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The paper is based on the consideration of controls by restrictions of
behaviour as introduced in [3]. Different notions of fairness and fair controls
are derived from the fairness notions given in [6]: fairness is considered with
or without reference to the behaviour of the original uncontrolled system, in
connection with deadlock avoidance (infinite fair controls) and by omitting
termination caused by control (nonblocking). In general, not all fair
execution sequences can be obtained by a single control. In those cases, each
control can be replaced by a less restrictive control. We give necessary and
sufficient conditions for this fact. Different possibilities of realizing controls
by finite state mechanisms or by predefined delay functions are investigated.
The control automata controlling arbitrary systems in a fair way are
characterized. It” turns out that the approach by control automata is
preferable to the use of delay functions.

1. Fairness and fair controls

A useful framework to study controls for concurrent systems was introduced
in [3] using abstract languages. We will use these concepts in the
investigation of fair controls.

Controls can be viewed under two aspects: Application of certain
control rules (queues etc.), and controls which are defined as restrictions of
behaviour in order to enforce properties like fairness, deadlock avoidance,
termination etc. Both aspects should be considered on a common base since
realizations of properties by control rules (e.g. fairness by queues) are an
important subject.

Two observations are essential to come to that general calculus:

(1) Control is considered as a restriction of the behaviour of the system
to be controlled.



116 H-D. BURKHARD

(2) Each restriction of the behaviour of the uncontrolled system
determines a control since all decisions of the control are well defined.

This correspondence between control and behaviour is employed for our
purposes: A system is represented by its behaviour, controlled systems (and
controls) are represented by restrictions of this behaviour. Then it depends
on the description of the behaviour which control problems can be
examined. As shown in [3] abstract languages are a convenient tool for
many such problems. Special systems are examined by the corresponding
families of languages, various types of controls are specified by the notion of
control principles (see Definition (2) below).

The following notation is used:

N denotes the nonnegative integers.

T* (T?) is the set of all finite (infinite) sequences over the alphabet T, ¢
denotes the empty word.

A sequence ueT* is a prefix of ve T*u T® (=) if there exists a
sequence v’ with v = uv'.

The length of a sequence ue T* is denoted by [u].

The closure of a language L = T* with respect to initial segmentation
(prefixes) is denoted by

L:={uAveL: u=v)}.
The adherence of a language L is defined by
Adh(L):= {w/weT® Aw <L},
where w:= {wueT* A usw).

The power set of a set A is denoted by P(A).

3= denotes infinitely many, V* denotes almost all.

By mn,e(Nuiw})” we denote the Parikhvector of a sequence
ve T* U T ie., m,(t) denotes the number of occurrences of ¢ in .

By a we denote the vector (a, ..., a) (of given dimension; ae N U {w}).

Operations and relations for vectors are understood componentwise.

While many basic properties are valid for arbitrary systems, we are
forced to consider special systems e.g. in decidability questions. In such cases
we refer to finite transition systems and to Petri nets.

PREG denotes the family of prefixclosed regular languages (which can
be understood as the behaviour of finite transition systems), and FNL
denotes the family of the firing languages of finite Petri nets (the firing
language of a Petri net is given by the set of all transition sequences which
are firable starting in the initial marking).

Since the systems are represented by their languages, the results for
languages from PREG (FNL) are understood as results for finite transition
systems (Petri nets).
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We consider (controlled or uncontrolled) systems by means of their
behaviour, given by languages L over a finite fixed alphabet T with at least
two elements. We suppose these languages to be nonempty and closed with
respect to prefixes since control may influence the behaviour at any time. A
control of a system is regarded as a restriction of its possibilities, thus the
language L' of a controlled system is a subset of the language L of the
original (uncontrolled) system.

(1) DeriniTioN. (1) CONT := {L/L = T* A @ # L =L} is the family of
all control languages over T.

(2) cont(L):= P(L) nCONT is the family of all control languages for
LeCONT.

Since the behaviour of a control (the decisions to be made with respect
to the system L) is defined by a language L econt(L), the family cont(L)
describes all possible controls of the system L. Having a special way to
perform controls (like scheduling disciplines) we.obtain a special subset of
cont(L). Having also in mind special conditions to be satisfied (like fairness)
we will study subsets of cont(L):

(2) DeriNtTiON. (1) A control principle is a mapping c¢: CONT —
— P(CONT) with ¢(L) =cont(L) for all Le CONT.

