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First a semantical analysis of fair-wellfoundedness of while-programs with
nondeterministic assignments leading to a simple order-theoretic character-
ization of that notion is performed. Then fair-wellfoundedness is expressed in
the language of ALNA (Algorithmic Logic for while-programs with Non-
deterministic Assignments).

Introduction

‘Expressing total correctness of a fixed family of programs in a given
language requires expressing wellfoundedness for the same family of pro-
grams. It is a well-known result (see, for instance, [3] and [4]) that the
wellfoundedness of a predicate cannot be expressed in a language of type
L, while it can be expressed in one of type L, ,, (for instance as

~3x; x5...( X\ P(x;, X;+,)) with P a binary predicate).

Concerning logics for while-programs with nondeterministic assign-
ments, Apt and Plotkin [2] can express wellfoundedness in the framework of
Hoare-logics by using a language based on the u-calculus of Park with
ordinals (in fact, they allow two first order sorts, data and ordinals, and
second order variables, of arbitrary arity and sort, not quantified over but
such that they can be bound by the least fixed point operator).

Apt and Olderog [1] deal with fair-wellfoundedness by adjoining to a
do-od program P a set of instructions {including the random assignment
x:=7) by which a fair-scheduling function is computed, i.e., a function which
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chooses fair computations only from any fair-wellfounded computation tree
of P. Moreover, they formulate a Hoare-logic for do-od programs for
reasoning about fairness properties for those programs.

Gabbay, Pnueli, Shelah and Stavi [5] extend the language of temporal
logic by adding the modality until specifically to deal with fairness properties.

Mascari and Venturini Zilli [7] expressed the wellloundedness of while-
programs with nondeterministic assignments by a language of type L,, ., plus
modalities ¢ and [ of Algorithmic Logic, and defined a logic ALNA which
is an extension of NAL in Mirkowska [8].

The motivations to consider fair-wellfoundedness inside ALNA are the
following:

(i) The first one, common to all authors who deal with fairness problems
for nondeterministic programs, is, in particular, that fair-wellfounded compu-
tation trees allow to overlook some infinite computations in case they turn
out to be unfair with respect to termination.

(11) The second one is having the possibility of replacing in ALNA, under
fairness assumption, the wellfoundedness formula (rom [7] by a simpler
formula, as that of fair-wellfoundedness in this paper. Moreover, since the
axiom relative to Wh, , of ALNA in [7] is based on the wellfoundedness
formula, it can, under fairness assumption, be replaced by a corresponding
axiom based on the fair-wellfoundedness formula, so obtaining a logic for
fair programs that can be proved to be sound and complete in a way
analogous to that used for ALNA.

The notion of fairness that we assume for computation trees is essential-
ly fair reachability of nodes of the tree having a given property, as in Queille
and Sifakis [10]. So, in the case pf fair-wellfoundedness, fair reachability of
terminal nodes is assumed in this paper (see Definition 1 below), notion that
can be characterized in a natural way by cofinality in preordered multisets.
Hence our aim is to characterize fairness properties in computation trees
rather than define fair scheduling functions on computation trees.

Finally, it is worth mentioning that fairness issues in the framework of
parallel programs (and hence the relevant literature) are not explicitly
considered here. Of course, the parallelism that can be simulated as interleav-

ing inside computation trees obtainable via transition systems is considered,
in an indirect way.

This paper is organized as follows: Section 1 gives the syntax and
semantics of while-programs with nondeterministic assignments. Section 2
considers wellfoundedness as in [7], fair-wellfoundedness and their character-
ization. Section 3 gives the wellfoundedness formula as in [7] and considers
the fair-wellfoundedness formula in the language of ALNA,
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1. While-programs with nondeterministic assignments

1.1. Syntax. Let P(2) be the set of while-programs with nondeterministic
assignments (see [7]) as the least set ol programs, on the signature X
including equality, containing as atomic constructs

(1) [ the empty program;
(2) skip, the identity program:
(3) p: =1, propositional assignment, where p is a propositional variable in

Var, < @4(Z), and 7 is a formula in @4(2), the set of open classical formulas,
on X, including true and false;

(4) x:= y-0(y), nondeterministic assignment, where x, y are individual
variables in Var,,, < T4(Z), and é(y) is a formula in @,(2), to be read as “an
arbitrary y such that o(y), in x”; )
and closed under the following program connectives, for P, P, P, in P(X)
and for every y in &,(2):

(I) P,; P,, sequential composition of P, and P,;
(1) if y then P, else P, fi abbreviated as If, » p,, conditional composi-
tion of P, and P, or branching;

(I11) while y do P od abbreviated as Wh)_.p, iterative composition of P or
“tteration.

