MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21
PWN — POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

SQUARE-FREE AND OVERLAP-FREE WORDS

A. J. KFOURY

Department of Computer Science, Boston University, U.S.A.

Words not containing repeated subwords (twice or more times) have been
studied in formal language theory. They also have various applications in
mathematical games. Our interest in them is the result of recent work in
logics of programs. '

In [3] and [8], infinite words not containing overlaps are used to settle
various open problems concerning the “unwind property” and first-order
logics of programs. A close examination of [6] and [7] will show that their
proof technique also depends on the existence of infinite words not contain-
ing repeated subwords.

Among other results in this report, we show that there are uncountably
many doubly-infinite words over a binary alphabet which are overlap-free
(Theorem 2.6), from which it easily follows that there are uncountably many
doubly-infinite words over a ternary alphabet which are square-free (Corol-
lary 2.7). We also show that there is a very simple (“(nlog n) algorithm to test
whether a word of length n over a binary alphabet is overlap-free (Theorem
3.10), from which we derive a (low) polynomial-in-n bound on the number of
overlap-free words of length n over a binary alphabet (Theorem 3.11).

Several of the results presented below are already known, or closely
related to results that are already known. Crochemore has developed a ¢ (n)
algorithm to test whether a word of length n is square-free [2]; this
algorithm can be adapted to test whether a word of length n is overlap-free.
However, our asymptotically slower (’{nlogn) algorithm has a simple de-
scription (see subsection 3.9 below); and, moreover, it allows us to determine a
polynomial bound on the number of overlap-free words over a binary
alphabet which is tighter than the previously known bound (ours is ¢(n°) for
some e < 2.8 whereas Restivo’s and Salemi’s is (/(n'°¢'%), mentioned in [1]). It
is also known that there are uncountably many (singly) infinite overlap-free
words over a binary alphabet, and uncountably many (singly) infinite square-
free words over a ternary alphabet (see Problems 2.2.3, 2.3.6, and 2.3.7, in

286 A. J. KFOURY

[4]): both of these results are immediate consequences of our Theorem 2.6
and Corollary 2.7.

Acknowledgements. The questions examined in this report were raised in a
NSF research proposal, jointly written by J. Tiuryn, P. Urzyczyn, and myself.
Jean Berstel guided me through the recent literature on square-free and
overlap-free words. Tom Orowan was responsible for putting this report in
its final typewritten form.

1. Notation and preliminary results

We generally follow the notation and terminology of Chapter 1 of [5].
In addition, we reserve early Greek letters (a, f and y) for specific words
we shall define in the course of our presentation, and late Greek letters
(n, ¢, 0 and t) for variables ranging over the set of possible words. Late
Roman letters (x, y and z) will stand for symbols from finite alphabets.

w is the order type of the natural numbers, and w*+® that of the
integers. Z denotes the set of integers. An w-word (or a right-infinite word)
over a finite alphabet X is a member of X*; an w*-word (or a left-infinite
word) over X is a member of XZ*".

A word o contains a square if it contains a finite subword of the form
77, where 7 is non-empty. A word ¢ contains an overlap if it contains a finite
subword of the form gto’ such that gt =1¢’, where p, t, and ¢ are
non-empty. Square-freeness implies overlap-freeness, but not the other way
around. No word of length > 4 over a binary alphabet can be square-free;
on the other hand, there are overlap-free words of unbounded length over
a binary alphabet.

If ¢ is 2 word over a binary alphabet, & denotes the complement of &,
i.e., the word obtained from ¢ by replacing every 0 by 1 and every 1 by 0.

1.1. DeriniTion. We define an infinite sequence ag, ,, a5, ..., of words
inductively:
=0 and a,=1, and for al n>0, oa,,, =a,&, and

Upty = a—nam
a, is a prefix of a,,, for every n. The limit of the sequence (a,|n = 0) is
therefore well-defined: we denote the resulting w-word by «,,.

1.2. LEMMA. a, is overlap-free (and, therefore, so are a, and a,a,
for every n = Q).
Proof. One proof is given in Chapter 1 of [S] =

The following is a useful characterization of overlap-freeness we shall
use repeatedly in the sequel.