(2) The control principles imp, fair, rfair, just, rjust, dfr, nbl, pfin are
defined as follows (we suppose L'econt(L) in all cases):

Leimp(L)y iff VweAdh(L): =, = o;
Lefair(Ll) iff " VweAdh(L)VieT @*u=w: wel)—n, (1) = o;
Lerfair(L) if VweAdh(L)VieT @*uSw: wel)— 1, ()ew;
Lejust(L) if VweAdh(L)VieT (Vouw: wtel)-n, (1) = w;
Lerjust(L) iff VweAdh(L)VieT (VuSw: utel) —n,(1) = 0;
Ledfr(l) if YueL3IteT: utel’;
Lenbi(L) iff VueL: JteT: utel)—@3t'eT: ut'el);
Lepfin(L) iff L is finite.
(3) The conjunction c&c' of two control principles ¢, ¢ 1s defined i)y
c&c'(L):=c(L)nc'(L).

(4) A control principle ¢ is covered by a control principle ¢’ (c < ¢') iff
c(L) =c'(L) for all Le CONT.

(5) A control principle ¢ is called unitary iff |Jc(L)ec(L) for all
LeCONT with ¢(L)# @. (If a maximum element exists among the
nonempty sets c(L).)
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By imp (impartiality), fair (fairness) and just (justice) we have specified
the controlled systems satisfying the fairness notions of [6]. Thus, no
reference is made to the original uncontrolled system, and we have e.g.
{a}* efair (a, b}*), where the action b of the uncontrolled system is star ved.
This can be corrected by using the control principles rfair (relatively fair with
respect to the uncontrolled system) and rjust (relatively just). As usual in
literature we shall use fairness also as a general notion for impartiality
(relative), fairness and (relative) justice, Further definitions of fairness
(like in [2], for example) could be studied in our calculus as well.

By the control principle dfr we can consider deadlock-free controls,
. while the control principle nbl gives us controls, where the work of a system
cannot be blocked by a control. These control principles are considered here
in connection with fairness control principles using the conjunction: We can
consider e.g. fair&dfr describing controls resulting in deadlock-free (infinite)
fair behaviour (as studied for Petri nets in [4]) and fair&nbl describing the
nonblocking fair controls.

The consideration of nonblocking fair controls is important since the
definitions of fairness give only restrictions concerning the infinite behaviour
such that fairness could always be obtained by restrictions to finite behaviour
(finite languages). The controls resulting in finite languages are given by
pfin(L).

Program termination under fairness assumptions (cf. [6], [1]) can be
formulated by '

c&nbl(L) < pfin(L),

where ¢ denotes a fairness control principle and L is the set of all
computations of the examined program.

If ¢ is covered by ¢/, then each c-control is a c¢’-control, too. The
relations between fairness contro! principles are given by Proposition (3)
below. '

If a maximum element exists in a family c(L), then it represents the least
testrictive c-control for L. Since all other controls can be understood as
partial controls with respect to that maximum e¢lement, the maximum
element is in some sense the canonical c-control for L. If no maximum
element exists, then it makes no sense to speak about “the”, c-contro! for L.

(3) ProposrTioN. (1) pfin < imp < rfair < fair < just, rfair < rjust < just,
fair and rjust are incomparable.

(2) The same relations as in (1) are valid if we substitute each c in (1) by
c&nbl or each by c&dir.

(3) c&dfr < c&nbl < ¢ for arbitrary control principles c.
The relations above are immediate consequences of the definitions, to
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see the incomparability of fair and rjust we may consider
L:=\a,bl*, !al*efair(L)\rjust(L), taal* \b)* erjust(L)\fair(L).

Furthermore, the following proposition can be proved:

(4) ProposiTION. Suppose ce {pfin, imp, fair, rfair, just, just}, Le CONT.
(1) L'ec(L) —cont(L) = c(L).

(2) In general, L'e c&dfr(L) does not imply cont(L) < c&dfr(L).