Notice that x:=1, with t in Ty(ZX), can be used as an abbrewviation for
x:=y-y=1,and x:="7? as an abbreviation for x:= y-y = y. Moreover, P*
occurs in the sequel as an abbreviation for P; P;...;P, k times.

1.2. Semantics. Let L,(X) be a language ol nondeterministic while-
programs in P(ZX), A a structure of signature Z, B, the two-element Boolean
algebra with unit element 1t and ff = 7111, A realization of Ly(X) in A and B,
is a mapping which assigns to every element of 2 an element of 4 or B, and,
moreover, assigns, via the usual notion of valuation v of Var,, in 4 and of
Var, in B, to every ¢ in T,(Z) and every y in ®,(Z) a mapping [¢t]: Val(A)
— A, ﬂy]]: Val(A, B,) — B, respectively, defined in the usual way.

Let States(A) be the set of all states, 1.e., of pairs (4, ), or simply v when
A is supposed to be fixed. A realization of P in P(Z) is defined by specilying
a transition system (Conl, —), where Conf = P(ZX) x States(A) is the set of all
configurations, with ¢ in Conf, and — = Conf x Conf is the transition relation
defined as the least binary relation in Conl such that, for a fixed A and with
vl y instead of {y](v) =1,

{skip, v) = (l_ J, v,
pi=1,0—<d 1 olly] /el
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X:i=y-0(y),v>— <F Ao [a/x]> for any a in A such that v[a/y]E é(y),
P p (P, 0> if P, =l
SRR {(P’;Pz, ey if (PLrY— (P YD,
Pey il rE-
Py, vy if rE ~-.

d e il v~y
(P;Wh,p, t)> if vEy.

{If. 1P Py vy — %
(Wh, p, v>**;

Let WPI < States”(A), n = 2, be an n-ary relation realized by P via a
transition system (Conf, —). For n=2. P is the input-output relation
realized by P.

Let— be the transitive closure of — and c¢,| the multiset of all ¢ such
that ¢y »c¢. A computarion tree T(c,) or T(P, v) 1s every transition tree with
Co. 1€, (P, 1), as label of the root, — as directed arc, and any other node
labelled by ¢ ifl ¢ 1s in ¢, —»¢. A singleton tree consists of one labelled node
only and it is easy to see that it is such iff ¢y = (x:=y-é(y); P, v) with P
possibly misstng and some r and 4(y) such that v[a/y1E d(y) for no a in A.
T{(c) is a proper subtree of T(cg), T(c) < T(ce), iff it is a computation tree
with root ¢ such that ¢, »c and with any other node ¢’ in ¢].

No distinction is made in the sequel between a node and its label.

Any terminal configuration ¢ in T(cy), i.e., a configuration such that ¢
— ¢’ for no ¢, is either successful (and then is of the form ad At "> for some

) or failing (and then is of the form ¢(P’, ¢') lor some v" and P # [ A 1tis
easy to check from the definitions that any failing node is of the form (x:
= y-8(v): P, v> with P possibly missing.

A computation of T(c,) is every —-maximal path in it. The empty
computation consists of a single terminal node only.

Any finite computation of T(c,) can be either successful or failing
according to its terminal configuration. The existence of some failing compu-
tation in a computation tree can be expressed in the lan I_guage of ALNA, as
shown in [7]. In every successful computation, ¢ in ¢ i p) is a (fnite)
result of P from v in T(cy) = T(P, v}). For a characterization of such results
for every while-program see [7], where a characterization from [8] is
extended to the unbounded (countable) nondeterminism.

A computation tree is finite branching iff every node has at most finitely
many arcs, infinite branching ifl it has at least one node from which
countably many arcs start. It is easy to see that any node of T(c,) from
which k > 2 arcs do start is of the kind (x:=y-4(y); P, v>, with P possibly
missing and v, d(y) such that for k elements a in A (k > 2), v[a/y]E o(y).
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Finite (and infinite) branching can be expressed in the language of ALNA, as
1s shown in [7].