SQUARE-FREE AND OVERLAP-FREE WORDS 287

1.3. LeMMA. A word o is overlap-free <> o does not contain a finite
subword of the form xtxtx <>0 does not contain a finite subword of the form
ttx (or xtt) where T is non-empty and x is the first (or last) symbol of t.

Proof. Straightforward. =

2 Infinite overlap-free words

We start with a lemma we shall use again in Section 3.

2.1. LeMMA. Let o =x,x;...x,€10, 1}* be an overlap-free word of
length n = 5.

(1) If x;x3x3x,€{0110, 1001, 1010, 0101} of if X;X3X3X4Xs€E
e 100100, 11011}, then for all even j, 4 <j <n, x; =X;_,.

(2) If x,;x3x3x4€40011, 1100, 0100, 1011} or if X, X;X3X4Xs€E
€ 100101, 11010}, then for all odd j, 3 <j<n, x;=%;_,.

It is easy to check that all prefixes x, x; x4 x4 not mentioned ir (1) and (2)
contain an overlap.

Proof. (1) By induction on even j > 4. The result is clear for j=4.
Let then k be an even integer, 4 <k < n, and assume the result is already
proved for every even j, 4 <j <k. With no loss of generality, suppose
X, _3%-2=0l. This forces x,_, x, # 11, otherwise x,_,x,_, x, would be
an overlap. We next show that x,_, x, # 00.

By the induction hypothesis, x,_sx,_.4 =01 or 10. (In case k =6,
Xi_sX-4 may also be 11, but then in this case x,_,x =10)
Il x,_sx,_4 =01 and x;,_, x, = 00, then x,_s...x,_,; would be an overlap.
If x,_sx.,-4=10 and x,_, x, = 00 (the latter condition forcing x,,; = 1),
then x,_5...x.+; would be an overlap.

(2) By induction on odd j > 3. The proofl is similar to (1) above, and
we omit it. =

The following result is a useful characterization of doubly infinite words
that are overlap-ree.

22. LemMa. o€{0, 1}°*® is overlap-free <> for every n=0,
ce {a"’ iﬂ}w°+w

Proof. (=) This follows from Lemma 2.1. Consider first the case n = 1.
It is easy to see that, among the 12 patterns of length 4 or 5 mentioned in
Lemma 2.1, neither 00100 nor 11011 can appear as a subword of a double-
infinite overlap-free word. The occurrence in o of any of the remaining 10
patterns implies that the infinite suffix (respectively, the infinite prefix)
starting with the first or second symbol of this pattern can be viewed as
a word in {01, 10} (respectively, {01, 10}*). Hence, oe {01, 10}*"**

| = o' tw
= %y, al} .

288 A. I. KFOURY

As a doubly-infinite word over the alphabet {«,,d&,}, ¢ must be
overlap-free, otherwise it would not be so, as a word over {0, 1}. By the
rcasoning used above, we conclude again that oela,a, & a,'® "
= {a,, &)" Proceeding inductively, we obtain the desired result for
every n = 0.

(=) Suppose o is not overlap-free and that for every n=0,
oela,, @,}° ", and we shall get a contradiction. If ¢ contains an overlap 1,
then 7 must appear as a subword in one of the following: «,, &, %, a,, or
a, %, for some sufﬁcnently large k. But o, @,, o, a, and &, &, are all overlap-

free. =

2.3. CoroLLARY. There are exactly 4 doubly-infinite overlap-free words
over {0, 1} which contain a, or &, as an infinite suffix. These are:

R _ =R _ SR~
ﬁl =0y Xy, ﬂZ —a a (L] ﬂ] = Uy Xy, ﬁd» = Uy %y,
where aR denotes the reverse of «, (i.e., a, written backwards).

Proof. This easily follows from the left-to-right implication in 2.2, and
is omitted. =

For the analysis to follow we need infinite binary sequences, which we
call profiles. We thus call any member of |+, —|® a profile. (We use |+,
— instead of {0, 1} for notational convenience.)

