysics.

The goal of this article is to present a selective introduction to the field of
information-based complexity and to describe the seesaw nature of results in
the last decade on the extent to which linear problems have linear optimal
algorithms. The approach we take will certainly not do justice to the breadth
of ideas, techniques, and applications that are coming into play in the
general theory. Instead, we will take a direct route to the results on linear
optimal algorithm, pausing occasionally to survey the pleasing way in which
ideas from linear algebra and (functional) analysis are used. In the final
section we mention some other theoretical and applied topics currently under
investigation in the theory of optimal aigorithms. A more general expository
overview can be found in Traub and Wozniakowski [14] and a somewhat
more technical survey is offered in a recent paper by WozZniakowski [20].
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2. Information-based complexity for linear problems

A thorough development of the framework for information-based complexity
may be found in Traub and Wozmakowski [13]. Here we present the
standard approach for linear problems.

Let F, and F, be normed linear spaces over the scalar field K, where K
18 either the real or complex numbers. The problem elements for which we
have only partial or approximate information are assumed to belong to a
convex subset F, of F,. We further assume that F is balanced (f e F, and
la| = 1 = afe I'g). An important way of generating such an Fy (and in a sense
the “only” way) is to let Fo= {feF,: [T(/)| < 1), where T F, - F, is a
linear restriction operator into another normed linear space Fj,.

A linear problem is defined by specifying F, along with two linear
operators on F,. The underlying problem solution (for which we seek
approximating algorithms) is defined by a linear solution operator S: F,
— F,. As was suggested in the introduction, an algorithm to approximate
S(/) may not have full information about f to work with. Accordingly, we
specify a linear information operator N: F, — K", so that N(f) gives us n (a
positive intcger) scalar pieces of information about the problem element f.
The requircment that N has finite dimensional range is a concession to the
reality that practical algorithms process only a finite amount of information.
We will often be concerned only with the behavior of § and N on the convex
and balanccd subset F,, of F,. In this case, we regard an operator defined on
F, as linear if it is the restriction of a linear operator defined on F,.

A concept central to the whole theory is the radius of information, which
gives the inherent error in approximating the solution S(f) given only the
information provided by N{f). We concentrate throughout this paper on the
“worst case error” setting, where the radius of information, r(S, N), can be
defined as follows:

Given feF,, set V(f)=1{geF,: N(g)= N(f)}. When we are concen-
trating on an information value y with y = N(f), we will use the fact that
V(if)=N"'(y)nF,.

Now define (S, N, f) to be the radius of S(V(f)) as a subset of F,,
where the radius of a subset G of a normed space F is defined by

infsup|lc—gil. A point ¢ (if it exists) for which this infimum is attained
ceF geG

is called a center of G (it need not be unique).

Finally, define r(S, N) =sup {r(S, N, f): feF,).

The key idea here is that we do not know the specific f to which the
solution operator should be applied. The best we can say is that it belongs to

the set V(f) of problem elements which share the same information as f.
Accordingly, a bound on the possible error in approximating S(f) is given
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by the radius of the set S{V(f)). The radius of information for the whole
problem is the “largest”™ such radius for f in Fjg.

Closely related to this radius is the diameter of information, d(S, N),
defined by sup d(S, N, f) where d(S, N, f) is the diameter of the set S(V (f))

JeFg
defined above. Many results in the theory are more easily developed in terms

of the diameter of information, which is not generally twice the radius, but
can easily be shown to satisfy r(S, N) <d(S, N) < 2r(S, N).

We now investigate algorithms to approximate S{f). Since we only have
the information N(f) on f, such algorithms can only be defined on N(Fy).
Accordingly, we define an algorithm ¢ for the problem determined by F,, S
and N as an operator ¢: N(Fy) — F,. Of obvious importance are the
optimal algorithms, which we now define.

If we define the error of an algorithm ¢ by e(¢) =sup {||l@(N())
—S(f)||: feFo}. it follows directly that e(¢) > r(S, N). An algorithm ¢* is
defined to be optimal if e(p*) = inf{e(p): ¢ an algorithm for S and N}. It
follows directly that ¢* is optimal if and only if e{@*)=r(N,S). Thus
r(S, N) provides a tight lower bound on the worst case error and can be
viewed as the intrinsic uncertainty inherent in the problem with solution §
and information N. If an algorithm ¢ satisfies the stronger condition that
lo(N(U)=S(f)|| <78, N,f)V feF,, then ¢ is said to be strongly optimal
or central. Generally it is asking too much to expect realizable algorithms
which are strongly optimal, but we shall encounter one important case where
this occurs. In Fig. 1 we summarize the situation as we have described it to
this point. The fact that the problem domain F;, may arise as the inverse
image of a unit ball under a restriction operator T is incorporated in the
diagram since we shall need this formulation at one important point.