By using computation graphs instead of trees some distinctions among
infinite computations can easily be made, as in [12].

2. Wellfoundedness and fair-wellfoundedness

The notion of wellfoundedness of a computation tree is preliminary to that
of total correctness and its negation ensures that there are some infinite
computations in the tree.

For all v, y, 8(y), Py, P,, T(skip, v), T(p:=7y,v), T(x:=y-3(y), v) are
wellfounded; T(P,y; P,, v) is wellfounded iff T(P,, v) is and, for every v in
WP]](U), T(P,, v) is wellfounded; T(lf.,,_pl_pz, v) i1s wellfounded iff either v w,;
and T(P,, v) is wellfounded or v|= ~y and T(P,, v) is wellfounded. Follow-
ing [7], to deal with the wellfoundedness of T(Wh, p, v) the notions of If-
approximation and k-If-approximation are used.

DeFintTION OF IF-ApPROXIMATION. For all p, P, v in an arbiirary count-
able semantical structure, T(Wh, p, v) is If-approximable in case (i) or (i1) holds.

(i) There exists k < w such that in every computation of T(Wh, p, v) the
number of iterations of P is less than or equal to k, so that [Wh, p[(v)
= [I* pip ] (V). T(Wh, p, v) is then said to be If-equivalent.

(i) There exists a level & of T(Wh, p, v) (i.e,, a family of proper subtrees
of it whose roots are all reachable by the same number of — from ¢g) such
that every T’ in % is If-approximable ( ¥ is then said to be If-approximable).

DEFINITION OF k-lIF-APPROXIMATION, AND OF (!, k)-IF-ApPROXIMATION. For
all y, P, v in an arbitrary countable semantical structure, T = T(Wh, p, v) is
k-If-approximable, k >0, iff there exists />0 such that T s (I, k)-If-
approximable, where

(@) T s (0, 0)-If-approximable ifl it is If-equivalent;

(b) T is (I, 0)-If-approximable iff for every (0, 0)-If-approximable T < T
such that no T" with T < T is (0, 0)-If-approximable,

T=Ta<T,<..<T_.,<T=T

for some T,,...,T,_; such that every T, 0<j<I/-1 s (j, 0)-If-
approximable and no T” with T, < T" is (j, 0)-I[-approximable;

(¢} T is (I, k+ 1)-If-approximable, 1 > O, iff for any k-If-approximable T
< T such that

T=T,<Ty<..<T_,<T=T

for some Ti, ..., T,_, such that every T;, 0 <j < I-1, is (j, K+ 1)-If-approxi-
mable and no 7" with T, < T" is (j, k+ 1)-If-approximable.
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We now state two properties proved in [7] for all y, P, v in an arbitrary
countable semantical structure:

WELLFOUNDEDNESS LEMMA. T(Wh, p, v) is wellfounded iff it is If-approxi-
mable.

WELLFOUNDEDNESS THEOREM. T(Wh, p, v) is wellfounded iff it is k-If-
approximable for some k > 0.

For examples of wellfounded computation trees of the considered family
of programs see [7] and [6].

Computation trees aliow the definition of functions expressing schedul-
ing strategies on their nodes. Some scheduling functions assume fairness
criteria in choosing computations with a given property. That is the case for
instance in [1], where a scheduling function, written in the form of a set of
instructions, is added to the given programs. Every fair scheduling function is
defined on a computation tree which is previously assumed to be fair with
respect to the property considered. As to termination, a fair strategy on
computation trees presupposes a definition of a fair-wellfounded computation
tree, 1.e., of a computation tree such that if any computation unfair with
respect to termination is overlooked, in it, all its remaining computations
turn out to be finite.

Let us assume the notion of unfair computation and of fair-wellfounded-
ness as in Definition 1 below.

DerFiNITION 1. Let T(P, v) be a computation tree with F as its nonempty
multiset of terminal nodes and let C be an infinite computation in it.

* (1) C is termination-unfair in T(P, v) iff for every configuration ¢ in C
there exists some ¢ in F such that ¢-—»cC.

(i) T(P,v) is fair-wellfounded iff any infinite computation in it is
termination-unfair.

So fair-wellfounded is for instance any computation tree of the following
kind:

€g

C1./\- )

Zp .