In general, L' ec&nbl(L) does not imply cont(L) < c&nbl(L).

But we have

L'ec(L)— dfr (L) < c&dfr (L),
L e c&nbl (L) — nbl(L') < c&nbl(L).

Assertion (1) of the proposition above shows that fairness properties ol a
system cannot be destroyed by further controls (while deadlock freedom and
nonblocking are not, in general, preserved under further controls). Assertion
(2) is related to stepwise refinements of controls (in order to satisfy different
properties). It turns out that realization of fairness can be performed in a first
step while other properties like deadlock avoidance should be realized later
on (cf. [3]. .

The language |Jc(L) for a given Le CONT contains exactly those
sequences ue L which can be performed under at least one c-control for L.
Thus the set L\|Jc(L) contains those sequences from L which must be
avoided by each c-control for L. It turns out that no general restrictions arise
from fairness assumptions, but they may arise from deadlock avoidance and
by nonblocking, as the following proposition shows:

(5) ProrositioN. (1) Jc(L) = L for ce{pfin, imp, fair, rfair, just, rjust,
fair&nbl, rfair&nbl, just&nbl, rjust&nbl} and each Le CONT.

(2) Ue(L) = dir(L) for ce {fair&dfr, just&dfr}, Le CONT.

(3) There exist languages Le CONT for

ce {pfin&nbl, imp&nbl, imp&dfr, rfair&nbl, rjust&nbl}

with {Je(L)=@ (as a conséquence of ¢(L) =), while nbl(L) # @ and
dfr(L) # Q.

Proof. (1) Jc(L) < L is trivial. To show L =(J¢(L) we have iiec(L)
and hence ue(c(L) for each ue L in the cases ¢ = pfin, imp, fair, rfair, just,
rjust. |

Concerning ¢ = fair&nbl, rfair&nbl, just&nbl, rjust&nbl we consider
controls by fifo-queues which can be organized as follows: ]

Actions which are possible enter at the end of the queue if they have not
actually been in the queue. The first possible action from the queue is the
next action to be performed, it is deleted from the queue at that time.
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The queues can be regarded as sequences from T*. If we start with some
ue L as initial queue, then the controlled system performs u first.
Obwviously, each such queue regime works nonblocking and relatively
fair. Hence 1t also works fair and (relatively) just by Proposition (3).
Again we have uel)c(L) for each ue L and therefore L ={)c(L).
We remark that finite control automata from Section 2 below are able

to realize such queue regimes if the reorganization steps are performed in
some regular way (this concerns the way of ordering if several new actions
enter at the end of a queue in one step, cf. Theorem (13) below).

(2) Ue(L) = Ydfr(L) is trival. On the other hand, for each uel)dfr(L),
there exists some we Adh(L) with u=w. Since we c(L) for each we Adh(L),
we have uel)c(L) and hence |Jdfr(L) < |Jc(L).

(3) As examples we may consider T = |a, b], L = |a!* for ¢ = pfin&nbl,
imp&nbl, imp&dfr, and L= {a!*!b) for c = rfair&dir, rjust&dfr.

Note that nbl(L) # @ and dfr(L) # @ in both cases. w

(6) TueoreM (ExXISTENCE OF conTroOLs). (1) ¢(L) # @ for

c € {pfin, imp, fair, rfair, just, rjust, fair&nbl, rfair&nbl, just&nbl, rjust&nbl}
and each LeCONT.

(2) The problems “c(L) # @7’ are decidable for ce {pfin&nbl, imp&nbl,
imp&dfr, fair&dfr, just&dfr} and Le PREG u FNL.

Proof. Assertion (1) holds by Proposition (5.1). Assertion (2) was proved
in [3]:

We have pfin&nbl(L) # @ iff there exists ue L with ut¢L for all te T
(i.e., 1enbl(L); decidable for Le PREG u FNL).

We have imp&dfr(L) # @ iff there exist u,veT* with n, > 1 and
uv®e Adh(L) in the case Le PREG U FNL.

We have imp&nbl(L) # @ iff pfin&nbl(L) # @ or imp&dfr(L) # Q.

We have fair&dfr(L)# @ (just&dfr(L)# @) iff dfr(L)#@ by
Proposition (5.2); and for Le PREG UFNL we have dfr(L) # @ iff there
exist some u, ve T* with uw”eAdh(L). .