Suppose g {0, 1!1°*®. We think of ¢ as a doubly-infinite sequence of
symbols indexed with the integers, 0 = (x;| ie Z). If 6 is overlap-free, then for
every n >0, ¢ may be viewed as a word over la,, a,}, by the preceding
lemma. The profile of ¢ at i, denoted PROFILE (o, i) will give the relative
position of symbol x; in a, or &,, for every n > 1, when ¢ is written as a

1w+ w

sequence in {a,, &,)

The following is a precise definition of PROFILE (s, i) = y, v, ¥,... For
every n = 1, write ¢ as a sequence in }{a,. @, *“. If x; occurs in the ﬁrsl half
of a, or &,, then y, = +; if x; occurs in thc second half of «, or a,, then
Vo= —.

PROFILE(o, i) is uniquely defined because when o is written as a
sequence g’ over la,, &,, # = 1, there is a unique way of doing it. Indeed,
using the fact that ¢’ is overlap-free, it is easy to see that no occurrence of «,
or &, can be of the form ngn’, where ge la,_,, @,_,] while = and =’ are both
non-empty.

Suppose, for example, we consider x; in ¢ and the few symbols preceding
and following x; say:

X2 Xi—1 X Xirr X+ 2 X3 Xiva Xivs Xiv o Xi+7 Xivg Xit+ 9

-1 0 01 0 1 1 0 0 1 1 O

Xiv10Xi+ 11 Y+12 X413

1 0 0 1

SQUARE-FREE AND OVERLAP-FREE WORDS 289

then PROFILE(q,i) = + - + + ..., because x;x;+; =ay, Xj-2X—1 X Xj+1
=0p, Xj—2-..Xj45 =03, X;_2...X;413 = U4, €lC.

A profile p in |+, —|* stabilizes to + (respectively, —) if all but finitely
many of its symbols are + (respectively, —).

24. LeMMA. Let pe{+, —}* be an arbitrary profile.

(1) If p stabilizes to + (respectively, —), there is a unique non-negative
(respectively, negative) integer k such that p = PROFILE (f,, k), where the
symbols of the suffix a, of B, are indexed with the non-negative integers and
those of the prefix al with the negative integers.

(2) If p does not stabilize to either + or —, there is a doubly-infinite
overlap-free word ¢ = (x| ic Z) with x;€ {0, 1} and an integer k such that p
= PROFILE (0, k). o is unique up to the isomorphism o +—& (which replaces 0
by 1 and 1 by Q). '

Proof. We only prove part (2), the proof for (1) is similar. In (2) we let k
=0, and we construct the desired o = (x;| ie Z) in stages. The segment of ¢
constructed at Stage n = 0 will have length 2". Stage 0: Let xo = 0. Stage n
+1: Suppose the word constructed at Stage nis x; X;4;...x;, where i 0 < j
and 1+j—i=2" If the (n+1)st symbol of p is +, we construct

x;...xjxj+,...xj+1+j_i,

thre xj+l...xj+1+j+,-=x,-....)_cj. If the (n+1)St SymbOI Of p ls —, w¢E
construct

x,-_l_j+,-...x,-_1xi...xj,

where x;_;_j4;...x_; =X;...X;. It is straightforward to check that the
resulting ¢ is unique up to the renaming of the alphabet symbols 0 and 1. =

Let p,qel+, —1° p and q are equivalent, in symbols p ~gq, if as
functions from the natural numbers to |+, —} they agree almost every-
where. In particular, all profiles that stabilize to + are equivalent to each
other, and likewise for all profiles that stabilize to —.

2.5. LeMMA. Let p, ge {+, —}® two profiles which do not stabilize to
either + or —. Then p x~ q<>there is a doubly-infinite overlap-free word o
=(x;] ie Z), x;e{0, 1}, and integers j and k such that p = PROFILE (g, j)
and q = PROFILE (o, k).

Proaf. (=) The proof is similar to that of Lemma 2.4. Increasingly larger
segments of the desired o are constructed in stages. If p and ¢ disagree only
up to their nth symbol (inclusive), then in Stage O, Stage 1, ..., and Stage n
—1, two separate segments of o are constructed. At Stage n, the two
segments each of length 2"~ ! are merged into one of length 2". After Stage n,
only one segment is constructed at every stage. The details are omitted.