By Definition 1, every finite computation is termination-fair and every
wellfounded computation tree is fair-wellfounded.

It is possible to have an order-theoretic characterization of fair-wellfound-
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ed computation trees, which distinguishes wellfoundedness, by the notion of
cofinality.

Let (X, <) be a preordered multiset with ¥ a nonempty multiset
properly included in X.

DEerINITION 2. Y is cofinal in X iff for every x in X there exists y in Y
such that x < y. .

THEOREM. For every P in P(X) and every v in Val(A, By)

(1) T(P, v) is fair-wellfounded iff the multiset of all its terminal configura-
tions is cofinal in T(P, v).

() T(P, v) is wellfounded iff the multiset of all its terminal configurations
is cofinal in the set of all computations of T(P, v).

Proof. T(P, v) can be considered as a multiset c,|, with ¢, = (P, v),
preordered by the transition relation —. In fact, — is transitive, not reflexive
and not antisymmetric (it is possible that ¢, »c,, ¢, »¢; and ¢| # ¢,, 50
that — is not in general a partial order). The multiset F of all terminal ¢ in
col 18 properly contained in cy] when F 1s not empty. Let C be an arbitrary
computation in T(c¢g) and let C < ¢ mean that for every ¢ in C there exists ¢
in F such that ¢ »c or ¢ =¢-T{(cy) can also be seen as a multiset of C.

(=): (i) If T(co) is fair-wellfounded, then an arbitrary C in it is either
. finite, and then F is cofinal in the set of all C, or termination unfair, and
then F is disjoint with C and such that for every ¢ in C and for some ¢ in F,
¢-»c. Since C is arbitrary in T(cy), F is cofinal in T(cy).

(i) If T(co) is wellfounded, then F is cofinal in the set of all C of T(cg).

(Notice that cofinality in the set of all C of T(c,) implies cofinality in
T(co) and not vice versa).

(=): (i) If F is cofinal in T(c,), then for any infinite C in T(c,), F is
disjoint with C and ¢ —»¢ for every ¢ in C and some ¢ in F, i, any infinite
computation in T(cy) is termination-unfair, i.e, T(cy) is fair-wellfounded.

(n) If F is cofinal in the set of all computations of T(cy), no infinite
computation can be in it, since C < ¢, for every C in T{(cp). =

Let = be a given property of configurations in T{cy). The notion of
fairness with respect to n as fair reachability in T(c,) of all nodes with
property © (see [10]) can be analogously characterized by cofinal multisets.

3. Fair-wellfoundedness in ALNA

Let us briefly give the syntax and semantics of a language of ALNA. For a
more extensive definition see [7].

3.1. Syntax. Let L(ZX), a language over signature X, be an extension of
Ly(Z) in Part 1 of the present paper, whose set @ of formulas is such that

28 — Banach Center 21
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(a) ® > @,, where @, is the set of classical first order formulas on the
alphabet of L(X), without quantifiers;

(b) If o is in @ and P is in P(2), then { Py and (I P are in @;
and is closed under propositional connectives (~, v, A. —), quantifiers
(4 x, V¥ x), infinite disjunction and conjunction (\X/ ®;, /¥\ ;) with a finite

set of free individual variables in (¢;, | < w).

3.2. Semantics. For a realization of L(X), let A, B,, v be defined as in 1-
2. A realization of any term and of any open formula in L(XZ) is defined as
usual. Realization, in 4 and B,, of formulas in &—@, is such that it
associates to every formula an element of B, as follows, with 4 omitted,
being supposed to be fixed:

vE O Po iff there exists some successful computation in T(P, v) whose
result satisfies ¢.

vE OPeo iff all computations in T(P, v) are successful and their results
satisfy .

Realizations of ~@, @ v, @ A Y, @ =y, Ix ¢, Vx-y, \).(/(P"' /X\‘P.—

are defined as usual.

For some program properties expressible in ALNA see [7] and [6]. Let
P in P(ZX) be said to be fair-wellfounded in case every computation tree of P
IS.