Thus the problems are reducable to the problems of the existence of the
corresponding sequences u, v. These problems are decidable for
Le PREG UFNL, and if such sequences exist, then they can be constructed
effectivety (cf. [3]). =

We remark that the problems “c&dfr (L) # @7 for ¢ = rfair, rjust are
decidable for LePREG, too, while they are open for LeFNL. In particular
dfr (L) # @ does not imply c&dfr(L) # @ (e.g. for L= lal* (b))

Fairness control principles are not unitary, hence in general, it is not
possible to obtain all fair system runs by a special fair control. Moreover, in
general, each fair control of a system can be “improved” by making it less
restrictive. We have
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(7) TueoreM. The control principles ce |pfin, imp, fair, rfair, just, rjust,
pfin&nbl, imp&nbl, fair&nbl, rfair&nbl, just&nbl, rjust&nbl, imp&dir,
fair&dfr, rfair&dfr, just&dir, rjust&dfr} are not unitary, and for each
Le CONT

Viec()IL ec(L): L' G L if Uec(l)¢c(l).

To prove the theorem we show the following lemma:

(8) LEMMA. Let ¢ be a control principle as in Theorem (7). Then the
families ¢(L) for Le CONT are closed with respect to finite unions but, in
general they are not closed with respect to arbitrary unions.

Proof. The closure with respect to finite unions is an immediate
consequence of the definitions and of the fact that Adh(Lu L)
= Adh(L) u Adh(L) for prefix-closed languages L, L.

To show that in general the languages are not closed with respect to
arbitrary unions, we consider L = {a, b}*, T = {a, b}, where, except for ¢
= pfin&nbl, | Jc(L) = L (since #tec(L) or u(ab)” ec(L) for each uel). But,
since L¢c(L), c(L) is not closed under arbitrary unions.

For ¢ = pfin&nbl we may consider L = {a}* {b} with Jc(L) = L¢c(L),
which completes the proof of the lemma.

Now, the control principles ¢ of Theorem (7) are not unitary by the
examples given in the proof of Lemma (8). Furthermore, if | c(L)¢c(L), then
L' # |Jc(L) for each L'ec(L), and hence there exists L, ec(L) with L, & L'.
Thus we have L' & L":=L UL, and L’ ec(L) since ¢(L) is closed under
finite unions. On the other hand, if | Jc(L)ec(L), then L":=|)c(L) is the
maximum element in c(L). =

From Theorem (7) and Proposition (5) we obtain

(9) CoroLLARY. Suppose Le CONT. The condition
VL ec(l)IL ec(L): L' EL"

holds for ce {pfin, imp, fair, rfair, just, rjust, fair&nbl, rfair&nbl, just&nbl,
rjust&nbl} iff L¢c(L), and for ce {fair&dfr, just&dfr} iff {Jdfr(L)¢c(L).

2. Fair controls by automata

If a system L does not work in a (relatively) fair or just way, then it has
infinitely many different controls which realize the corresponding fairness
properties (Corollary (9)). Of special interest are the controls which are
nonblocking and, among them, those which can be realized by finite state
mechanisms. We consider finite nondeterministic control automata

A= (P(T), 7: Zs h? ZO),



122 H.-D. BURKHARD

where P(T), T, Z are finite nonempty sets of inputs, outputs and states,
respectively, zoeZ is the initial state, and h: Z xP(T)— P(Tx2Z) is the
output/next-state function with

hiz, )=@ and O # {tA: (t,2)eh(z, U)} cU

for all zeZ, UeP(T)\{@}. (This condition ensures that the control by
control automata works nonblocking.)

Without loss of generality we assume the control automata to be
initially connected.

A control automaton A4 and the system controlled by A form an
interactive system: The automaton receives as input the set U of all actions
from T which could be performed in the next step by the system and decides
by its output te U which action can be performed. We define in this sense:

(10) DeFiniTioN. Let 4 =(P(T), T, Z, h, z,) be a control automaton.
The result of control of LeCONT by A is the language L/A with

ecL/A, t,...t,el/A iff
32[, ooy ZHEZVi =0, ceay n_].: (ti+l’ Zi+‘)Eh(Zi, {t/tl e titEL}).