(<) If p= PROFILE (s, j) and q = PROFILE (o, k) do not stabilize to

19 — Banach Center 21

290 A. 1. KFOURY

either + or —, then for a sufficiently large n, x; and x, will appear in the
same a, or &, (when ¢ is written as sequence over la,, @,}). =

The right-to-left implication in 2.5 maps every indexed doubly-infinite
overlap-free word ¢ = (x;| i€ Z) to an equivalence class of =. Suppose we
have another indexing of the same word, ie, ¢’ =(y;| ie Z) and there is a
fixed j such that y; = x;,; for all i. It is easily seen that ¢ and ¢’ are mapped
to the same equivalence class of =. In the next proof we shall therefore
ignore the indexing of doubly-infinite overlap-free words.

2.6. THeorReM. There are wuncountably many overlap-free words in
10, 1),

Proof. Consider the set 4 < {+, —1® of all profiles which do not
stabilize to either + or —. We denote by A/~ the set A modulo the
equivalence relation ~. Let B be the set of all doubly-infinite overlap-free
words over {0, 1} excluding the words B,, B,, f;, and f, of Corollary 2.3;
and define the equivalence relation ~ on B by: ¢ ~1t iff 1 =¢. Each
equivalence class in B/~ contains exactly two words. By Lemma 2.4 and 2.5,
there is a bijection between A/= and B/~. It is easy to verify that A/ x is
uncountable, which in turn implies that B/~ is uncountable. =

2.7. CoROLLARY. There are uncountably many square-free words in
0, 1, 21«7,

Proof. As in the proof of 2.6, let B be the set of all doubly-infinite
overlap-free words over {0, 1} excluding the words f8;, f,, f; and B,. Let C
be the set off all doubly-infinite square-free words over {0, 1, 2}. We define
an injection f from B to C, from which the desired conclusion will follow.

Suppose o e B. Note that ¢ does not contain subwords of the form 000
nor of the form 111. f (o) is obtained by changing every subword 00 to 02,
and every subword 11 to 12. It is easy to see that fis a one-one map. That
f(e)e C follows from: f (o) not square-free = o not overlap-free, which is
easily established by considering the three possible cases of a square t7 in
f(6), namely, © may start with a 0, or 2 1, or a 2. Details omitted. =

From the previous results it immediately follows that there are uncount-
ably many overlap-free words in [0, 1)“, and uncountably many square-free
words in ,0, 1, 2}“.

3. Finite overlap-free words

The following is a restatement of Lemma 2.1, more convenient for the
analysis of this section.

3.1. LemMma. If 6 €0, 1* is overlap-free of length > 17, there is a unique
way of decomposing o into three parts: ¢ = ngn’ where n, '€ |4, 0, 1, 00, 11}
and 0€!01,'10)". =

SQUARE-FREE AND OVERLAP-FREE WORDS 291

The = and #n’ in 3.1 are determined according to the 12 patterns
mentioned in Lemma 2.1. Clearly, once = is determined, so is n’. If ¢ has as a
prefix one of the first four patterns in 2.1.1:

0110, 1001, 1010, 0101,

then = = 4; if ¢ has a prefix one of the remaining two patterns in 2.1.1:

00100, 11011,

then n =00 or 11; and if ¢ has as a prefix one of the six patterns in 2.1.2:

0011, 1100, 0100, 1011, 00101, 11010,

then # =0 or 1.

For the case of overlap-free words ¢ of length < 6 not in {0, 1, 00, 11},
a decomposition of ¢ in the form prescribed by Lemma 3.1 is always
possible, although it may not be unique (e.g., let ¢ = 001011 which admits
two such decompositions, according to whether 7 = 0 or n = 00).

A unique decomposition in the form prescribed by Lemma 3.1 is
sometimes possible for words ¢ that are not overlap-free (for example, let o
= 001100110), and this is the reason why algorithm ./ below may terminate
successfully even when the input word o contains an overlap.