FAIR-WELLFOUNDEDNESS PROPOSITION. A program P in P(X) is fair-well-
Jounded iff for every realization A, the formula Fair-W{f (P} inductively defined
as

Fair-Wf(skip) = true,

Fair-Wf(p: = j) = true,

Fair-Wf(x; = y-J(y)) = true,

Fair-WI(P; P,) = Fair-Wf(P)) A ~ { P, (~ Fair-WI(P,)),

Fair-WI(If, p p,) = (7 A Fair-Wf(P))) v (~ 7 A Fair-Wf(P,)),

Fair-Wf(Wh, ;) = N\ O (~53 v \W/ OIffp~7)
is valid in A. k "

Proof. For every countable semantical structure 4 and every v in A:
(I) [Fair-Wi (skip)] 4 (v) = [Fair-Wf(p: = )], () = [Fair-Wf(x:= y- ()], (v)

= ltrue], (v) = 1t
because all their computation trees are wellfounded.
() [Fair-Wf(P) A ~ O Py (~ Fair-WI(P,))],(v)
= [Fair-Wi(7 3 [~ O Py (~ Fair-WE(P,)],(v) = 1t
i TFair-WI(P)],(v) = 11,
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e, T(P,.v) is fair-welfounded, and, moreover,
[~ O P (~ Fair-Wf(P3))]4(v) =11,

i.e., every successful C in T(P,. v) has terminal configuration <F J, v) such
that T(P,, ) i1s lair-wellfounded; otherwise

[Fair-WE(P,) A ~ O P, (~ Fair-Wf(P,))],(v) = f.
By the semantics of sequential composition,
|Fair-WE(Pj A ~ O Py (~ Faie-WE(P))[ () = 1t
iff T(Py; P,.v) is fair-wellfounded.
(D) [y A Fair-Wf(P))) v (~y A Fair-Wf(P,))] ((v)
= (714 (®) ~ [Fair-WE(P) ], (0)) U ([ ~ 7] 4 () » [Fair-WE(P,)], (v))
it ff vEy and T(P,,v) is fair-wellfounded or

v~y and T(P,,v) 1s fair-wellfounded,
f  otherwise.

Il

By the semantics of conditional composition
(7 A Fair-WE(P,)) v (~ 7 A Fair-Wf(P,))],(v) = 11

ifl. T, p,.p,, v) is fair-wellfounded.
V) [JNDOIR(~ 7 v W OIRe ~ 9 )
= [[D lf«f.?(’” Yy Vv \X/ OIQ‘P ~ ?]A(U)

k<o "

(1t iff for every k <o, [OIffp(~y v \X/ OIffp ~N]a(v) =11, ie,

n

every C of T(ffp.v) has d 155 such that
= [~y v \WOoIre ~31,@ = [~y O [\/ O ~ 7]4 ()

=1t ie. either 5= ~y or |J [OIffp ~ ], (D) =11, ie,, some

n<w

T(f 3", v) has some successful computation,
L Jf otherwise.

By taking into account that to every finite C' in T(Wh, p, v) there
corresponds a C in T(If;“p, v), for some k < @, such that C and C’ have the

same sequence of states, and vice versa, to every C with (’_ ], vy, VE ~ 7,
in T(If% », v) and to every C with (F |, 0>, O ~ 7 in some T(If%}", v), there
correspond some successful C' in T(Wh, p, v).

Since for every k < w there exists some n <w such that o[ Fair-
WE(Wh, ;), the multiset of ([ _, 5> in T(Wh,p, v) with either 5= ~ y or
o \X/ OIfyp ~ 7 is cofinal in T(Wh, g, v). By the given characterization,

that happens iffl T(Wh, p, v) is fair-wellfounded. »
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Notice that the fair-wellfoundedness formula can be written by using

iteration quantifiers.

The wellfoundedness of P, Wf(P), is expressed in [7] as follows:
Wi (skip) = true,

Wi(p:=1y) = true,

WE(x:= y-d(y) = true,

WE(P,; P;) = WI(P;) A ~ <>Pl(~ Wf(PZ))7

WE(If, p p,) = (7 A WE(P))) v {~ 7 A WE(Py)),

WE(Wh, ,) —\)(/((nk) I, e (... () I, ~ 9)..)),

where (n) If, p stands for \)(/\/ If,pe, \/ I, stands for
M

\/I

\/I Pq)) .) (n times) and \/Ifcp stands for \)(/ [:llf"p(p v . (So,

in the wcllfoundcdness formula, lteratlon quantifiers are not enough).

(1]
(2]
(3]
[4]
(5]
(6]
[7]
(8]
(9]
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