By the definition of control automata we have:

(11) CoroLrary. L/Aenbl(L) for all LeCONT and all control auto-
mata A.

As mentioned in the proof of Proposition (5), the queue regimes
introduced there can be realized by finite control automata. The queues may
serve as states. Automata like these have the property of controlling
arbitrary systems in the desired fair way. We now characterize the control
automata having such properties.”

(12) DeFiniTiON. A control automaton A is a universal c-control
automaton for the control principle ¢ if L/Aec(L) for all Le CONT.

As we shall see, universal control automata exist for ce {fair, rfair, just,
rjust} (and therefore for c&nbl by Corollary (11)), but not for the other
control principles considered in this paper. We use the following notation for
control automata A =(P(T), T, Z, h, zo}, 2, Z€Z, teTu=t,...t,eT* u
=U, ... U,e(P(T)*:

z¥2 i 3z, ..,z 1€Z: 2y =2 AZge =2 AVi=1,..., n

(i, ziv1)Eh(z;, UY),
tinu i Jiefl,...,n}: 1=y,

tinu iff 3ie{l,..., n}: tel,
t allin u iff Vie{l,..., n): zeU,,
t enabled by =z %z iff
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Uy Usya Uyt .
L, g, =22, &,y =2 Adiell,...,nd2"eZ:

(ra Z”)Eh(hi, Ul')a
t allenabled by :z %z iff

Uy, Uy, U ’ . "
2=z, —Vsy, =202, —mln L, =2 AViell,...,n\3"eZ:
(t, Z)eh(z;, U).

(13) THEOREM. Let 4 =(P(T), T, Z, h, z,) be a control automaton. 4 is a
universal

(a) rfair-control automaton,

(b) rjust-control automaton,

(c) fair-control automaton,

(d) just-control automaton,
iff VzeZVie TVue(P(T)* Vue T*: if z *4>z and

(@) t in u

(b) t allin u

(c) t enabled by z ** z,

(d) t allenabled by z 4>z,

then t in u.
Proof. We first show that the given conditions are necessary: Let 4 be a
control automaton such that there exist ¢, z, u=U, ... U,, u with z 24>z

’

and not t in u. Since A is Initially connected, there exist u
=U;...U,eP(T)*, u'eT* such that

u,u’ TN]
>

20 =z

Then we consider the language L:= Uj...U,(U,...U)* with
w:=u'u” e€Adh(L/A) and m,(w) < w. If we would have ¢ in u, then we would
obtain 3°v=w: vt €L and hence L/A¢rfair(L).

Analogously,

t allin u would imply that Vv =w: vt €L and hence L/A¢rjust(L);

t enabled by z %>z would imply that 3®v=w: vreL/A and hence
L/A¢fair (L);

t allenabled by z ¢+ z would imply that V®y=w: vreL/4 and hence
L/A¢just (L)

Now we show that the conditions are sufficient: Suppose
w=1tot, ... EAdh(L/A4) and let 3 =242, ... €Z% w=UyaU, ... (P(T))” be
an infinite state sequence and an infinite input sequence, respectively, for A
such that

Ugt Uqt Uq,t
Zp oo’zl 11 '22—2_2_’...

Then there exists some z€Z which occurs infinitely often in 3, i.c., we have -
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W= Uyl ..., W=yl ... with

ug.¥ uyp.u ug,u
Zo ~0% ,, "1, 292 .,

Now, if 3°v=w: vre L, then there are infinitely many y; with t in y, and
the condition corresponding to assertion (a) implies the existence of infinitely
many & with t in u; such that n,(f) = w. Hence L/Aerfair(L).

The remaining cases are proved analogously. m

3. Fairness by delay function and realization of controls

The fact that fairness control principles are not unitary (Theorem (7)) can be
seen as a consequence of the freedom to have arbitrarily long (but finite)
delays for the actions which must be performed according to fairness
conditions. Following some ideas in [5] we can consider delay functions
d: T* xT— N and define fairness with respect to a given delay function:

(14) DeFINITION. Let d: T*xT - N be a delay function and let
Le CONT, L' econt(L).