3.2. LemMa. Let e {01, 10}* and o' be obtained from ¢ by mapping
consecutive occurrences of 01 and 10 into 0 and 1, respectively. Then g is
overlap-free < o' is overlap-free.

Proof. Straightforward. =

3.3. ALGoriTHM . We would like to develop an algorithm to test
whether an arbitrary e {0, 1}* is overlap-free, based on the following
strategy. At the first iteration we set g, = 6. At the nth iteration, n > 1, we
carry out the following steps:

1. If 0,40, 1, 00, 11}, terminate successfully.

2. Decompose ¢, as mw,g,m,, Wwith =, m,e{4,0,1,00, 11} and
¢.€ {01, 10} *. If this is not possible, terminate unsuccessfully. If ¢, has more

than one such decomposition, take n, as short as possible (e.g, if o,
= 001011, take =, = 0 rather than =, = 00).

3. Define ¢,,, from g, by mapping consecutive occurrences of 01 and 10
into 0 and 1, respectively, and go to the (n+1)st iteration. =

By Lemma 3.2, if the initial ¢ is overlap-free, .#/ must terminate
successfully. However, ./ may also terminate successfully even if the initial ¢
is not overlap-free. Thus if ¢ = 001100110 (not overlap-free), &/ terminates
successfully at the third iteration:

292 A. J. KFOURY

Ist iteration: ¢, = 001100110

n, =0
e, = 01100110
=4

2nd iteration: o, = 0101
My, =4
g, = 0101
=4

3rd iteration: gy =00

At every iteration of & in the above example, there 1s a unique decomposi-
tion of o; in the form prescribed by Lemma 3.1, even though the initial o is
not overlap-free.

Our next task is to derive an algorithm % from & which will terminate
successfully just in case the initial o is overlap-free.

34. Lemma. Let n, w'e {4, 0, 1, 00, 11}, 0e {01, 10}* and |o| > 4. Then
non’ is overlup-free <> both mp and gn’' are overlap-free.

Proof. The left-to-right implication is immediate. For the converse,
assume both mp and ¢n’ are overlap-free but that nen’ is not, and we shall
get a contradiction. Under this assumption, |n| # 0 and || # 0. Because g is
of even length, not both |n| = 1 and [n'| = 1, otherwise mgn’ would not be of
the form t1x where x is the leftmost symbol of 7. With no loss of generality,
assume |n| = 2. This implies that = = xx and n’' = x (or xx), where xe {0, 1},
with the shortest overlap in ngr’ being xxpx (or xpxx). But if ge {01, 10} *, it
is now easily checked that both ng and gz’ contain an overlap, contradicting
the initial assumption. =

In the preceding lemma we cannot ignore the condition |g| > 4 in the
hypothesis. For example, if # = 00, ¢ = 1001, and n’ = 00, both ng and gn’
are overlap-free but nen’ is not.

3.5. LemMma. Let x, ye{0, 1} and ge {01, 10}*. Then:

(1) xo overlap-free <>xxg overlap-free,

(2) oy overlap-free <>yy overlap-free.

Proof. The right-to-left implications are tnivially true. We prove the left-
to-right implication in (1) only; the same proof applies to (2). Assume then
that xg is overlap-free, Xxg is not, and we get a contradiction. Under this
assumption, the shortest overlap in Xxg contains the leftmost X; ie., Xxp
contains a prefix 11X where 7 # A. Given that ge {01, 10}*, it is easily seen
that t cannot be of odd length. And if 7 is of even length, xp has already a
prefix t'z'x, with |t/| = |7/, which contradicts the assumption that xg is
overlap-free. =

3.6. LemMaA. Let x, ye{0, 1} and ¢e {01, 10}*. Then:

(1) xxo overlap-free = Xxg overlap-free,

SQUARE-FREE AND OVERLAP-FREE WORDS 293

(2) oyy overlap-free = oyy overlap-free,

(3) xxp overlap-free = if xxg has an overlap then xxx or xxXxxXx is a
prefix of xxp,

(4) oyy overlap-free =if oyy has an overlap then yyy or yyyyyyy is a
suffix of ayy.