Our restriction to problems which are linear is natural in view of the
goals of this paper. While this does rule out nonlincar problems (root
finding, for example), many of the important problems for which algorithms
are sought turn out to be linear. In particular, classical problems of integra-
tion, linear differential and intcgral equations, approximation and interpola-
tion are linear, as are many problems stemming [rom linear models in
computer science and the other fields.

To help fix some of the above ideas, we now review two basic results for
the linear case.

THEOREM 1. Given linear operators S: F, - F,, N: F, - K", and T: F,
—F, with Fo={feF;: TNl <1}, then

(a) 7(S, N) < oc =ker(N) nker(T) < ker(S), and

(b) d(S, N)=2sup ||IS(h)||: heker(N)nF,).

Proof. (a) Suppose, on the contrary, 3 he ker(N) nker(T) with S(h) # 0.
Then ahe V{0) = ker(N) n Fo Vae K. It follows that S(V(0)) is unbounded in
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Fig. 1. Schematic view of the general theory

F, and hence has infinite radius, so r(S, T) = ov. This contradiction
establihes the result.

(b) Given any feF,, and any g,, g,V (f), set h=(g,—g,)/2. Then
T <1 and heker(N), so heV(0). Thus ||S(g,)—S{g)ll = 2|IS(h)l
< 2sup !|IS(h)||: heker(N)nF,). Taking sups first over g, and g, in V(f)
and then over fe€F,, we get d(S, N) < 2sup ![IS(h)ll: heker(N}nF,}. The
reverse inequality follows by noting that for any heV(0) we also have
—heV(0) (F, is balanced). Thus 2|[S(h)| = |IS(h)—S(—h)l| < d(S, N) and,
since heV(0) was arbitrary, the proof is complete.

Since problems with an infinite radius of information are of no great
interest to us (there will always be infinite error yet every algorithm is
optimal!), we henceforth assume r(S, N) < 0. As a consequence of the above
theorem, we will then always have ker(N) nker(T) < ker(S).

For many of the same theoretical reasons that we concentrate on linear
problems, we now restrict ourselves to the study of algorithms which are also
linear. Such algorithms are desirable for a varicty of practical reasons as well,
which we briefly summarize. Linear problems appear to be natural for
problems in a linear setting. Indeed, many of the standard algorithms for
classical numerical problems (integration and interpolation for example) are
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linear. Linear algorithms tend to be simpler and easier to implement. Most
importantly, linear algorithms have small combinatorial complexity and
optimal linear algorithms can be formally shown to have nearly optimal
combinatorial complexity. In addition to this valuable efficiency in time, linear
algorithms also have small space complexity (if we ignore precomputations).
Details can be found in Traub and Wozniakowski [13], Chapter 5. Finally,
we note that, in some important classical works in numerical analysis,
linearity has been an assumption imposed on a class of algorithms being
studied. In the light of results we will present on the existence of optimal
linear algorithms, it turns out that this assumption is not necessary. Indeed,
as far as optimality is concerned, nonlinear algorithms do not help to reduce
the error in these and many other important cases.

3. An example

There are many standard problems that fit neatly into the framework we
have described. We mention a few of them briefly, saving our detailed
development for a more obscure but potentially enlightening example. This
example will also serve as a starting point for a subsequent counterexample.

Often F, will be a space of functions. Then F, might be its unit ball or
perhaps the convex balanced set generated by differentiation as a restriction
operator. Thus, with F; = C([0, 1]) (continuous, real-valued functions on

1
[0, 1]) and F, = R, S(f) could be the definite integral of f; S(f) = | f(r)dr. If
0

the information N(f) consists of n function evaluations f(t,), ..., f(t,), the
natural algorithms to consider include the various integration schemes
studied in a numerical analysis course. Which of these algorithms might be
optimal depends upon F, and the way the evaluation points ¢; are chosen.
Based upon a result to be presented subsequently, we can be assured that
there will be an optimal algorithm which depends linearly upon the function
evaluations f(t;).