(1) L' ed-imp(L) iff Vee TVuvelL’: |v| > d(u, t) = n,(t) > O.

(2) L edfair(L) iff VieTVuveL: card({v'/v'Sev auv'tel)) > d(u, 1)
—-mn,(t) > 0.

(3) L ed-tfair(L) iff VieTVuveL card({v'/v'Sev Auv'teL}) > d(u, 1)
-7, () >0.

4) Ledjust(L) iff VieTVwel: (o] >d(u, 1) »n Vo'5e0: w'tel)
=z, (t) > 0.

(5) L ed-tjust(L) iff VeeTVuveLl: (o] >d(, ) n VoS wtel)
—x,(t) > 0.

(15) ProrosiTioy. (1) d-imp, d-fair, d-rfair, d-just, d-rjust are unitary.

(2) For LeCONT and for celimp, fair, rfair, just, rjust}: we have
D # d-c(L) cc(L).

(3) d-imp < d-rfair < d-fair < d-just, d-rfair < d-rjust < d-just. In general,
d-fair and d-rjust are incomparable. |

Proof. (1) The families c(L), ¢ = d-imp, ..., d-rjust are obviously closed
under arbitrary unions, and hence ) c(L) ec(L).

(2) The families d-c(L) are not empty since we always have
ie! ed-c(L). To show the inclusions d-c(L) < c(L) we consider the case
¢ = rfair, the remaining proofs are similar:

If L'¢rfair(L), then there exist teT and weAdh(L) with utel for
infinitely many u=w and with n,(t) <w. Hence there exists a sequence
uwel' with card({v’/v’%v Au'tel))>du,t) and =n,(t)=0. Thus
L ¢ d-rfair (L).
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(3) This assertion follows from the definitions and the example given for
Proposition (3).

The next theorem shows that impartiality and (relative) justice are
completely expressible by means of delay functions. This is not the case for
(relative) fairness.

(16) THEOREM. For arbitrary Le CONT we have
(1) Ud-c(L) = ¢(L) for ¢ =imp, just, rjust.
d
(2) Ud-c(L) =c(L) for c=fair, rfair, and there exist languages
d
LeCONT with |Jd-c(L) # c(L).
d

Proof. The left-to-right inclusions follow by Proposition (15.2). The
right-to-left inclusions in (1) are proved using Koenig’s Lemma (as in [5] for
impartiality).

If L'¢|)d-imp(L) for some L econt(L), then we have

d

—~(3d(d: T*xT - N) Yie TVuve L': || > d(u, 1) — 7, (1) > 0},
ie.,
e Tue L' Vne Ndve T*: wveL Alv|>n Am, () =0.
Forming a tree out of the sequences v, we can apply Koenig’s Lemma and
obtain an infinite path w such that uw e Adh(L) and =,,(f) <w@. Hence we
have L'¢imp(L).
If L'¢()d-rjust(L) (and analogously for d-just(L)) for some L econt(L),
d

then we have
~@dd: T*xT >N)VreTVuvel: (o] >d(u, ) A V'S0 w'tel)
~m,(t) > 0),
ie.,
JteTuel' VneNIveT*: wel Alv|>n A Vv'S=v: wteLl am, () =0.

By Koenig’s Lemma we obtain uw €Adh(L) with ust €L for all v~=w and
n,, () = 0 so that L' ¢rjust(L). To show that the inclusions in assertion (2)
may be proper we consider

L:= @0 c™* b0 < m < n} efair (L).
L is not contained in (Jd-fair(L). Otherwise, if L ed-fair(L) for some delay
]
function d, then we consider

v={(ac)*'c**?2 for k=dle, b).
Then we have

card({v'/v’g_;-sv Av'belLly=k+1 >d(e, b),
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but n,(b) =0 so that L¢d-fair(L) — contradiction. We also have
Lerfair (L)\ | ) d-rfair (L). =
d

It is an open problem whether fairness and relative fairness may be
expressed by other appropriate delay functions or at least without reference
to the infinite behaviour (L. Czaja’s question in [5]).

The following proposition shows that the use of fairness with respect to
delay functions may give rise to problems, especially the maximum elements
Uc(L) may lead to blockings by control.