Proof. The proofs for (1) and (2) are similar to those of the left-to-right
implications in the preceding lemma. We prove (3) only; the proof for (4) is
similar.

For (3), assume xxg is overlap-free and xxg is not. Hence xxp contains a
prefix trx, with 7 # 4. Given that ge {01, 10} " and that 7 is x or starts with
xx, the length of T must be odd. Given that xg is overlap-free, this forces the
prefix tTx to be xxx or xxxxxxx. m

We define a partial function ¢ on {0, 1}*. ¢ is defined for all words of
the form mpa’ where n, m'e{4,0, 1,00, 11) and ge {01, 10}* by:

o, if 11’=1r'=).;
, xxg, if #=x or xx, with xe {0, 1}, and o' = 1;
@(nen) = _ . _ ; -7
vy, if ' =y or yy, with ye {0, 1}, and n = 4;

xxoyy, if m=x or xx,n’ =y or yy, with x, ye {0, 1}.

3.7. LeMMaA. Let n, n'e {4, 0, 1, 00, 11}, and g€ {01, 10}*. Hypothesis:

(1) If (m=x or xx) and (v’ =y or yy), then xgy # 17 for all {0, 1}7;

(2) If m = xx then neither xxx nor xxXxxxx is a prefix of no;

(3) If o’ = yy then neither yyy nor yyyyyyy is a suffix of on'.

Conclusion: non’ overlap-free <> ¢ (npn’) overlap-free.

Proof. We consider the case when [g| > 4, so that Lemma 34 can be
used. For the case when |g| < 4, the lemma is established exhaustively.

By Lemmas 3.4, 3.5, and 3.6, it is easy to see that all we need to prove is
the implication: xxg and gyy overlap-free = Xxgyy overlap-free. Assume that
Xxe and gyy are overlap-free, but that xxgyy is not. A shortest overlap (an
expression of the form 7tz with z the first symbol of 1) in Xxgyy is therefore
xpyy, or Xxpy, or Xxgyy. Because Xxpyy is of even length, it cannot be a
shortest overlap. Hence, xgyy or Xxgy is a shortest overlap. But in both
cases, this contradicts the fact that xgy # 1t for all 7. n

We cannot omit condition (1) in the hypothesis of the preceding lemma.
For example, let # =0, o' =1, and ¢ = 011001, so that ngn’ = 1t with 1
= 0011. Here ngn’ is overlap-free, but ¢(non’) is not.

We define another partial function ¢ on {0, 1}*. y is defined for all
words of the form mon’ where n, n'e {4, 0, 1, 00, 11} and g€ {01, 10}, by:

0, frn=n =4,
Y (mon') = xxg, if #=x or xx, with xe {0, 1}, and n' = 4;
oyy, if m=24o0r x or xx, o' =y or yy, with x, ye {0, 1}.

294 A. I. KFOURY

3.8. LemMa. Let m, n'e {4, 0, 1, 00, 11}, and g€ {01, 10} *. Hypothesis:
(1) If (r = x or xx) and (n' = y or yy), then xgy = 1t for some 1€ {0, 1}*;
(2) If ®m = xx then neither xxx nor xxxxxXx is a prefix of np;

(3) If ' = yy then neither yyy nor yyyyyyy is a suffix of on'.

Conclusion: non’ overlap-free <>y (npn’) overlap-free.

Proof. We consider the case when [g| >4, so that Lemma 34 can be
used. For the case |g| < 4, the lemma is established exhaustively. By Lemmas
3.4, 3.5, and 3.6, it is easy to see that we only need to prove that: xgy
contains an overlap = both x¢ and gy contain an overlap.