To capture the idea of root finding, we might choose F, to be the set of
real functions f eC([0, 1]) with f(0) f(1) < 0. The nonlinear solution oper-
ator S simply maps f into its set of zeros. The observant reader will notice
that the codomain F, in this nonlinear case is not a linear space, but rather
the power set of [0, 1]. Indeed, the whole theory can be generalized (with
some inevitable loss of structure and power) to a surprising degree (see [15]).
Having made our apologies for going beyond our established framework, we
forge ahead by putting a pseudo-metric on F, by defining the distance
between two nonempty subsets X, Y =[0,1] by d(X,Y)=inf||x
—yll: xeX, yeY}. If we now restrict ourselves to algorithms that are single-
valued, we have captured the idea of seeking a real number that is “close” to
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some zero of f. Definitions of radius of information and optimality now go
through with norm replaced by pseudo-metric.

Assume that information for this problem is provided by fixing n points
tys ..., 1, on [0, 1] and evaluating each problem element f at these points. It
is easy to see that by judiciously using only the signs of the f(r;) and the
intermediate value theorem, we can approximate a root for any f to within
the radius of the maximum subinterval determined by the r;. By choosing the
n points equally spaced, a minimal radius of information results. Since we
know that f(0) f (1) £ 0, only one of the endpoints needs evaluation and this
minimal radius turns out to be 1/(2n). Readers familiar with a bisection
algorithm for root finding will not be overly impressed by this result, but
recall that our evaluation points were assumed to be independent of the
problem elements f. In the final section we briefly discuss the consequences of
relaxing this restriction.

Having touched on two familiar types of problems, we now look at a
more detailed example. Let both F, and F, be the space C([0, 1]) of
continuous real-valued functions on [0, 1] endowed with the sup-norm. Let
F, be the unit ball {feC([0, 1]): ||fll <1]. We take as our solution
operator the indefinite integral S: Fy — C[0, 1] defined by S(f)(x)

X

= | f(t)dr. The information for feF, consists of the real number N(f)
)]

1

= | f()dt. Thus our problem is, essentially, to approximate antiderivatives
1]

of certain functions defined on [0, 1] knowing only their definite integrals.
We offer no testimonials to the relevance of this problem in any meaningful
applied or theoretical setting, but it is of about the right subtlety to shed
light on the concepts of radius of information and optimal algorithm. We
now proceed to calculate these, introducing in the process some geometrical
ideas which will be used again later.

For each fixed xe[0, 1], consider the simpler problem with the same
information N and the real-valued solution operator S, on F, defined by
S.(f)=S(f)(x). The subset of the plane defined by Y,
= {(S:(/), N(f)): feF,)} is convex and balanced (this depends only on F,
having these properties and on the linearity of the operators involved as
suggested in Fig. 2a). There must then exist bounding parallel hyperplanes (in
this case lines) tangent to Y, at the symmetric points (—r,, 0) and (r,, 0).
Such a pair of hyperplanes need not be unique (see Fig. 2b). This geometrical
situation enables us to draw the following conclusions:

For each x, r(S,, N) =r,. Indeed, the subset S,(¥(f)) with maximum
radius occurs when N(f)=0. It is the image under S, of ker(N) N F,.

The radius of information r(S, N) for the indefinite integral S we are
working with is }, realized as the maximum r, value. This maximum occurs
when x =} (see Fig. 2c).
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For each x, a linear optimal algorithm for the problem consisting of S,
and N is determined by the slope of a bounding hyperplane tangent to Y, at
(re, 0). Specifically, if the parallel hyperplanes have equations t = uy+r,,
then any (S.(f), N(f))eY, must satisfy S,(f) <uN(f)+r, and S.(f)

> uN(f)—r,. Hence |uN (f)—S.(f)| < r. and the linear algorithm ¢, (N(f))
= uN(f) is optimal for §,.

If we now define @ (N (f))(x) = @.(N(f)) we do get a function ¢ that is
linear in y = N(f); but ¢(y) is not (unless y = 0) a continuous function of x.
As Fig. 2c indicates there must be a discontinuity at x = . A linear optimal
algorithm can be salvaged in this example, however, since we can find a
single bounding tangent hyperplane at (, 0) (indicated by the dashed lines in
Fig. 2c) for the union of all the sets Y,, xe[0, 1]. This generates a linear
algorithm which gives functions which are continuous (even constant) in x.