(17) ProrositioN. Let d: T* xT =N be a delay function and let L,
(:=Uc(L)) denote the maximum element in c(L) for c=d-imp, d-fair,
d-rfair, d-just, d-rjust (the maximum element exists by Proposition (15.1)).

(1) There exists LePREG with Ly, .¢nbl(L).

(2 If card(T) 2 3 and if d is a constant function, then. there exists
LePREG with L ¢nbl(L) for ¢ = d-fair, ..., d-rjust.

To prove (1) it suffices to consider T = {a, b}, L = {a}*.

To prove (2) we fix some keN and suppose d(u,t) =k for all ueT*
with |u| < k. Then we consider L = \a, b, ¢}* with Ly, 2 \wfuel A |u| < k|,
where the further work is blocked for u = a* under d-fairness. The same
arguments apply to relative fairness and (relative) justice. '

The maximum elements L., ¢ =d-imp, ..., d-rjust, represent those
controls which allow all possibilities according to the underlying delay
function d. As a consequence of Proposition (17), these controls cannot in
general be realized by control automata, since control automata work
nonblocking (Corollary (11)).

The universal control automata of Theorem (13) realize controls
corresponding to constant delay functions:

(18) ProposiTION. Suppose ce {fair, rfair, just, rjust} and let A be a
universal c-control automaton having n states. Furthermore let d be the
constant delay function with d = n. Then we have

L/Aed-c(L) for all LeCONT.
Proof. Let A =(P(T), T, Z, h, zo) be a control automaton having n
states and suppose te T, uve L/A.
Then there are w ve P(T)*, z, z’€Z such that

7o bz 2,7

Concerning fairness we consider the case

card({v’/v"%v Auv'te LA} > d(u, t) = n.
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Then we can decompose v = vy ... U432,
P=10y ... Dps2
and find z,,...,z,,,€Z such that wp, ...v;teL/4 for i=1,...,n+1 and
2o Mz AL, 2202, g Ced20add Lo

nt+1

By card(Z) = n, there must exist i, je N with 1 <i<j<n+1 and z; =z,
and hence ¢ is enabled by

o; LA vl g
z; i+1:-0p i+ 1 J'Z.'—_-zj-

Now, if 4 is a universal fair-control automaton, then we have t in v;,, ... v
by Theorem (13). Thus we have =,(t) > 0 and L/A ed-fair(L).

The proof for relative fairness is similar.

Concerning justice we consider the case

| >d(u,t)=n and Vv'S=v: w'tel/A.
Then we find v=1¢, ... 1,4,
p=U,...Upsys 24,...,2541€EZ
with ute L/A, ut, ... t;teL/A for i=1,...,n,
zo—"‘”—>z=z,—lim—>...z,,+l Lntplntl , o

Again, there must exist z; =z; with 1 <i<j<n+1, and hence ¢ is
allenabled by

. U.'...U BN TR

Now, if A i1s a universal just-control automaton, then we have tin t; ... t;_,
by Theorem (13), i.e, m,.(tf) > 0 and hence L/Aed-just(L).
The proof for relative justice is similar. »

(19) THEOREM (REALIZATION OF CONTROLS). (1) Suppose ce {fair, rfair,
just, rjust, fair&nbl, rfair&nbl, just&nbl, rjust&nbl}.
Then a control automaton A can be constructed such that

Lidec{(L) for all Le CONT.

(2) Suppose ce {pfin, pfin&nbl, imp&dfr, fair&dfr, just&dfr} and
LePREG UFNL, ¢(L) # Q.

Then a control automaton A can be constructed with L/Aec(L).

Proof. Assertion (1) is a consequence of Theorem (13).
The proof of assertion (2) refers to the proof of Theorem (6): The
sequences u, v mentioned there can be constructed if they exist. The

construction of a control automaton A with L/4 = uv® ec(L) (or =iiec(L)
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in the corresponding cases) poses no problem. But note that these automata
have to be constructed individually for each system, while the automata in
assertion (1) can be chosen as universal control automata. =

We remark that Theorem (19) also holds for ce {rfair&dfr, rjust&dfr} in
the case Le PREG, but not tn the case Le FNL.
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