Assume xgy contains an overlap, but not gy, and we get a contradiction.
(The proof that xg contains an overlap is similar.) By hypothesis, xgy = 1t so
that xgy = xt'yxt’y for some t'e {0, 1}*. Because gy is overlap-free, xgy has
a prefix xt"7t” for some t”¢ {0, 1}* which ends with symbol x. Hence 1"t is
a non-empty prefix of t'yxt’y =gy. If 11" is also a prefix of 7’y then gy
contains the sub-expression xt”t” which is an overlap, contradicting the
initial assumption. If t’yx is a prefix of 7"'7”, itself a prefix of t'yxt'y, it is not
difficult to see that 7'xyt’y contains an overlap — another contradiction. m

Observe that ¢(ngn’) and Y (ngn’) are words in {01, 10} *, and ¢ (ngn')
=y (mon’) whenever x =4 or n' = A

39. ALGoriTHM 4. The input is an arbitrary o€ {0, 1}*. At the first
iteration we set g, =o. At the nth iteration, n> 1, we carry out the
following steps:

1. If 4, {0, 1, 00, 11}, terminate successfully.

2. Decompose a, as mn,0,m, with =, n,e{i,0,1,00, 11} and
0,€ {01, 10} *. If this is not possible, terminate unsuccessfully. If g, has more
than one such decomposition, take n, as short as possible.

3. If n, = xx, with xe {0, 1}, and xxx or xx¥xxXx is a prefix of n,g,,
terminate unsuccessfully.

4. If n, = yy, with ye {0, 1}, and yyy or yyyyyyy is a suffix of g,m,,
terminate unsuccessfully.

5. If (R,=x or xx) and (n,=y or yy) and (xg,y = 1t for some
t1€{0,1]*) then go to 6 else go to 7.

6. Define 6,., from ¥ (n,0,%,) by mapping consecutive occurrences of
01 and 10 into O and 1, respectively, and go to the (n+ l)st iteration.

7. Define o,,, from ¢(n,0,m,) by mapping consecutive occurrences of
01 and 10 into 0 and 1, respectively, and go to the (n+ l)st iteration. =

3.10. THeoreM. Algorithm # terminates successfully on input
o€ {0, 11" <>a is overlap-free. If |a| = n, there # executes at most ¢(nlogn)
steps.

Proof. The corfectness of algorithm # follows from Lemmas 3.7 and 3.8.

SQUARE-FREE AND OVERLAP.-FREE WORDS 295

Its time complexity is obtained by observing that # executes at most
(:(log n) iterations, and at every iteration % needs to scan a word of length
< n at most three times. m

3.11. TueorReM. There are at most O(n) overlap-free words of length n,
where e < 2.8.

Proof (outlined). The analysis is simpler if we modify Algorithm 2. Let
U < {0, 1}=* be the set of overlap-free words of length < 4. We replace Step
l in 4 by the following:

1. If ¢,eU, terminate successfully; and if a,e {0, 1}¥*— U, terminate

unsuccessfully. We call 4 the algorithm obtained from # after this modifica-
tion.

The bound mentioned in the statement of the theorem is a bound on the
number of words of length n on which % terminates successfully. If %
terminates successfully on o€ {0, 1!* and |6 =n > 1, then % executes k
iterations for some k < | log(n—2) |. Indeed, it is not difficult to check that
lo;) < (n+2'=2)/2" ! for i > 1, so that the largest possible value of i such
.that |o| < 4 is | log(n—2) |.

Assume % executes k iterations and terminates successfully. Hence, the
tests of Steps 2, 3, and 4, are always false in the course of this execution. The
only test which may switch from false to true, or vice-versa, is that of Step 3.
(The test of Step 1 is false throughout except in the kth iteration.)

Case 1. The test of Step 5 remains false throughout the execution of %
(the first k—1 iterations of). In this case, the input ¢ is fully determined by
the values of #n,, n}, ny, n3, ..., ®m_, Mx_» and a,; i.e., for a given value of
o,€ U by running the algorithm in “reverse” we uniquely reconstruct the
input g, If we also know the values of n,, #n}, ..., -, m,_,. Although each
7, (resp. ;) may assume one of S values, 1 < i <k, only three cases may arise
in relation to =; (resp. m;) for a given value of a;,,. Indeed, if the leftmost
(resp. rightmost) symbol of 4., is xe {0, 1}, such an x being mapped from
xx at the end of the ith iteration, then:

either (A) n; = A (resp., @; = A),

or (B) n; = X (resp. n; = x),

or (C) m; = xx (resp. m; = xx).