The optimal algorithm ¢* that results is @*(y)(x) =3y Vx. In terms of
earlier definitions, optimality says

Iﬂf—}fl <4 VfseF, VYxe[o,1].
(] 0

NiFL A

/%

AN sin

N(F)

c) ’

\
IARRLRAN

Fig. 2. Plots of {(S.(f), N(/)): feFo} =Y,
a) General picture
b) Nonuniqueness when x =}
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We conclude that the problem we have presented does have a linear
optimal algorithm, but it was a close contest. This closeness will be exploited
in a later section. We now survey the brief but interesting history of the
general question of when such algorithms exist for linear problems.

4. Linear optimal algorithms for linear problems

Table 1 summarizes positive and negative results on existence of linear
optimal algorithms. We will discuss the items in the table essentially in the
chronological order listed. Before proceeding we mention a small bit of
“prehistory”. Unitl very recently it has been the belief of those working in the
area that, despite the mounting evidence of counterexamples and the absence
of a reasonably general theorem, realworld or naturally occurring linear
problems do have linear optimal algorithms. Support for this “folk” result
has been abundant, bolstered by classical numerical algorithms and some
more recent applications of the work in information-based complexity. We
will not supply specific examples here, but we shall see that recent devel-
opments have shaken this belief somewhat.

Results 1 and 2 cover the important special case of problems whose
solution operator and approximating algorithms require a single scalar
answer for each problem element. The discussion of the Example in the
previous section gives a clear idea of the lovely proof of Result 1. Briefly, the
same tangent hyperplane (separation theorem) arguments are applied to the
balanced convex set Y = {(S(f), N(/)): feF,} in R"*!. As in our Example,
a linear optimal algorithm emerges neatly from the inequalities generated by
the tangent hyperplanes. See [13], Chapter 3, for full details.

Result 3 extends Result 1 to the important case where there is error or
uncertainty in the information. Since the general theory is motivated by the
increased realism gained in admitting limited knowledge of a problem
element f through its information N (f), a greater degree of realism suggests
that even N(f) is only known to within a certain interval of error. Even with
such perturbed information, linear optimal algorithms exist when F, = R.
The second part of Result 3 gives the first setting in which linear optimal
algorithms must exist where the problem codomain is an arbitrary normed
linear space. It is a forerunner and special case of Result 5.

Result 4 makes it clear, of course, that it is too much to hope that every
linear problem will have a linear optimal algorithm. Micchelli’s example
(which can be found in [13], p. 60) is cleverly contrived, but rather far
removed from any problem that might conceivably occur naturally. Result 6
gives a slightly simpler counterexample with problem codomain R? under the
Euclidean norm.
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Result § is the culmination of a series of more specialized results which
link the theory of optimal algorithms with the important idea of approxima-
tion by splines. Our plan here is to sketch a self-contained proof of the result
without relying on the theory of splines. A careful statements of the Result 5
now follows.

Table 1. Results on Existence of Linear Optimal Algorithms for Linear Problems

Year Reference Summary (LOA = Linear Optimal Algorithm)

1. 1965 Smolyak [11] 3 LOA when F, =R

2. 1976 OQsipenko [7] 3 LOA when F,=C

3. 1977 Micchelli-Rivlin [5] 3 LOA when F, = R and information is per-
turbed
d LOA when F, is a Hilbert space and F, is
unit ball

4. 1978 Micchelli [3) Counterexample with F, = R* and F, = R?
with an [* norm

5. 1980 Traub—Wozniakowski [13] 3 LOA when F, = T(F,) is a Hilbert Space
and T(ker(N)) closed in F,

6. 1985 Packel [9] Counterexample with F;, = R* and F, = R?
with an {2 norm

7. 1985 Packel [9] 3 LOA if allow extended range for S and ¢

8. 1985 Waerschulz—Wozniakowski [19} Class of powerful counterexamples with real

world overtones

THEOREM 2. Let Fy = {feF,: |T(f)l| €1} be generated by a restriction
operator T: F, — F, mapping F, into a Hilbert space Fy,=H and let
T(ker(N)) be closed in H. Then a linear problem determined by S and N on F,
has a linear and strongly optimal algorithm.