Further, if n; = XX (case C) then m;,;, = x or xx (case B or C); ie, an
instance of C at the left end (resp., right end) at the ith iteration cannot be
followed by an instance of A at the left end (resp. right end) at the (i + 1)st
iteration. Further, if n; = Xx (case C) and #;, , = x (case B), it is not difficult
to see that mn;, , = 4 (case A) and =;,; = 4 or X (case A or B). Hence, if F(k
—1) is the number of sequences in {4, B, C}*~! not containing any occur-
ence of the following patterns {CA, CBB, CBC, CBAC), then for each value of
g,€ U the sequences n,7m,...7m,_, and wyny...m,_; may each assume no

296 A. J. KFOURY

more than F(k—1) values. There are therefore at most 16-F(k—1)-F(k—1)
input words for which % will terminate successfully after k iterations, 16

being the number of overlap-free words of length 3 ot 4 — under the
assumption that the test of Step 5 remains false throughout the execution of
€.

Case 2. The test of Step 5 is true in the ith iteration, for some | <k—1.
In this case it is not difficult to show that in the jth iteration, for j =i
+1,..., k—1: if the test of Step 5 is false then n; = n; = 4; if the test of
Step 5 is true then n; = x and #n} = X for some x € 0, 1] (details omitted). Hence,
compared to Case 1, the possible values for the sequences n, n,...m,_; and
nyRy...M_, are further reduced, and cannot therefore exceed the bound
16-F(k—1)- F(k—1) mentioned above. '

From the preceding analysis, the number of input words for which %
terminates successfully in k iterations cannot exceed (k—1)-16-F(k—1)-F(k
—1). Case 2 covers k—2 subcases, one for every value of ie{l, ..., k—2}.

It remains to evaluate the function F(v), for v 2 1. It is not difficult to
prove that this function satisifies the recurrence relation: F(v+2) =3F(v+1)
—F(v), for v>1, with initial conditions F(1)=3 and F(2) =8. Using
standard techniques, the solution of this recurrence relation is:

F)= (1/10)[(5+3 V) (ﬁi—ﬁ)o+(5_3 J9) (3;\@)]

2

The second term contributes very little to the rate of growth of F(v). In fact,
for all v2> 1:

F(v) < 1.172(2.618)".
Hence, the desired bound 16:(k—1)-F(k—1)-F(k—1) does not exceed:
16 -(logn)-(1.172)%-(2.618)2%" ~ 22 (log n) - n*'8,

which is O(nf) for any e > 2.78. =

A more careful analysis should make the exponent e even smaller in the
preceding theorem. We conjecture that e < 2. Putting Theorems 2.6 and 3.11
together, we deduce that: In the infinite complete binary tree (represented by
{0, 1)) there are uncountably many overlap-free w-paths, which are also
sparse (in the sense that, out of the 2" nodes at level n, only ¢(n) may occur
along these w-paths).

References

[1] J. Berstel, Some recent results on squarefree words, Proc. of Symposium on Theoretical
Aspects of Computer Science, 11-13 April 1984, Paris.

[2] M. Crochemore, Linear searching for a square in a word, Bulletin of EATCS, No. 24,
October 1984, 66-72.

SQUARE-FREE AND OVERLAP-FREE WORDS 297

[3] A.J. Kfoury, Definability by deterministic and non-deterministic programs (with applications
to first-order dynamic logic), Information and Control (to appear).

[4] M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983.

[5] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.

[6] Stolboushkin, Deterministic context-free dynamic logic is strictly weaker than context-free
dynamic logic, Information and Control 59, 1-3 (1983), 94-107.

[7] —. Taitslin, Deterministic dynamic logic is strictly weaker than dynamic logic, Information
and Control 57, 1 (1983), 48-55.

(8] P. Urzyczyn, Non-trivial definability by flowchart programs, Information and Control 58,
1-3 (1983), 59-87.

Presented to the semester
Mathematical Problems in Computation Theory
September 16—December 14, 1985