Proof. We break the proof into bite-sized pieces, referring to Fig. 3 and
relying on a few standard Hilbert space results as needed.

Given any y = N(f)eN(F,), the subset C = {T(g)eH: ge N~ '(y)}
= T(ker(N))+ {T(f)} is a convex and closed subset in a Hilbert space and
hence has a unique element of smallest norm. Denote this element by z(y). It
is also the case in Hilbert space (and geometrically evident in Fig. 3) that the
inner products <(t(y), T(h)> =0V heker(N) since C and T(ker(N)) are
“parallel” in H. Furthermore, t(y) is the unique member of C with this
orthogonality property.

Let g,, g€ N~ '(y) be such that T(g,) = T(g,;) =1(y). We show that
S(g,) = S(g,). Indeed, let h =g, —g, and note that heker(N). Then

IT@)I* =1IT(g2+hI* = IT(g2)+ TWI* = IT (@I +IT M,

where the final equality comes from the orthogonality of T(g,) and T(h) (the
“Pythagorean theorem” generalized to Hilbert space). It follows directly that
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IT(h) =0, so heker(N)nker(T). From Theorem 1(a) proved earlier, we
then have heker(S), so S(g,) = S(g,) as desired.

We can now define ¢*(y) = S(g), where g is any representative of
N~ 1(y) with T{g) = t(y). It is easily checked that linearity of ¢* with respect
to y results from the linearity of § and T and the previously stated
orthogonality property characterizing t(y).

Finally, the fact that ¢* is strongly optimal follows by showing that f[or
each y = N(f)eF,, ¢*(y) is a center of S(V(f)). To this end, choose
geN~'(y) with T(g) = t(y) and suppose ¢*(y)+keS(V(f)). We can restate
this (with the help of linearity) as S(g)+ S(h) €S(V (f)) with h eker(N) and we
must show that, symmetrically, S(g)—S(h)eS(V(f)). We may assume that
g+heV(f) (so ||T(g+h)| <1) since otherwise S(g+h) =S(g’) for g’ eV (f)
and we can redefine h as g'—g. Orthogonality of T(g) and T(h) now gives

IT(@—mi* =IT@+hI*< 1.

H

LT (Ker(n)

0

LT (Ntyv))=cC
Tiy)

om

slvir)

Sem ) m

Y

Ny

[ ]
y:N(f’

Kl'l
Fig. 3. Strongly optimal spline algorithm in Hilbert space setting
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Hence g—he FonN~'(y) = V(f) and S(g)—S(heS(V(f)). This estab-
lishes strong optimality of ¢@* and completes the proof of the theorem. We
mention without proof (see [13], Chapter 4) that ¢* is the unique strongly
optimal algorithm and the only optimal algorithm that is linear.

Result 7 resurrects, in an elegant but not totally satislying way, the
intuition that general linear problems ought to over lineat optimal algo-
rithms. To explain this we give a carefully stated theorem and a sketch of its
proof. Fig. 4 gives a diagrammatic representation of the theorem.

THEOREM 3. Given a linear problem defined by S: F, — F, and N on a
convex, balanced subset F, of F,, there exists:

(1) A compact Hausdorff space X such that F, is isometrically isomorphic
to a subspace F, of B(X), the bounded K-valued functions on X with the sup-
norm.

(i) A linear optimal algorithm @*: N(F,) — B(X) satisfying |j@* (N (/)
SN <r(S, NV feF,, where S(f) denotes the image of S(f) in F,.

Proof. (i) It is a standard corollary to the Banach-Alaoglu theorem that
any normed linear space is isometrically isomorphic to a subspace of C(X),
the continuous functions on some compact Hausdorff space X. Though we do
not need more details for our purposes, it is worth noting that the space X is
the unit ball of the conjugate space of X endowed with the weak* topology
and the isometric action is provided by the Gelfand map which imbeds F, in
its second conjugate F%*. See Packel [8] (or most other introductory
functional analysis texts) for details. We shall need the larger space B(X) to
hold our embedding.

(1) For each fixed xe X, consider the linear problem defined by N and
S.(f) = S(f)(x). By Results 1 and 2, there exists a linear optimal algorithm
¢*.: N(F,) — K such that

(1) llo* (NN =Sl S 7(S,, NN <r(S, N) V [eF,.

Letting x vary over X, we must now show that the linear operator ¢* thus
defined on N(F,) has its range in B(X). First note that

2) IS (A = 1SN SISO = IS

where the inequality results [rom WS ()| = sup NS (x): xe X}. Using (1)
and (2), we have for all feF,,

lo* (N(NN) ) < lo* (N(NNX) = S(NN+I8:())
< p* (N () =S (N +IS (N < r (S, N+ISI-

Since the final expression is independent of x, *(N(f))e B(X) and the proof
is complete.
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Fig. 4. Linear optimal algorithm with extended codomain

It is tempting to take the view, based on this result, that linear problems
do indeed have linear optimal algorithms. We must simply be willing to give
the solution operator (and its approximating algorithms) a codomain (namely
B(X)) which extends beyond its range. There are problems with this view,
however. The extended codomain is generally vastly larger and more compli-
cated than the original. In addition, the members of B(X) (other than
isometric images from F,) may have no real or abstract connection with the
members of F,. This leads to difficulties in relating a linear optimal
algorithm (assuming we can constructively find one) to the original problem.
However, the fact remains that a small but significant reformulation of the
standard linear setting allows for linear optimal algorithms in a very general
context. It is also possible that linear optimal algorithms might be obtained
for less drastic extensions to the codomain of S. We take up this question
briefly in the next section.

Finally, Result 8 is of considerable interest both in terms of its evolution
and its content. The idea behind the basic counterexample emerged from an
effort by Werschulz to model the problem of inverting a finite Laplace
transform within the information-based framework. He then observed that
the resulting linear problem could only have linear algorithms with infinite
error. Wozniakowsk: showed how to construct nonlinear algorithms with
finite error for such problems. By abstracting this example Werschulz and
Wozniakowski [19] develop a class of linear problems with radii of informa-
tion arbitrarily close to 0 for which all linear algorithms have infinite error.

Thus the positive thrust for the existence of linear optimal algorithms
made by Result 7. is swiftly and decisively by Result 8. In addition, Result 8
includes the *naturally occurring” problem of inverting a finite Laplace
transform (though it should be pointed out that one of the norms used to
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generate the counterexample is far from natural). Our faith in linear algo-

rithms for linear problems is alternately strengthened and shaken, leaving us
in a state of tantalizing mathematical ambiguity.

5. One more counterexample

We saw in the previous section that Result 7 (Theorem 3) has the drawback
of requiring a vastly extended codomain for the solution operator in order to
ensure a linear optimal algorithm. This section is motivated by the question
of whether the extended codomain B(X) might at least be shrunk to C(X).
We will exhibit an example of a linear problem in C([0, 1]) that has a linear
optimal algorithm with codomain B({0, 1]), but not with codomain
C([0, 1]). The example will require just minor modifications to the example
developed in Section 3.

As in Section 3, let F, = F, = C{([0, 1]) with the sup-norm and let F,
be the unit ball of C([0, 1]). Then the information operator is again N: F,

1

— R, N(f) = | f(1)dt. The solution operator is defined by S: Fo — C([0, 1]),
0

S(f)(x)=g(x) | f(dt, where
0

1, xeld 4,
g(x) =< 1/(1-x), xe(} 3],
4, otherwise.

Clearly the function ¢ is carelully contrived to make something happen
and a review of Fig. 2c should help to reveal the general intent. Indeed, for
xe[4, 2] the convex balanced sets Y, will, thanks to the g(x) factor, be
“stretched” so that their boundary points on the horizontal axis all coincide,
forcing a common radius of information r, = 1 (see Fig. 5). Recall that the
slopes of bounding tangent hyperplanes at (+r,, 0) for each fixed x deter-
mine linear optimal algonthms for the corresponding real-valued solution
operator S,. We conclude from the way such slopes must “jump™ at x =31
that any linear optimal algorithm for the problem determined by S and N
must be discontinuous at 3 and must hence require B([0, 1]) rather than
C([0, 1]) for its codomain. A little calculation shows, in fact, that any linear
optimal algorithm ¢* for the problem must satisfy

e <% xe[d 4,
W= -0, xed, 2.

23 -- Banach Center 21
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x=22/3 x=3/4

-5, (f)
3

x=1/4

Fig. 5. Plots of {(S.(f), N(f)): feFo} =Y, with g(x) factor

What have we gained for our efforts? It is tempting to conclude, based
upon the above example, that the extended codomain of B(X) in Theorem 3
cannot generally be shrunk to C(X). A little thought shows that this
conclusion would be premature. Even though the solution operator S has no
linear optimal algorithm with values in C([0, 1]), applying Theorem 3 lands
us in a larger and more mysterious underlying space X for which algorithm
values might conceivably be restricted to C(X) rather than just B(X).

The example, while not serving its initially intended purpose, provides a
pleasant surprise. With C([0, 1]) as the codomain™of the solution operator
(and of any approximating algorithm), the problem determined by S and N
has no linear optimal algorithm. Thus we have constructed, from a problem
which has at least some degree of naturality, perhaps the simplest counter-
example to date for the nonexistence of linear optimal algorithms for linear
problems.

6. Concluding remarks

The setting we have used for discussing error, as embodied in the definition
of radius of information and algorithm optimality, has been the traditional
“worst case” setting. Increasingly important in computer science are “average
case” models of error and complexity. By assuming the existence of a
measure on F,; (the problem domain), average case models for information-
based complexity can readily be formulated. Work in this area is in its early
stages, but a surprising variety of results paralleling the worst case model
have already !.cen obtained (see [4], [16], and [17]). At this time there is no
average case analogue for Theorem 3.

Our ‘-rief discusston in Section 3 of the nonlinear root finding problem
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restricted information on functions to evaluations at predefined points. If,
instead, the ith evaluation point t; can depend upon previous information
values f (1)), j <i, an important example of adaptive information arises. In
this case the well-known idea of root approximation by bisection naturally
occurs. We choose t; = 0 (to get the sign of f(0) and hence f (1)) and ¢, = §.
We then use the sign of f(3) and the intermediate value theorem to decide
adaptively upon what subinterval to iterate. With this choice of information
it i1s readily checked that the radius of information for the problem is
precisely 1/2" and that the bisection algorithm which always takes the
midpoint of the ith subinterval (if the process has not aiready terminated
with an exact 0) is optimal.

It is no surprise that adaptively choosing the information should be a
valuable strategy for this nonlinear problem. Indeed, we saw in Section 3
that restricting to information with n evaluation points chosen nonadaptively
leads to a much larger radius of information. For linear problems with linear
information of a given cardinality, it has been proved by Gal and Micchelli
(1] and by Traub and Wozniakowski [13] (and this, at first glance, may be a
surprise) that there always exists some nonadaptive information that will
ensure the minimum possible uncertainty. Recent work by Wasilkowski and
Wozniakowski [18] has extended this result to average case settings.

As the previous paragraphs suggest, information-based complexity has
many open problems and research directions. We indicate a few of them
here, referring the interested reader to {13] and [20] for a more substantial
list. Given a specific solution operator S, a domain F,, and a cardinality »
for the amount of information specified by N, it is often a nontrivial problem
to determine the optimal information operator N* for minimizing r(S, N).
Even if r(S, N*) = o0, one can sometimes fix a problem element f and
approximate S(f) by a rapidly convergent sequence of algorithm values
calculated for information operators with increasing cardinality. This forms
the basis for an asymproric setting for defining error, an area that is just
beginning to be investigated.

We have focused on theoretical aspects of information-based complexity.
There is also a considerable literature on applications of the theory to
problems involving interpolation, approximation (take the solution operator
‘S to be the identity), differentiation, integration, and differential equations.
Work in these traditional areas has in some cases confirmed and in others
called into question the optimality of classical algorithms, while introducing
new results and approaches. An extensive list of references can be found in
[13]. Given the generality of the theory and the ubiquitous nature of
problems with partial information, potential for a wide variety of additional
applications abounds. Some more recent areas of application include conver-
gence of price mechanisms in mathematical economics (where a key result in
the economics-directed paper of Saari and Simon [10] is closely related to a
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theorem in Traub and Wozniakowski [12]), computer vision (Lee [2]), and
time series prediction (Milanese, Tempo, and Vicino [6]).

Returning to the basic theoretical question considered in this paper, we

have surveyed a variety of positive and negative results on the existence of
linear optimal algorithms for linear problems. We hold out some hope for
additional, more general positive results. Meanwhile, if pressed for an answer
in three words or less as to whether linear optimal algorithms exist, we can
only respond in our most authoritative voice with a definite “yes and no”.
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